The utility of neutron generators in various endeavors is well known. Neutron generators are commonly used in a diverse set of applications, including oil well logging, material detection, imaging, treatment/monitoring of medical conditions, etc. Conventional high fluence, non-active neutron generator technology is mostly based upon vacuum accelerator or radio frequency (RF) techniques. In an exemplary conventional neutron generator, a relatively high voltage is used to accelerate deuterium (D) ions. The accelerated ions impact a metal target loaded with tritium (T) gas, causing a deuterium-tritium (DT) fusion reaction that produces neutrons. A device such as the neutron generator described above appeared in the literature in the early 1960s, and the design continues to evolve with variations on the accelerator type, power supply driver type, size, and output.
Relatively recently, short pulse neutron generators have been introduced that generate a pulse of approximately 1012 neutrons over a length of time on the order of 25 to 50 nanoseconds. Conventional designs for short pulse neutron generators include the use of plasma focus devices (PFD), which may take a relatively long time to recharge (e.g., twenty minutes to an hour).
The following is a brief summary of subject matter that is described in greater detail herein. This summary is not intended to be limiting as to the scope of the claims.
Described herein are various technologies pertaining to neutron generators. With more particularity, described herein are various technologies pertaining to short pulse neutron generators. In an exemplary embodiment, a short pulse neutron generator can comprise a Blumlein configuration. The Blumlein configuration includes a first conductive plate that is coupled to a first voltage source that can output a relatively high voltage (e.g., 50 kV-50 MV). The first conductive plate may also be referred to as a discharge plate.
The Blumlein configuration additionally includes a second conductive plate that is at least partially coplanar with the first conductive plate. The second conductive plate can be referred to as an initiation plate. At least one of a resistor or an inductor can be coupled to the first conductive plate and the second conductive plate, wherein the at least one of the resistor or inductor has a relatively high impedance (e.g., 10 MΩ). In another exemplary embodiment, the resistor or inductor can be of a value such that re-charging of the second plate (e.g., by way of the first plate) can be accomplished in a fraction of a second, such that repetition rates between approximately one hertz one kilo-hertz are possible. The first conductive plate and the second conductive plate are positioned relative to one another such that a first gap is formed therebetween.
The Blumlein configuration further includes a third conductive plate that is electrically grounded. The third conductive plate can be arranged in parallel with the first conductive plate and the second conductive plate, and can be separated from at least the first conductive plate by a dielectric material. A switch can be operable to electrically connect the second conductive plate with the third conductive plate (and thus to ground), and disconnect the second conductive plate from the third conductive plate.
A vacuum chamber is positioned in the first gap between the first conductive plate and the second conductive plate. The vacuum chamber includes a first electrode that has a target surface loaded with deuterium or tritium, wherein the first electrode is electrically coupled to the first conductive plate. The vacuum chamber also includes a second electrode that is electrically coupled to the second conductive plate, wherein the second electrode comprises a face that opposes the target surface of the first electrode, the face and the target surface separated by a second gap (e.g., an accelerating gap). The face of the second electrode forms a cavity, such that the face of the second electrode is between the target surface and the cavity. In an exemplary embodiment, the face may comprise a plurality of apertures extending therethrough.
An ion generator (ion source) can be positioned relative to the cavity such that the cavity is populated by ions generated by the ion generator. A second voltage source is coupled to the ion generator, which can cause the ion generator to output, for instance, deuterium ions.
In operation, the first voltage source outputs a relatively high voltage, thereby charging the first conductive plate and the second conductive plate (e.g., the first conductive plate and the second conductive plate have substantially equivalent voltages). Specifically, the relatively high voltage applied to the first conductive plate can effectively cause a short circuit to form between the first conductive plate and the second conductive plate, such that both conductive plates become equivalently charged. The ion generator is caused to populate the cavity in the vacuum chamber with a plurality of ions. Because the first conductive plate and the second conductive plate (and thus the first electrode and the second electrode) have an equivalent voltage, the ions generated by the ion source remain relatively stationary in the cavity (e.g., such ions are attracted to neither the first electrode nor the second electrode). The first voltage source may then cease to provide the relatively high voltage.
