Disclosed is an automatic or semiautomatic rifle and corresponding ammunition that combine to form a system that will be lighter, more compact, and more accurate than the current light automatic weapons.
The M249 light machine gun (LMG), formerly designated the M249 Squad Automatic Weapon (SAW) is a light machine gun that is widely utilized in the U.S. Armed Forces. The weapon was introduced in 1984 after being judged the most effective of a number of candidate weapons to address the lack of automatic firepower in small units. The M249 provides infantry squads with the high rate of fire of a machine gun combined with accuracy and portability approaching that of a rifle.
The M249 is a belt-fed light machine gun that typically fires the 5.56×45mm NATO cartridge, usually a combination of one M856 tracer and four M855 ball cartridges fed from M27 linked belts. Belts are typically held in a hard plastic or soft canvas box attached to the underside of the weapon. The M249 fires from an open bolt and is gas operated. When the trigger is pulled, the bolt and bolt carrier move forward under the power of the recoil spring. A cartridge is stripped from the belt, chambered, and discharged, sending a bullet down the bore. Expanding propellant gases are diverted through a hole in the barrel into a chamber. This pressure moves a piston providing the energy to extract and eject the spent casing as well as advance the belt and compress the recoil spring, thus preparing for subsequent shots. At 41 inches long and 17 pounds and commonly utilizing a 22 pound 200-round belt and plastic ammo box, the M249 is a cumbersome weapon. Accordingly, it would be desirable to provide a comparable weapon and ammunition having reduced size and weight.
The disclosed automatic or semiautomatic rifle features a number of novel attributes. Some of these attributes may provide a substantial weight savings when compared to conventional automatic or semiautomatic rifle designs such as, for example the M249. These attributes are considered novel alone as well as in various combinations. The weight of the disclosed rifle is reduced in comparison to existing comparable weapon platforms while utilizing conventional materials and manufacturing methods. One attribute that reduces the weight of the rifle is a short-stroke action. While the stroke-length of the action in conventional automatic weapons is typically 2 to 3 times the length of the cartridge it fires, the stroke-length of the presented rifle may be less than 1.5 times or even 1 times the length of the cartridge it fires. A reduced action stroke-length results in a reduced receiver size and overall weapon length. Such a short stroke-length is provided by the use of a divorced chamber that moves relative to the barrel of the rifle. In contrast to existing weapons having a firing chamber that is fixedly attached to the barrel, the firing chamber moves forward and rearward relative to a rearward end of the barrel. In such an arrangement, ammunition cartridges may be inserted in to a forward end of chamber and then positioned against a barrel of the rifle.
According to one aspect, an automatic or semiautomatic rifle is provided. The rifle includes an elongated barrel extending between a muzzle and a rearward end (e.g., rearward face). A rifle bore extends through the barrel between its muzzle and rearward face. The rifle further includes a generally cup-shaped chamber that is configured to move between a retracted position spaced from the rearward face of the barrel and a forward position juxtapose proximate to the rearward face the barrel. That is, the rifle includes a cartridge chamber that moves relative to the barrel such that the chamber is divorced from the barrel in an open position. The cup-shaped chamber includes a closed rearward end an open forward end with a side wall extending there between. This cup-shaped chamber is configured to receive a corresponding casing of an ammunition cartridge. Such cartridge is received in the open forward end of the chamber prior to the chamber moving proximate to the rearward face of the barrel.
In one arrangement, the cup-shaped chamber has a rearward end with a diameter that is smaller than a diameter of the open forward end. In such an arrangement, the side wall of the cup-shaped chamber tapers relative to the centerline axis of the chamber, which is generally aligned with the bore of the barrel. Such a tapered cup-shaped chamber receives correspondingly tapered cartridge casings. Typically, the taper angle of the sidewall is between about 0 degrees and about 15 degrees. In a further arrangement the taper angle is between about 0 degrees and 5 degrees. In yet further arrangement, the taper angle is between about 2 degrees and about 3.5 degrees.
The cup-shaped chamber includes an aperture through its closed rearward end. This aperture may be aligned with the centerline axis of the chamber. The aperture permits igniting propellant within a casing of the cartridge disposed within the chamber. Along these lines, a firing piston may be disposed within a piston bore behind the closed rearward end of the chamber. The firing piston may be a conventional firing pin configured to engage a primer. In a further arrangement, the firing piston may be configured to compress air within the piston bore wherein the air passes through the aperture into the cup-shaped chamber. In such an arrangement, the firing piston may be a diesel ignition piston that heats the air which passes into the chamber and into the casing of the cartridge disposed therein.
