The described embodiments relate generally to electronic devices, and more specifically, to noise suppression for capacitive imaging sensors.
Input devices including proximity sensor devices (e.g., touchpads or touch sensor devices) are widely used in a variety of electronic systems. A proximity sensor device typically includes a sensing region, often demarked by a surface, in which the proximity sensor device determines the presence, location and/or motion of one or more input objects. Proximity sensor devices may be used to provide interfaces for the electronic system. For example, proximity sensor devices are often used as input devices for larger computing systems (such as opaque touchpads integrated in, or peripheral to, notebook or desktop computers). Proximity sensor devices are also often used in smaller computing systems (such as touch screens integrated in cellular phones).
Proximity sensor devices are typically used in combination with other components, such as power supplies or battery chargers. These components may emit noise that may impair the sensing capabilities of the proximity sensor devices.
Therefore, it is desirable to perform a proximity sensing in a manner that is robust to the noise.
In general, in one aspect, one or more embodiments relate to a processing system configured to: drive a transmitter electrode with a repetitive multi-burst pattern, wherein the repetitive multi-burst pattern comprises: a first plurality of bursts of a sensing waveform, and a second plurality of bursts of the sensing waveform, wherein the second plurality of bursts is a repetition of the first plurality of bursts; receive, from a receiver electrode, a resulting signal in response to the repetitive multi-burst pattern, identify, in the resulting signal, a segment least affected by a noise, and that temporally coincides with a burst in the first plurality of bursts or a burst in the second plurality of bursts matching the burst in the first plurality of bursts; decode the resulting signal using the segment.
In general, in one aspect, one or more embodiments relate to an input device, comprising: a transmitter electrode and a receiver electrode; and a processing system configured to: drive the transmitter electrode with a repetitive multi-burst pattern, wherein the repetitive multi-burst pattern comprises: a first plurality of bursts of a sensing waveform, and a second plurality of bursts of the sensing waveform, wherein the second plurality of bursts is a repetition of the first plurality of bursts; receive, from the receiver electrode, a resulting signal in response to the repetitive multi-burst pattern, identify, in the resulting signal, a segment least affected by noise, and that: temporally coincides with a burst in the first plurality of bursts or a burst in the second plurality of bursts matching the burst in the first plurality of bursts; decode the resulting signal using the segment.
In general, in one aspect, one or more embodiments relate to a method comprising: driving a transmitter electrode with a repetitive multi-burst pattern, wherein the repetitive multi-burst pattern comprises: a first plurality of bursts of a sensing waveform, and a second plurality of bursts of the sensing waveform, wherein the second plurality of bursts is a repetition of the first plurality of bursts; receiving, from a receiver electrode, a resulting signal in response to the repetitive multi-burst pattern, identifying, in the resulting signal, a segment least affected by a noise, and that temporally coincides with a burst in the first plurality of bursts or a burst in the second plurality of bursts matching the burst in the first plurality of bursts; decoding the resulting signal using the segment.
Other aspects of the embodiments will be apparent from the following description and the appended claims.
The following detailed description is merely exemplary in nature, and is not intended to limit the disclosed technology or the application and uses of the disclosed technology. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, or the following detailed description.
In the following detailed description of embodiments, numerous specific details are set forth in order to provide a more thorough understanding of the disclosed technology. However, it will be apparent to one of ordinary skill in the art that the disclosed technology may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid unnecessarily complicating the description.
Throughout the application, ordinal numbers (e.g., first, second, third, etc.) may be used as an adjective for an element (i.e., any noun in the application). The use of ordinal numbers is not to imply or create any particular ordering of the elements nor to limit any element to being only a single element unless expressly disclosed, such as by the use of the terms “before”, “after”, “single”, and other such terminology. Rather, the use of ordinal numbers is to distinguish between the elements. By way of an example, a first element is distinct from a second element, and the first element may encompass more than one element and succeed (or precede) the second element in an ordering of elements.
Various embodiments of the present disclosure provide input devices and methods that enable a capacitive sensing in presence of a noise emission. More specifically, embodiments of the disclosure suppress short term noise, such as noise emissions that occur in short bursts with a duration of a few milliseconds (ms) or less. The short term noise may be emitted at various frequencies. An example of such a noise emission is the noise emitted by battery chargers. Because the noise may be emitted at various rapidly alternating frequencies, frequency hopping may not be a feasible approach to avoid the noise emission.
