1. Field of the Invention
The present invention relates to short arc type discharge lamps and relates specifically to short arc type discharge lamps wherein a tip end part comprising thorium oxide is provided at the cathode.
2. Description of Related Art
As short arc type discharge lamps containing mercury have a short distance between the tip ends of a pair of electrodes arranged oppositely to each other in a light emitting tube and are close to point light sources, they are conventionally used for the light source of exposure devices with a high focusing efficiency by means of a combination with an optical system. Further, short arc type discharge lamps containing xenon are used as light sources for visible light in projectors etc., and recently, they are also used as light sources for the digital cinema. Among these short arc type discharge lamps, lamps are known which are designed to increase the electron emission characteristics by providing an emitter material at the cathode.
In JP-A-2010-33825, the configuration of a known short arc type discharge lamp and the configuration of the cathode thereof are disclosed.
The configuration of the cathode in this lamp is shown in
As to the shape of the emitter material of the cathode tip end containing an emitter substance, apart from a taper portion of the cathode tip end being made up completely from the emitter material such as in the above mentioned known technique, also a configuration such as shown in
But in the above mentioned example of the prior art, the emitter substance contributing to the improvement of the electron emission characteristics is actually limited to the emitter substance being contained within a very shallow region from the surface of the cathode tip end. This is because the quantity of the emitter substance being supplied to the cathode tip end surface from the inner portion of the cathode having a lower temperature by means of heat diffusion is low in comparison to the quantity of the emitter substance being evaporated and consumed by means of the heat of the surface of the cathode tip end where the temperature becomes highest. Thus, even if a large quantity of the emitter substance is contained in the cathode inner portion, the phenomenon arises that the supply thereof from the inner portion to the surface becomes insufficient while there is a shortage of the emitter substance at the surface. Therefore, with the above mentioned known technique there is the problem that although an emitter substance is contained in the cathode tip end, this emitter substance is not utilized sufficiently, and when the emitter material at the cathode tip end surface is depleted, the electron emission characteristics decrease and flicker occurs.
In view of the above-mentioned problems of the known technique, this invention has the object to provide a short arc type discharge lamp having a cathode being configured such that an emitter substance is provided in the tip end, wherein a shortage of the emitter substance at the cathode surface is avoided by means of aiming at an effective utilization by letting the emitter substance being contained in the inner portion of the cathode tip end migrate to the surface, and an extension of the flicker durability of the lamp is intended.
To solve the above-mentioned problems, in this invention a short arc type discharge lamp wherein a cathode and an anode are arranged opposite to each other in the interior of a light emitting tube and said cathode comprises a main part made from tungsten and a tip end part made from thoriated tungsten is characterized in that thorium oxide particles having been peripherally coated with thorium are contained in the tip end part of said cathode.
As, according to the present invention, thorium oxide particles having been peripherally coated with thorium are contained in the cathode tip end part containing thorium oxide, this thorium-coated thorium oxide is made to migrate because of heat to the surface having a higher temperature and is supplied sufficiently to this surface. Thus, the condition of a depletion of the thorium oxide at the surface does not occur and a lamp with a long flicker durability can be implemented
Said tip end part 4 for which thorium oxide (ThO2) as the emitter substance has been incorporated into tungsten being the main component is so-called thoriated tungsten. The thorium oxide content amounts to, for example, 2 wt. %. Said tip end part 4 has, as a whole, an approximately frustoconical shape and is bonded to the taper portion 3a of said main part 3. The tip end face thereof is arranged opposite to an anode which is not shown.
Normally, the thorium oxide being contained in the thoriated tungsten which makes up the tip end part 4 is reduced to thorium atoms by means of reaching a high temperature during the lighting of the lamp and is diffused at the outer surface and migrates to the tip end side where the temperature is high. By means of this, the work function can be decreased and the electron emission characteristics can be improved.
In the present invention, thorium oxide particles 5 having been coated with thorium (in the following referred to as ‘thorium-coated thorium oxide particles’) are contained in the tip end part 4 of said cathode 2. These thorium-coated thorium oxide particles 5 are mainly contained in the vicinity of the region in which the tip end part 4 is bonded to the main part 3.
Now, in
Next, the method for forming these thorium-coated thorium oxide particles will be explained as follows. In thoriated tungsten, thorium oxide particles are present as an inclusion in the tungsten, and when carbon is introduced into this tungsten, the carbon atoms dissolve solidly as interstitial impurities. If a high temperature is reached, there is a reaction with the solidly dissolved carbon atoms at the surface of the thorium oxide particles and a reduction occurs and metallic thorium is formed. At the same time, carbon monoxide is generated.