The switch that couples the second conductive plate with the third conductive plate can thereafter be closed, resulting in a relatively rapid voltage drop at the second electrode, while the voltage at the first electrode remains relatively high. For a relatively small amount of time (e.g., 1 nanosecond-200 nanoseconds), the first conductive plate (and thus the first electrode) retains the relatively high voltage, attracting ions in the cavity formed by the face of the second electrode (e.g., designed to let some ions escape) to the target surface of the first electrode. Ions that escape the cavity impact the target surface of the first electrode, producing a relatively short pulse of neutrons. The first conductive plate then discharges by way of the ions accelerated over the accelerating gap. Thereafter, the switch can be opened, and the first voltage source can be configured to output the relatively high voltage, again charging both the first and the second conductive plates (and thus the first electrode and the second electrode), and the ion source can be configured to populate the cavity in the vacuum chamber with more ions. The exemplary short pulse neutron generator configured in the manner above can generate several short neutron pulses in a second, compared to the several minutes or hours required by conventional short pulse neutron generators.
The above summary presents a simplified summary in order to provide a basic understanding of some aspects of the systems and/or methods discussed herein. This summary is not an extensive overview of the systems and/or methods discussed herein. It is not intended to identify key/critical elements or to delineate the scope of such systems and/or methods. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.
Various technologies pertaining to short pulse neutron generators are now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more aspects. It may be evident, however, that such aspect(s) may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing one or more aspects.
Moreover, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise, or clear from the context, the phrase “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, the phrase “X employs A or B” is satisfied by any of the following instances: X employs A; X employs B; or X employs both A and B. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from the context to be directed to a singular form.
Described herein are various technologies pertaining to short pulse neutron generators. An exemplary short pulse neutron generator described herein can output a neutron pulse having a pulse length of between one nanosecond and 100 nanoseconds. Furthermore, an exemplary short pulse neutron generator described herein can generate neutron pulses relatively rapidly, such as with a frequency of between 1 Hz and 2440 Hz (or higher). The exemplary short pulse neutron generators described herein have a variety of applications, including radiography and material identification. As a length (in time) of the pulse of neutrons generated by the exemplary short pulse neutron generator is relatively short, harmful effects associated with conventional neutron generators may be avoided.
With reference now to
The Blumlein structure further includes a third conductive plate 110 that is electrically grounded. The third conductive plate 110 may be positioned in parallel with the first conductive plate 102 and the second conductive plate 104, wherein a dielectric material 112 separates the first conductive plate 102 from the third conductive plate 110, and further optionally separates the second conductive plate 104 from the third conductive plate 110. The Blumlein structure can further comprise a switch 114 that is configured to connect and disconnect the second conductive plate 104 to and from the third conductive plate 110. In an exemplary embodiment, the switch 114 can be a spark gap.
The first conductive plate 102, the second conductive plate 104, and the third conductive plate 110 can be composed of any suitable conductive material, including copper, steel, titanium, or the like. The dielectric material 112 may also be any suitable dielectric material, including porcelain, glass, a plastic, etc.
The neutron generator 100 additionally includes a vacuum chamber 116 positioned in the gap 106 between the first conductive plate 102 and the second conductive plate 104. A first electrode 118 is included in the vacuum chamber 116 and extends from the first conductive plate 102. The first electrode 118 includes a target surface 120 that can be loaded with tritium and/or deuterium. A second electrode 122 is also included in the vacuum chamber 116 and extends from the second conductive plate 104. The second electrode 122 comprises a face 124, wherein the face forms a cavity 126, the face 124 positioned between the cavity 126 and the target surface 120. The face 124 of the second electrode 122 opposes the target surface 120 of the first electrode, the face 124 of the second electrode 122 separated from the target surface 120 of the first electrode 118 by an accelerating gap. In an exemplary embodiment, the accelerating gap can be between 0.1 centimeter and 2 centimeters. Further, the face 124 can comprise a plurality of apertures extending therethrough.
An ion generator 128 can be positioned to emit ions into the cavity 126. Accordingly, as shown, the ion generator 128 can be positioned in the cavity 126. In another exemplary embodiment, the ion generator 128 can be external to the vacuum chamber 116, but can be configured to emit ions into the cavity 126.
A first voltage source 130, which is configured to output a relatively high voltage (e.g., between 50 kV and 50 MV), is electrically connected to the first conductive plate 102. A second voltage source 132 is electrically connected to the ion generator 128 and is configured to drive the ion generator 128, thereby causing the ion generator 128 to generate ions.