In one or more embodiments, a repetitive multi-burst pattern is used as a capacitive sensing signal to address the noise emission. Each burst in the multi-burst pattern includes a sensing waveform, described below. Each burst in the repetitive multi-burst pattern may be emitted twice. Because the duration of the noise emission is short, with a proper configuration of the repetitive multi-burst pattern, a segment of the received response associated with one of the two bursts should not be affected by the noise emission, even though a segment of the resulting signal associated with the other of the two bursts may be affected by the noise emission. Embodiments of the disclosure subsequently identify the clean segment of the response to perform a touch decoding. A clean segment is a segment that is determined to not be affected by the noise emission. Each of these aspects is discussed in detail below.
In
The sensing region (120) encompasses any space above, around, in and/or near the input device (100) in which the input device (100) is able to detect user input (e.g., user input provided by one or more input objects). The sizes, shapes, and locations of particular sensing regions may vary widely from embodiment to embodiment.
The input device (100) may utilize any combination of sensor components and sensing technologies to detect user input in the sensing region (120). The input device (100) includes one or more sensing elements for detecting user input. As a non-limiting example, the input device (100) may use capacitive techniques.
In some capacitive implementations of the input device (100), voltage or current is applied to create an electric field. Nearby input objects cause changes in the electric field, and produce detectable changes in capacitive coupling that may be detected as changes in voltage, current, or the like.
Some capacitive implementations utilize arrays or other regular or irregular patterns of capacitance sensing elements to create electric fields. In some capacitive implementations, separate sensing elements may be ohmically shorted together to form larger sensor electrodes. Some capacitive implementations utilize resistive sheets, which may be uniformly resistive.
Some capacitive implementations utilize “self capacitance” (or “absolute capacitance”) sensing methods based on changes in the capacitive coupling between sensor electrodes and an input object. In various embodiments, an input object near the sensor electrodes alters the electric field near the sensor electrodes, thus changing the measured capacitive coupling. In one implementation, an absolute capacitance sensing method operates by modulating sensor electrodes with respect to a reference voltage (e.g., system ground), and by detecting the capacitive coupling between the sensor electrodes and input objects. The reference voltage may be a substantially constant voltage or a varying voltage and, in various embodiments, the reference voltage may be system ground. Measurements acquired using absolute capacitance sensing methods may be referred to as absolute capacitive measurements.
Some capacitive implementations utilize “mutual capacitance” (or “trans capacitance”) sensing methods based on changes in the capacitive coupling between sensor electrodes. In various embodiments, an input object near the sensor electrodes alters the electric field between the sensor electrodes, thus changing the measured capacitive coupling. In one implementation, a mutual capacitance sensing method operates by detecting the capacitive coupling between one or more transmitter sensor electrodes (also “transmitter electrodes” or “transmitter”, Tx) and one or more receiver sensor electrodes (also “receiver electrodes” or “receiver”, Rx). Transmitter sensor electrodes may be modulated relative to a reference voltage (e.g., system ground) to transmit transmitter signals. Receiver sensor electrodes may be held substantially constant relative to the reference voltage to facilitate receipt of resulting signals. The reference voltage may be a substantially constant voltage and in various embodiments, the reference voltage may be system ground. A resulting signal may include effect(s) corresponding to one or more transmitter signals, and/or to one or more sources of environmental interference (e.g., other electromagnetic signals, including noise emissions). The effect(s) may be the transmitter signal, a change in the transmitter signal caused by one or more input objects and/or environmental interference, or other such effects. Sensor electrodes may be dedicated transmitters or receivers, or may be configured to both transmit and receive. Measurements acquired using mutual capacitance sensing methods may be referred to as mutual capacitance measurements.
In
The processing system (110) may be implemented as a set of modules that handle different functions of the processing system (110). For example, the processing system (110) may include determination circuitry (150) to determine when at least one input object is in a sensing region, determine signal to noise ratio, determine positional information of an input object, identify a gesture, determine an action to perform based on the gesture, a combination of gestures or other information, and/or perform other operations. The modules may include hardware and/or software which may execute on a processor.