ThO2+2C⇄Th+2CO
As the thorium oxide particles are surrounded by tungsten, the generated carbon monoxide accumulates in these gaps. When the pressure of the generated carbon monoxide increases, the above-mentioned reaction stops. The carbon monoxide having been accumulated in the tungsten dissolves in the peripheral tungsten and balances out.
CO⇄[C]w+[O]w
Here, [C]w is the carbon solidly dissolved in the tungsten, and [O]w is the oxygen solidly dissolved in the tungsten. Further, when [C]w and [O]w diffuse and escape to the outside, the carbon monoxide pressure decreases and the reduction of thorium oxide continues. That is, the reduction of thorium oxide is rate-determined by the diffusion of [C]w and [O]w. That is, if there is a lot of carbon present in the vicinity and the diffusion of [C]w and [O]w is performed efficiently, metallic thorium is generated and thorium oxide particles having a shell-shaped thorium coating are formed.
As to the method of introducing carbon into the tungsten, adhering solid carbon to the surface of the thoriated tungsten and performing a heat treatment or solidly dissolving carbon into the tungsten by performing a heat treatment of the thoriated tungsten in an atmosphere containing carbon are possible.
Next, a method to produce the cathode with the configuration of
Another method to produce the cathode with the configuration of
Next, a method to produce the cathode with the configuration of
In doing so, a cathode wherein thorium-coated thorium oxide particles are contained in the thoriated tungsten is obtained. In the following, the mechanism of the migration of said thorium-coated thorium oxide particles in the tungsten will be explained.
The ability of the thorium melt liquid to dissolve tungsten depends on the temperature of said thorium melt liquid, and the solubility increases with the temperature. Therefore, the thorium melt liquid dissolves more tungsten W at the high temperature side. Thus the concentration of the tungsten dissolved in the thorium melt liquid becomes high at the high temperature side and low at the low temperature side, because of which a concentration gradient arises between these sides and the dissolved tungsten is exported because of this concentration gradient from the high temperature side with the high concentration to the low temperature side with the low concentration (Y). But as the solubility is low at the low temperature side, the concentration of the tungsten in the thorium melt liquid exceeds the solubility at the low temperature side and the dissolved tungsten precipitates at the wall surface of the surrounding tungsten (Z).
To summarize the above-mentioned processes, the tungsten wall at the high temperature side dissolves (X), migrates to the low temperature side (Y) and precipitates at the wall of the low temperature side (Z) via the thorium melt liquid 16, because of which a state occurs in which the thorium oxide particle 15 as a whole has migrated to the high temperature side. That is, in the region with a temperature of at least 1750° C. being the melting temperature of thorium a migration of the thorium-coated thorium oxide particles towards the high temperature side occurs. As, normally, the tip end surface of the cathode has a higher temperature, the thorium-coated thorium oxide particles migrate towards the cathode tip end surface and thorium oxide can be transported to the tip end surface. As the solubility of tungsten becomes higher with the increasing cathode temperature, the migration speed of the thorium-coated thorium oxide particles increases.
The following experiment was performed to confirm the results of the present invention. As to the configuration of the commonly used lamp, a 4 kW xenon lamp for the digital cinema being the lamp with the highest cathode load was used. The lamp voltage was 30 V and the lamp current was 135 A.
Conventional Lamp (1)
This lamp was provided with the cathode shown in
Conventional lamp (2)
This lamp was provided with the cathode shown in
Lamp of the Present Invention (1)
This lamp was provided with the cathode shown in
Lamp of the Present Invention (2)
This lamp was provided with the cathode shown in
The above-mentioned results are summarized in table 1.
As will be understood from table 1, a significant improvement in the flicker durability was recognized even for electrodes with the same shape, when thoriated tungsten was used as the emitter material and thorium-coated thorium oxide particles were formed and included therein.
Because, as was mentioned above, according to the present invention thorium oxide particles peripherally coated with thorium are contained in the thoriated tungsten being the emitter material, said thorium-coated thorium oxide particles migrate to the high temperature tip end surface side because of the temperature gradient of the cathode and the consumption of the thorium oxide at said cathode tip end surface is compensated. By means of this, thorium oxide in the interior of the cathode which had not been utilized before is effectively utilized and the flicker durability can be extended.
Number | Date | Country | Kind |
---|---|---|---|
2010-151812 | Jul 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20030057835 | Okanuma et al. | Mar 2003 | A1 |
Number | Date | Country |
---|---|---|
2010-033825 | Feb 2010 | JP |
Number | Date | Country | |
---|---|---|---|
20120001541 A1 | Jan 2012 | US |