Operation of the short pulse neutron generator is now described. The switch 114 is opened, disconnecting the first voltage source 130, the first conductive plate 102, the at least one of the resistor or the inductor 108, and the second conductive plate 104 from the third conductive plate 110 (and thus from ground). The first voltage source 130 outputs a relatively high voltage, creating a short circuit between the first conductive plate 102 and the second conductive plate 104, resulting in the first conductive plate 102 and the second conductive plate 104 retaining an electrical charge (e.g., having an equivalent voltage). The second voltage source 132 is then configured to drive the ion generator 128, causing the ion generator 128 to populate the cavity 126 with ions. As the voltage of the first conductive plate 102 (and thus the first electrode 118) and the second conductive plate 104 (and thus the second electrode 122) are equivalent, the ions in the cavity 126 are not attracted to either of the first electrode 118 or the second electrode 122. Population of the cavity 126 with ions while voltage of the first electrode 118 and the second electrode 122 are approximately equivalent can be referred to as “pre-filling” the cavity 126.
Once the cavity 126 is sufficiently populated with ions, the first voltage source 130 ceases to output the relatively high voltage, and the switch 114 is closed. Responsive to the switch closing, voltage of the second conductive plate 104 (and thus the second electrode 122) rapidly drops, while the voltage of the first conductive plate 102 (and thus the first electrode 118) remains relatively high. The ions in the cavity 126 are thus attracted to the first electrode 118, and ions proximate to the face 124 exit the cavity 126 by way of the apertures and are accelerated over the accelerating gap towards the target surface 120 of the first electrode 118. Such ions impact the tritium or deuterium in the target surface 120, forming neutrons that are isotropically emitted from the vacuum chamber 116.
The first conductive plate 102 discharges via the ions accelerated in the gap between the first electrode 118 and the second electrode 122, wherein the current of accelerated ions can be several milli-amperes (mA) to thousands of amperes (kA), as determined by a production strength of the ion generator 128, size of the cavity 126, and ultimately a number of neutrons desired by an operator of the neutron generator 100. The discharge time duration is controlled by the dimensions of the first conductive plate 102, the second conductive plate 104, and the third conductive plate 110 in an axis perpendicular to the first electrode 118 and the second electrode 122 (e.g., along the x-axis). The current magnitude is controlled by the dimensions of the first conductive plate 102, the second conductive plate 104, and the third conductive plate 110 in an axis parallel to the first electrode 118 and the second electrode 122 (e.g., along the z-axis).
Responsive to the first conductive plate 102 discharging, the switch 114 can be opened and the first voltage source 130 can be configured to output the relatively high voltage, thereby charging the first conductive plate 102 and the second conductive plate 104. This process can repeat relatively rapidly, such as on the order of 60 Hz, 120 Hz, 240 Hz, or 2400 Hz. As indicated above, the switch 114 may be a spark gap. In another exemplary embodiment, the switch 114 can be or include a Silicon-controlled rectifier (SCR), a high-power MOS-FET-based solid state switching arrangement, etc. Thus, another voltage source can drive, or trigger, the spark gap or solid state-based switch, causing a short to occur between the second conductive plate 104 and the third conductive plate 110, for example, when the spark gap is fired.
It can be ascertained that dimensions of portions of the neutron generator 100 can be selected based upon desired duration of a neutron pulse, a number of neutrons desirably generated by the neutron generator 100, etc. For instance, as length of the first conductive plate 102 and/or the second conductive plate 104 increases, a duration of a voltage pulse at the first electrode 118 increases. Further, distance between the target surface 120 and the face 124 can be selected based upon a desired discharge rate of the first conductive plate 102. Moreover, a number of ion generators, position of ion generators, size of the cavity 126, size of the target surface 120, etc. can be selected based upon a volume of neutrons desirably generated.
Other exemplary embodiments are now described. While the target surface 120 of the first electrode 118 and the face 124 of the second electrode 122 are shown as being planar in nature, it is to be understood that the target surface 120 and/or the face 124 may have a three-dimensional curved profile, such as a three-dimensional elliptical surface, a surface with a Rogowsky profile, or a surface with a Chen profile. In another example, while the face 124 has been described as comprising apertures extending therethrough, it is to be understood that the face 124 can be designed with a curved profile or “L” shape in such a manner that ions can escape the cavity 126. For instance, the cavity 126 may be only partially enclosed.
