The present disclosure relates to a distillation apparatus, and more particularly a short-path distillation apparatus for phytochemical extraction.
Short-path distillation is a distillation technique that involves the distillate travelling a short distance, often only a few centimeters, and is normally done at reduced pressure. One example is distillation involving the distillate travelling from one glass bulb to another, without the need for a condenser separating the two chambers. This technique is often used for compounds which are unstable at high temperatures or to purify small amounts of compound. One advantage of short-path distillation is that the heating temperature can be considerably lower (at reduced pressure) than the boiling point of the liquid at standard pressure (e.g., 1 atm), and the distilland vapor only has to travel a short distance before condensing. A short path ensures that little compound is lost on the sides of the apparatus. (https://en.wikipedia.org/wiki/Short_path_distillation.)
Embodiments described herein provide devices and methods for short path distillation. An example inventive apparatus includes a double-walled bulb-shaped condensing head. The double wall forms a coolant chamber that substantially envelopes an inner condensate chamber. Coolant is introduced into and removed from the coolant chamber via ports in the outer wall of the head. Condensate in gaseous form is introduced into the condensate chamber where it comes in contact with and condenses as distillate upon the cold inner surface of the condensate chamber. Condensed distillate travels down the inner surface of the condensate chamber and then into a distillate outlet conduit that transports the condensed distillate to a collection vessel.
The described devices and methods can be used to separate various mixtures of liquids into their individual components. Some embodiments are used to separate THC (Tetrahydrocannabinol), CBD (Cannabidiol), terpenes or other materials from cannabis extract. The cannabis extract itself may be produced by running a solvent through plant material to strip out the desired materials, or by other techniques known in the art. Example systems and methods for solvent-based phytochemical extraction are described in U.S. patent application Ser. No. 15/339,816, entitled “PHYTOCHEMICAL EXTRACTION SYSTEMS, METHODS, AND DEVICES” and filed on Oct. 31, 2016, which is incorporated herein by reference in its entirety.
The top of the inlet conduit 102 is substantially enveloped by a bulb-shaped condensing head 103. The head 103 is double-walled and has an outer sidewall 108 and a spaced apart inner sidewall 109 that defines a cooling fluid chamber 110 between the two sidewalls. The inner sidewall 109 is substantially configured as a surface of revolution about the inlet conduit 102, thereby defining a condensate chamber 111. The inlet conduit 102 is fluidly connected to the condensate chamber 111 for introduction of gaseous distilland into the condensate chamber 111.
The device 100 further includes a cooling fluid means for introducing and removing a cooling fluid (e.g., water) respectively to and from the cooling fluid chamber 110. In this embodiment, coolant is introduced into the chamber 110 via an inlet port 104 of the outer sidewall 108. Coolant is removed from the cooling fluid chamber 110 via an outlet port 105 of the outer sidewall 108. In some embodiments, the inlet port 104 is positioned below the outlet port 105. In other embodiments (e.g.,
As the vapor exits inlet conduit 102, it comes into contact with the cool inner surface of inner sidewall 109, where it condenses into distillate. The distillate travels down the inner surface of the inner sidewall 109 and into distillate outlet conduit 106, from where it can be captured in a collection vessel (not shown). The distillate outlet conduit 106 is fluidly connected to the condensate chamber 111 adjacent to the lower end thereof for receiving the liquid distillate from the condensate chamber.
The condensing head 103 also defines an aperture which forms a thermocouple inlet 107. The inlet 107 allows a thermometer or other probe to be inserted into the condensate chamber 111. The inlet 107 is preferably large enough to facilitate entry of distillation packing material. In the illustrated embodiment, the inlet 107 may be configured to receive a male 14/20 taper-ground connector. Once packing material is added to the chamber 111, a thermometer adapter (or similar) with a 14/20 joint may be inserted into the inlet 107.
The inlet port 101 at the bottom of the inlet conduit 102 may be provided using a 24/40 taper-ground joint. A similar joint may be located at the outlet port 112 at the bottom of the outlet conduit 106. Typically the joints at inlet port 101 and outlet port 112 will be the same dimensions (e.g., both 24/40 joints). Distillation device 100 also includes O-rings 110a and 110b. Each O-ring is a narrow ring seated in a circumferential indent groove around one of the conduits 102 and 106. The O-ring creates a tight seal with a conduit that mates the device 100 to a vapor source (e.g., still pot) or collection vessel.
The distillation device 100 and other embodiments shown and described herein provide a number of advantages over prior art devices. First, the described distillation devices provide substantially more surface area for condensing the distillate than prior art devices, such as that shown in
The described condenser design provides a full 360-degree contact area for condensate to form, thereby alleviating blockage and increasing productivity. The described condenser design also allows for the fractionating column (e.g., inlet conduit 102) to be insulated by the vacuum provided for the reaction. The benefit of this is that fractions will arrive sooner, while staying more consistent as they will not be susceptible to temperature fluctuations from environmental variables. The prior art short-path distillation head described with respect to
In addition, the inlet conduit 202 includes a number of Vigreux indents. Vigreux indents are protrusions within the inner surface of the inlet conduit 202. These indents increase the surface area of the inner surface and thereby slow the rate at which hot vapors rise, thereby giving a better separation between the different components in the distillate in the inlet conduit 202.