In an arrangement, the divorce chamber includes multiple chambers that rotate relative to the rearward face of the barrel. In a specific arrangement, the chamber assembly includes three cup-shaped chambers disposed about a hub. Each chamber is configured to rotate through three positions: a first position where the chamber engages a cartridge; a second position where the cartridge is disposed against the rearward surface of the barrel for firing; and a third position where the empty casing is ejected forward from the open end of the chamber. As will be appreciated each of the three cup-shaped chambers is in one of the positions during the firing cycle such that each chamber operates in a one third duty cycle. Other numbers of chambers are possible.
In an arrangement utilizing a multiple chamber assembly, the chamber assembly may be rotate about a shaft such that chamber assembly moves along the shaft between the retracted positions in conjunction with such rotation. In an arrangement, the shaft may be hollow and form a gas injection tube that is in fluid communication with the interior of the barrel. An actuation rod at least partially disposed within the hollow shaft may move the chamber assembly between the forward and retracted positions. A spring in the rearward portion of the rifle may provide a responsive force to move the chamber assembly to the forward position.
The rifle, in an embodiment utilizes a novel ammunition design having a thimble-shaped cup or case that fits within a forward open end of the cup-shaped chamber (e.g., divorced chamber). The ammunition design utilizes cartridge that is nearly 50% shorter and weighs 30% less than a conventional, equivalent round firing the same projectile. In an arrangement, the ammunition utilizes a 6.8 mm projectile. However, it will be appreciated that other caliber projectiles are possible and within the scope of the present disclosure.
Reference will now be made to the accompanying drawings, which at least assist in illustrating the various pertinent features of the presented inventions. The following description is presented for purposes of illustration and description and is not intended to limit the inventions to the forms disclosed herein. Consequently, variations and modifications commensurate with the following teachings, and skill and knowledge of the relevant art, are within the scope of the presented inventions. The embodiments described herein are further intended to explain the best modes known of practicing the inventions and to enable others skilled in the art to utilize the inventions in such, or other embodiments and with various modifications required by the particular application(s) or use(s) of the presented inventions.
As utilized herein, the term forward refers to elements that will be disposed toward the muzzle of the weapon while the term rearward refers to elements that are disposed toward the buttstock of the weapon.
The CSR ammunition/cartridge 100 concept is adaptable to any caliber and is designed for fully-automated manufacturing. The cartridge uses a thimble-shaped cup or case 102 that replaces the traditional brass case of conventional ammunition and serves to house and protect a propellant charge. As various illustrated in
A significant advantage of CSR ammunition 100 includes improved volumetric efficiency of the cartridge. By increasing the case diameter of the cartridge 100 compared to conventional ammunition, the ratio of a volume of the casing to its surface area increases, reducing the amount of brass (or other material) necessary to hold a specific amount of propellant. The unique geometry of the CSR also significantly reduces its length compared to conventional ammunition. That is, as shown in
The overall length of the prior art M855 cartridge 120 is 2.25 inches most of which is the casing. The casing length in conjunction with loading the casing into a rearward end of a firing chamber requires that the action of the M249 SAW travel approximately 5.5 inches during each firing cycle. In contrast, a CSR cartridge of the same caliber has an overall length from the rearward end 104 of the casing 102 to the tip of the projectile 112 of approximately 1.75 inches with a casing that is approximately one-half (or less) of the length of the M855 casing. This allows the action of the LAW to operate on a stroke-length of no more than 2.0 inches resulting in a 40-65% reduction of travel distance for the action of the LAW. The reduced length of the CSR ammunition 100 enables use of a lighter weight weapon, as it allows for significantly reduced action length in an action of an automatic or semiautomatic weapon utilizing the CSR ammunition. The CSR ammunition 100 may be used in a magazine configuration, a belt feed application and/or a bolt action configuration.
The unique design of the CSR ammunition 100 provides significant weight reduction without the use of unconventional materials such as polymers. While polymers tend to be hygroscopic and exhibit aging, brass has proven to be an extremely robust and reliable material for encasing and protecting the propellant charge. The hermetic seal provided by brass, its manufacturability, material availability, storage requirements, and performance characteristics are well understood. However, it will be appreciated that other convention metals and/or unconventional materials such as polymers may be utilized.