The sensor circuitry (160) may include functionality to drive the sensing elements to transmit transmitter signals and receive the resulting signals. For example, the sensor circuitry (160) may include sensory circuitry that is coupled to the sensing elements. The sensor circuitry (160) may include, for example, a transmitter module and a receiver module. The transmitter module may include transmitter circuitry that is coupled to a transmitting portion of the sensing elements. The receiver module may include receiver circuitry coupled to a receiving portion of the sensing elements and may include functionality to receive the resulting signals.
Although
In some embodiments, the processing system (110) responds to user input (or lack of user input) in the sensing region (120) directly by causing one or more actions. Example actions include changing operation modes, as well as graphical user interface (GUI) actions such as cursor movement, selection, menu navigation, and other functions. In some embodiments, the processing system (110) provides information about the input (or lack of input) to some part of the electronic system (e.g., to a central processing system of the electronic system that is separate from the processing system (110), if such a separate central processing system exists). In some embodiments, some part of the electronic system processes information received from the processing system (110) to act on user input, such as to facilitate a full range of actions, including mode changing actions and GUI actions.
While
Transcapacitive couplings, Cr, exist at the capacitive sensing elements (230). In one or more embodiments, the capacitive sensing elements (230) are “scanned” to determine the transcapacitive couplings. Assume, for example, a configuration with 20 Tx electrodes and 40 Rx electrodes. Each of the 20 Tx electrodes may emit a capacitive sensing signal in the form of a repetitive multi-burst pattern, and each of the 40 Rx electrodes may receive resulting signals associated with each of the emitted repetitive multi-burst patterns. The resulting signals may be used to determine measurements of the transcapacitive couplings at the capacitive sensing elements (230), which are used to determine whether an input object is present and its positional information, as discussed above. A set of values for the capacitive sensing elements (230) form a “capacitive image” (also “sensing image”) representative of the transcapacitive couplings at the sensing elements. In one or more embodiments, the sensing image, or capacitive image, includes data received during a process of measuring the resulting signals received with at least a portion of the capacitive sensing elements (230) distributed across the sensing region (120). The resulting signals may be received at one instant in time, or by scanning the rows and/or columns of capacitive sensing elements (230) distributed across the sensing region (120) in a raster scanning pattern (e.g., serially polling each sensing element separately in a desired scanning pattern), row-by-row scanning pattern, column-by-column scanning pattern or other useful scanning technique.
When an input object (290), e.g., a finger, approaches a capacitive sensing element (230), CT may change by an amount ΔCT, based on the input object (290) providing a ground that alters CT. In other words, CT may be sensitive to a finger-to-ground voltage, which may result from another capacitive coupling CGND of the finger (290) to the ground (240). ΔCT may be measured by sensing the charges shifting to/from the Rx electrodes, in response to the driving of the Tx electrodes.
In real-world scenarios, the finger (290) is capacitively coupled, via CF, not only to the ground (240), but also to noise sources (250), via CN. A noise source (250) may be, for example, a battery charger, or a power supply, which may have unique noise emission characteristics, as illustrated with reference to
The example noise emission pattern (300) includes 24 different emissions at discrete frequencies (shown in kHz). Each of the emissions may have a certain amplitude (shown in V, peak-to-peak). Higher amplitudes may cause more interference. Each of the emissions at the discrete frequencies may occur for a limited time. In the example noise emission pattern (300), each emission may occur for approximately 0.5 ms. In other noise emission patterns, the noise emissions may have different durations, without departing from the disclosure. The noise emission pattern may repeat over time, cycling through the frequencies as shown.
Interference with the capacitive sensing performed by the input device may occur when the frequency of the emitted noise coincides with, or is close to, the frequency of the signal used for driving the Tx electrodes. The signal used for driving the Tx electrodes (the “sensing signal”) may be an alternating current (AC) signal, for example, a square wave. Multiple cycles of the square wave may be grouped in a burst, and multiple bursts may be grouped in a burst pattern or a repetitive burst pattern. Various frequencies may be used for driving the Tx electrodes, for example, in a range between 100 and 250 kHz. In the example of the noise emission pattern (300), the frequencies that may be used for sensing overlap with frequencies of the noise emission pattern, thus potentially causing interference with the capacitive sensing.