Distillation device 200 also includes an inlet port 201 that includes a Glindemann-style O-ring 210a. The O-ring 210a is a narrow ring seated in a circumferential indent groove around the ground glass (or similar) inlet port 201. A similar O-ring 210b is found on the outlet port of the outlet conduit 206. The O-rings are typically manufactured from polytetrafluoroethylene (“PTFE”). These O-rings allow for a greaseless vacuum-tight seal, while also avoiding potential contaminants in the reaction vessel from vacuum grease or similar substance. Some embodiments utilize KALREZ® perfluoroelastomer O-rings supplied by DuPont Corporation.
The condensing head 203 also defines an aperture which forms a thermocouple inlet 207. The inlet 207 is configured and sized in a manner similar to inlet 107, described above.
The device 200 illustrates another advantage of the described design. The coolant in and out ports (e.g., ports 104 and 105 in
Some embodiments are also configured to support digital data logging. A thermocouple adapter provides vacuum tight seal, eliminating the reliance on 10/30 and 10/18 joints used in the prior art devices. This allows the operator to observe fractions in real time via the reaction vapor temperature allowing for better control of the reaction.
In addition, although not shown in
In addition, although not shown in
Some embodiments provide a process of distillation using the described devices. The process includes connecting (to the distillation apparatus) a still pot or other distilland vessel to the inlet conduit, connecting a collection vessel to the outlet conduit, connecting the coolant inlet port to a water source, and connecting the coolant outlet port to a drain or recovery vessel. A substantial vacuum or at least a reduced pressure condition (e.g., below 0.1, 0.05, 0.01, 0.001 atmospheres) is established within the condensation chamber by way of a vacuum pump or similar mechanism. The vacuum can be established by a user-connected vacuum take-off adapter, a cow-type distillation receiver, or the like. The distilland is heated to a desired temperature (e.g., the boiling point of desired fraction) thereby introducing vapor containing the faction into the condensation chamber, where it condenses into distillate. The distillate flows into the collection vessel via the outlet conduit.
Some embodiments provide a distillation apparatus, comprising a distillation head that has an inner wall and an outer wall, wherein the inner wall forms a condensation chamber that has an inner surface, wherein the outer wall envelopes the inner wall and forms a coolant chamber that surrounds the condensation chamber; a coolant inlet port on the outer wall that is configured to pass liquid coolant into the coolant chamber; a coolant outlet port on the outer wall that is configured to pass liquid coolant out of the coolant chamber; an inlet tube having a first end and a second end, wherein the tube passes through the inner and outer wall, wherein the first end is positioned within the condensation chamber, wherein the second end is positioned outside of the outer wall, and wherein at least a portion of the inlet tube protrudes into the condensation chamber; and an outlet tube having a first end and a second end, wherein the tube passes through the outer wall, wherein the first end forms an opening in the inner surface of the condensation chamber, and wherein the second end is positioned outside of the outer wall. The parts of the distillation apparatus are typically made of glass, although other substances such as metal can be used instead or in addition.
Distilland vapor from a still pot enters the condensation chamber via the first end of the inlet tube and condenses on the inner surface of the condensation chamber to form condensed distillate. The condensed distillate then flows out of the condensation chamber via the first end of the outlet tube.
In some embodiments, the first end of the outlet tube joins the inner surface of the condensation chamber, such that condensed distillate can flow unimpeded into the outlet tube and thence to a collection vessel.
While embodiments of the invention have been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is not limited by the above disclosure.
This application claims the benefit of U.S. Provisional Patent Application No. 62/383,997, entitled “SHORT-PATH DISTILLATION APPARATUS AND METHOD,” filed on Sep. 6, 2016, the content of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2427142 | Hornbacher | Sep 1947 | A |
2468872 | Goldsbarry | May 1949 | A |
3340157 | Weiss | Sep 1967 | A |
3393133 | Baird | Jul 1968 | A |
3395083 | Gilmont | Jul 1968 | A |
3607662 | Glover | Sep 1971 | A |
3907683 | Gilmont | Sep 1975 | A |
4471836 | Hokanson | Sep 1984 | A |
5164049 | Clark | Nov 1992 | A |
5354428 | Clark | Oct 1994 | A |
5885313 | Okamoto | Mar 1999 | A |
6419796 | Kitamura | Jul 2002 | B1 |
9682331 | Kremerman | Jun 2017 | B2 |
9895626 | Kremerman | Feb 2018 | B2 |
20150136158 | Stevens | May 2015 | A1 |
20170003264 | Adams | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
102847333 | Jan 2013 | CN |
2314147 | Jan 2008 | RU |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority dated Dec. 28, 2017, in International Patent Application No. PCT/US2017/050346, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20180065060 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
62383997 | Sep 2016 | US |