One major area of weight savings in CSR ammunition is the increased volumetric efficiency of the cartridge, which reduces the amount of brass necessary to hold a given amount of propellant. Weight savings in the CSR ammunition are also possible because the CSR is not required to obturate the chamber of the LAW. Conventionally, a bullet of an ammunition cartridge is designed to obturate the inside of a chamber of a firearm, increasing the pressure with which the bullet is fired. In contrast, the CSR ammunition 100 obturates in two ways as illustrated in
In many centerfire weapons, particularly automatic weapons, the cartridge cases have a much heavier wall near the base to prevent expansion of the case into openings between the rear end of the chamber and the bolt where the cartridge case is not fully enclosed or supported by the chamber or bolt face. The design of the firing chamber 44 of the LAW 10 fully encapsulates the rearward portion of the CSR ammunition 100 (as shown in
Another important weight savings for the CSR cartridge, in one embodiment, is the lack of a conventional primer. A conventional primer accounts for a not insignificant portion of the total weight of a cartridge. Although CSR cartridges could also be produced using conventional primer technology, one embodiment of the CSR ammunition is fired using diesel ignition which eliminates the need for and weight of a primer. That is, in one embodiment, CSR ammunition 100 is designed to be fired using diesel ignition, a process in which a spring driven piston compresses air—raising its temperature through adiabatic heating—and forces it into contact with propellant of the casing, resulting in ignition of the propellant and firing of the round. The weight and cost savings due to elimination of a discrete primer as an element of the ammunition are significant.
One embodiment of the diesel ignition process is illustrated in
Most conventional, commercially available propellants ignite at a temperature of 350-400° F. (single base propellants) or 320-360° F. (for double based propellants). Auto-ignition temperatures of any propellant of interest may be determined using Differential Scanning Calorimetry and Thermogravimetric Analysis (DSC-TGA). Assuming compression occurs over a short enough time scale to neglect heat transfer into the surrounding material, the temperature change of adiabatically compressed air can be calculated using the following formula:
Using a set compression ratio of 50:1, the temperature of adiabatically compressed air was calculated at starting points of −60° F., 70° F. and 160° F. (Table 1).
As shown in Table 1, such a compression ratio (e.g., piston bore volume V1 before piston advancement to piston bore volume V2 after piston advancement) results in a temperature increase sufficient for propellant ignition for all expected operating conditions. Though discussed as utilizing a 50:1 ratio, higher and lower ratios are possible.
To initiate firing, the heated, compressed air must contact the propellant charge. In an embodiment, the CSR cartridge incorporates a penetrable seal allowing the compressed gas to puncture the casing 102 and ignite the propellant. Several non-limiting embodiments of an air penetrable seal on the CSR ammunition cartridge are presented.
One solution is to form a rupture disc directly into the back of the CSR casing itself. A rupture disc is formed by stamping a thinned section 116 into the brass or other material forming the rearward end 104 of the CSR casing 102. This is illustrated in
A second approach, similar in function, is the use of a mylar disc or other thin material disk (e.g., polymer) adhered to the rear end of the cartridge. The mylar disc (not shown) covers a small pre-formed hole in the rearward end of the cartridge. During the diesel compression cycle, the highly pressurized air breaks the mylar disc, providing a path for the hot air to ignite the powder.
A third approach is to puncture the rear end 104 of the casing 102. Puncturing the rear end 104 of the casing 102 may be accomplished either when the case is first picked up by the rotating chamber, as the chambered round is pushed into the barrel, or by means of a puncture pin (not shown) that is driven by the firing piston 60 (e.g., diesel ignition piston). This provides a robust case, ease of manufacturing, and would provide a round that is remarkably safe for handling and transport.
Additional weight savings and flexibility in design is available in linked CSR compared to conventional linked ammunition as well.
The greatest gain in reducing the weight of the ammunition is that the weight savings of each cartridge is multiplied by the number of rounds carried by the soldier. It is therefore one objective to reduce the weight of the CSR as much as possible. If the ammunition weight is reduced by 30%, a soldier's combat load can either be significantly reduced, or the soldier can carry nearly 40% more ammunition.