In another exemplary embodiment, the first voltage source 130 can be an AC voltage source that continuously provides voltage to the first conductive plate 102. In such an embodiment, the second voltage source 132 is timed relative to the first voltage source to populate the cavity 126 when the first conductive plate 102 is nearing completion of discharge and beginning to re-charge. The switch 114 is timed with a frequency that corresponds to the frequency of the first voltage source 130. In still yet another exemplary embodiment, the target surface 120 can form a second cavity 134, and a second ion generator (not shown) can be positioned to populate the second cavity 134 with ions. The face 124 of the second electrode can be loaded with deuterium and/or tritium, and the relative polarities of the first electrode 118 and second electrode 122 can alternate. Accordingly, ions are accelerated in both directions in the accelerating gap, depending upon the relative polarities of the first electrode 118 and the second electrode 122. Further, the discharge chamber 116 can optionally include polarized rods that are positioned relative to the ion generator 128 and the face 124 of the second electrode 122 to prevent secondary electron emissions. For instance, polarized rods can extend along the length of the cavity 126 (e.g., along the x-axis), directing the ions towards the face 124 and the apertures therethrough.
The ion source 128 can be any suitable ion source. For instance, the ion source 128 can be a relatively high current surface discharge ion source that is capable of de-sorbing loaded deuterium and ionizing such deuterium at approximately the same time. With more specificity, the ion source can comprise a thin film of titanium, scandium, or other suitable metal that includes deuterium loaded thereon. Furthermore, the ion source 128 may comprise two opposing electrodes, an array of series electrodes, or an array of parallel electrodes. An exemplary ion source can be composed of two opposing electrodes made of tritium, erbium, or scandium, loaded with deuterium, such that deuterium gas is released as the temperature rises, which occurs as current flows. That is, ions are formed by the electron flow from the opposite electrode.
Now referring to
The vacuum chamber 116 can be positioned in the gap 216 and can comprise the first electrode 118 having the target surface 120, the second electrode 122 having the face 124 that forms the cavity 126, and the ion source 128, as described above.
A switch 220, such as a spark gap, electrically connects and disconnects the first voltage source 130 to and from the first conductive plate 202. A dielectric material 222 is positioned in a gap between the first portion 206 of the first conductive plate 202 and the first portion 210 of the second conductive plate 204.
Operation of the exemplary neutron pulse generator 200 is now described. The switch 220 can be opened, such that both the first conductive plate 202 and the second conductive plate 204 are uncharged. The second voltage source 132 drives the ion generator 128, causing the ion generator 128 to populate the cavity 126 with ions. When the cavity 126 includes a sufficient number of ions, the switch 220 is closed, causing the first conductive plate 202 to be charged for a relatively short amount of time. Ions in the pre-filled cavity 126 can escape, for example, through apertures of the face 124 and impact tritium or deuterium loaded into the target surface 120 of the second electrode 118. The switch 220 may then be opened, causing the first conductive plate 202 to discharge by way of the ions accelerated from the second electrode 118 to the first electrode 122 in the accelerating gap.
With reference now to
With reference now to
Turning now to
At 606, an ion generator is positioned in the gap between the first conductive plate and the second conductive plate in the Blumlein structure. The methodology 600 completes at 608.
Now referring to
What has been described above includes examples of one or more embodiments. It is, of course, not possible to describe every conceivable modification and alteration of the above devices or methodologies for purposes of describing the aforementioned aspects, but one of ordinary skill in the art can recognize that many further modifications and permutations of various aspects are possible. Accordingly, the described aspects are intended to embrace all such alterations, modifications, and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the details description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.
This application is a continuation of prior U.S. application Ser. No. 14/016,609, filed Sep. 3, 2013, and claims the benefit of the same. The above application is incorporated herein by reference in its entirety.
This invention was developed under Contract DE-AC04-94AL85000 between Sandia Corporation and the U.S. Department of Energy. The U.S. Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
4223279 | Bradford, Jr. et al. | Sep 1980 | A |
4298804 | Colditz | Nov 1981 | A |
9230772 | Zhou et al. | Jan 2016 | B2 |
20050220244 | Leung | Oct 2005 | A1 |
20100032580 | Caporaso et al. | Feb 2010 | A1 |
20120146553 | Joshkin et al. | Jun 2012 | A1 |
20120213319 | Kwan et al. | Aug 2012 | A1 |
20130048847 | Gilchrist et al. | Feb 2013 | A1 |
20130170592 | Zhou | Jul 2013 | A1 |
20130180780 | Chirovsky et al. | Jul 2013 | A1 |
Entry |
---|
Rebersek, et al., “Blumlein Configuration for High-Repetition-Rate Pulse Generation of Variable Duration and Polarity Using Synchronized Switch Control”, IEEE Transactions on Biomedical Engineering, vol. 56, No. 11, Nov. 2009, pp. 2642-2648. |
Number | Date | Country | |
---|---|---|---|
20160302297 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14016609 | Sep 2013 | US |
Child | 15190035 | US |