Testing has demonstrated that each brass cartridge of the M855 round removes approximately 150 joules of heat energy from the chamber of the M249 during sustained rapid firing. This accounts for a significant percentage of the energy delivered to the projectile. If a brass case is replaced with a polymer (or some other synthetic material), heat rejection could become a concern, and could have the effect of reducing the sustained rate of fire. Maintaining the use of a brass or other metal cartridge for the CSR ammunition provides a similarly high level of heat rejection. Heat control is further complemented by the multiple chamber design of the LAW, which reduces the duty cycle of each chamber by two-thirds compared to a conventional automatic weapon due to the reduced duty cycle of each chamber.
In an embodiment, a 6.8 mm caliber CSR cartridge would achieve a 3200-fps muzzle velocity with a 136-gr bullet, which approximates the performance of a similar conventional round, the Winchester .270. Using this projectile, the weight of propellant of the prototype CSR is calculated to be 17.23 grams. The length of the prototype CSR was 1.86 inches. Compared to a Hornady Winchester .270 140 gr SST (which has comparable muzzle energy in a conventional ammunition package), was a 30% weight reduction and 45% length reduction. This allows for significant reduction of weapon length. The receiver travel required to load and fire the CSR is less than half of that required for a weapon firing conventional ammunition. This also results in a significant weight savings.
Due to the simple design and conventional materials of the CSR ammunition, the performance of this ammunition is as flexible as any conventional round. Different propellant loads can be applied to tailor the performance. Alternatively, different types of propellants can be developed to further increase muzzle velocity as necessary. While discussed primarily as utilizing a brass case for thermal benefits, among other reasons, it will be appreciated that the design of the case is not limited to brass. As the technical maturity of polymer cases increases, it is very possible that additional weight savings could be achieved by using a polymer case.
The LAW 10 illustrated in
To illustrate the divorced chamber concept,
As shown, the chamber assembly 40 and the chambers 42, 44 and 46 are physically separated (e.g., divorced) from the barrel during the firing cycle to permit rotation, retraction and advancement. To allow for divorcing the chamber from the barrel, the cartridges 100 are loaded into the ready chamber 42 from the front end of the chamber (e.g., toward the forward end or muzzle of the rifle) as opposed to from the rear of the chamber as in a conventional rifle where the barrel and firing chamber are in fixed configuration. There are several advantages of the divorced, rotating chamber concept. There is little heat transfer from the barrel to the chamber during the firing cycle because the chambers are divorced from the barrel. Additional convective cooling of the chambers is possible as the divorced chambers will rotate away from the barrel and move through the surrounding air. Further, the multiple chambers also reduce the duty cycle for each chamber (i.e., firing only one in three rounds fired by the weapon).
As shown, the chamber assembly 40 rotates about a shaft 92 of the guide shaft assembly 90 as well as sliding between the advanced and retracted positions.
These grooves include three axial grooves (e.g., spaced 120° about the shaft) that permit the advancement of the chamber carriage from the rearward position to the forward or firing position (i.e., where the cartridge in the firing chamber obturates with the barrel) and three helical grooves that each extend between the forward end of an axial groove and the rearward end of an adjacent axial groove. These grooves receive three plungers 49 (only one shown) that extend through a central hub 48 of the chamber assembly 40 as illustrated in
Of further note, the interior of the shaft 92 may be hollow as illustrated by dashed lines in
Each of the chambers is attached to the central hub 48. In an embodiment, each chamber is attached to the central hub 40 via a pin 41. In this regard, the chambers are removable from the central hub 40. Such removable attachment may allow for replacement of the chambers to, for example replace worn chambers and/or change calibers of the rifle, which may also require exchanging of the barrel. However, it will be appreciated that the chambers and the central hub may be integrally formed. As shown, the central hub has a central journal 50 that is sized to receive the shaft of the guide shaft assembly. The central journal 50 may include various washers, bearings etc. The plungers 49 extend through the central hub to engage the grooves in the shaft.
As an open bolt automatic weapon, if the trigger is released when there is still ammunition in the magazine the bolt will be locked in the open position, with rounds in both the ready chamber and the firing chamber. If the magazine is expended while the trigger is still depressed the bolt will lock in the forward position, requiring the weapon to be reloaded and charged before resuming firing. As with a conventional weapon, if the firing round fails to fire when seated in the barrel, the charging handle 84 will need to be pulled to clear the dud round and advance the ready round into the firing round position. Squeezing the trigger will then release the bolt and resume firing.
As the bolt group moves forward and the firing chamber 44 contacts the rearward barrel face, the firing round 100 becomes fully seated in the bullet seat of the barrel 30 and the round is ready to fire. At this point in the firing cycle is when a conventional round in a conventional weapon would be considered “chambered.” The total travel distance of the chamber assembly is just over half the length of the CSR round 100. At this position, the piston lugs 78 retract, releasing the diesel ignition piston 60 (
The ignition gases from the propellant are routed through a gas tube, piston/actuation rod. This energy is used to rotate the piston, unlock the locking sleeve and begin retraction of the piston (
As the chamber assembly retracts, it also rotates 120° about the Guide Shaft (
As noted, the total travel distance of the chamber assembly is just over half the length of the CSR round 100, which allows the action to be shorter than that of a conventional rifle. The shortened length of the action not only reduces the weight of the receiver by shortening the required components, it also allows for weight reduction by reducing the reciprocating forces.
The reduced length of travel means that, at a given rate of fire, the ignition piston, chamber and locking slide breech can move at a lower velocity than an equivalent mass within a traditional receiver with an equivalent rate of fire. This lower velocity translates to lower inertia and lower reciprocating forces, allowing the weight of the receiver wall to decrease. The lowered inertial forces may also result in less wear in the weapon system.
Loading the LAW with a new magazine is a simple process, very similar to loading conventional magazine fed automatic weapons. As in conventional weapons, the magazine may be fitted into a magazine well. A dust cover may function as the catch for the magazine. Because of the unique multiple chamber design, the charging handle will be pulled twice when a new magazine is loaded to prepare the weapon for firing—once to load the ready round into the ready chamber, and once to advance the ready round into the firing round position.
Additional modifications of the proposed design are envisioned and within the scope of the present disclosure. For instance, to further reduce the length of the LAW a bullpup-style receiver may be utilized. A bullpup weapon refers to a weapon in which the action and magazine are located behind the trigger, allowing for a shorter weapon at a given barrel length. Another potential design modification is the inclusion of a traditional firing pin. The LAW design can also be easily modified to fire additional calibers. An advantage of the proprietary multi-chamber design is that it enables the receiver of the LAW to be essentially caliber independent. By switching out the chamber and barrel, it is possible for the LAW to fire a wide range of ammunition while maintaining the essential function of the receiver. This modularity is also useful for repair and replacement of individual components. It is also important to note that the CSR ammunition and divorced chamber concept do not limit the feed type or the action type. A single chambered, bolt action weapon could be easily adapted from the existing LAW concept. This flexibility is particularly desirable when considering the expandability of the CSR / LAW system for use in carbine or sniper applications. Because of the conventional layout and configuration of the LAW, additional enablers can easily be accommodated. The forward Hand Grip area of can accommodate Picatinny rails on top, bottom, and both sides.
As currently designed, and constructed entirely in steel, the LAW system weight, including a notional bipod and suppressor, is at just under 15 pounds. The use of conventional materials for this initial design allows significant room for weight reduction through both material substitution and design modifications. As currently designed (with a 20-inch barrel) the LAW is less than 38 inches. Optimization of the receiver and butt stock design could further reduce this length by as much as 6 inches. Other approaches include shortening of the barrel or use of a bullpup style action. As currently designed, the LAW has a burst rate of fire of 750 rounds per minute (RPM). However, it is anticipated that the burst RPM could be considerably higher if desired.
The foregoing description has been presented for purposes of illustration and description. Furthermore, the description is not intended to limit the inventions and/or aspects of the inventions to the forms disclosed herein. Consequently, variations and modifications commensurate with the above teachings, and skill and knowledge of the relevant art, are within the scope of the presented inventions. The embodiments described hereinabove are further intended to explain best modes known of practicing the inventions and to enable others skilled in the art to utilize the inventions in such, or other embodiments and with various modifications required by the application(s) or use(s) of the presented inventions. It is intended that the appended claims be construed to include alternative embodiments to the extent permitted by the prior art.
The present application claims the benefit of the filing date of U.S. Provisional Application No. 62/769,802 having a filing date of Nov. 20, 2018, the entire contents of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62769802 | Nov 2018 | US |