The sensing signal includes a multi-burst pattern (412). Multi-burst patterns (412) may be sequentially emitted when a sensing is continuously performed. The multi-burst pattern includes a series of bursts (416). The combination of all bursts (416) in a multi-burst pattern may provide the capacitive sensing signal to be used for a single capacitive sensing operation, e.g., using a code-division multiplexing (CDM) encoding. For example, 18 bursts may be used for a CDM encoding with the order of 18. When picked up by an Rx electrode at a capacitive sensing element, a resulting signal may be decoded using a CDM demodulation.
With CT being altered by the presence or absence of an input object, the resulting signal may be affected by the presence or absence of the input object. Accordingly, the resulting signal allows for a detection of the presence or absence of the input object. However, if a noise emission is overlapping one or more of the bursts, the resulting signal may get corrupted by the noise emission.
Each of the bursts (416) includes a number of cycles of a signal, e.g., a square wave. In one example, assume that the signal has a frequency of 170 kHz. Accordingly, a single cycle has a duration of ˜6 μs. Each burst may include 40 cycles, resulting in a burst duration of ˜240 μs. A burst pattern with 18 bursts may, thus, have a duration of ˜4.32 ms. In another example, assume that the signal has a frequency of 204 kHz. Accordingly, a single cycle has a duration of ˜5 μs. Each burst may include 50 cycles, resulting in a burst duration of ˜250 μs. A multi-burst pattern with 18 bursts may, thus, have a duration of ˜4.5 ms.
As previously noted, and as illustrated in
Unlike in
In
In one or more embodiments, because the 18 bursts in the repetitive multi-burst pattern repeat in groups of three, it is likely that, while some bursts may be affected by the noise emission, there is a repetition that is unaffected for each of the affected bursts. Consider the first temporal alignment of the repetitive multi-burst pattern (462), in which the bursts T1B1, T1B2, T1B3 are affected. In this case, the bursts T2B1, T2B2, and T2B3 are unaffected. Similarly, consider the second temporal alignment of the repetitive burst pattern (464), in which the bursts T1B2, T1B3, T2B1 are affected. In this case, the bursts T1B1, T1B2, T1B3 are unaffected.
While the repetitive multi-burst pattern (462) is discussed as having bursts that repeat in groups of three, in other embodiments, single bursts may repeat, bursts may repeat in groups of two, four, etc. The selected repetition pattern, in one or more embodiments, depends on the duration of the noise emission (406) relative to the duration of a single burst. If the noise emission (406) affects no more than one burst, single bursts may repeat. If the noise emission (406) affects no more than two bursts, bursts may repeat in groups of two. If the noise emission (406) affects no more than four bursts, bursts may repeat in groups of four. Generally speaking, a subset of consecutive bursts may have a cardinality that is based on the duration of the noise emission. The cardinality is selected to allow for the minimum number of consecutive bursts needed to obtain a joint duration (of the subset of consecutive bursts) that exceeds the duration of the noise emission. The subset of consecutive bursts may be followed by a subset of corresponding repeated bursts.
In this manner, it is likely that for one burst that is affected by the noise emission, there is a repetition of the burst that is unaffected by the noise emission. A touch may, thus, be decoded, by selecting bursts that are unaffected by the noise emission, over bursts that are affected by the noise emissions. Additional details regarding the selection of a suitable repetitive multi-burst pattern, the application of the repetitive multi-burst pattern, and the decoding of touch are provided below with reference to the flowcharts.
While the steps of the described methods are discussed with reference to one capacitive sensing element, those skilled in the art will appreciate that at least some of the steps may be repeated for multiple or all capacitive sensing elements in a sensing region to obtain a capacitive image.
In Step 502, a noise amplitude of the noise emission is obtained. Obtaining the noise amplitude may involve emitting a noise sensing burst to measure the interference caused by the noise emission. The measurement of the noise emission may be performed using electrodes located in the sensing region. In one or more embodiments, the noise sensing burst includes a signal similar to the signal intended to be used for the touch sensing. For example, if the touch sensing is to be performed at 204 kHz, the signal for the noise sensing burst is also at 204 kHz. Different numbers of noise sensing bursts may be emitted in Step 502. For example, when the system performs a touch sensing using a default sensing frequency (as described in Step 506), or when the system performs a touch sensing using frequency hopping (as described in Step 508), only a few, e.g., 1, 2, 3, or 4 noise sensing bursts are emitted to determine the noise amplitude. The use of only a few noise sensing bursts may be adequate when noise is present for a prolonged interval, for which the use of a default sensing frequency approach (Step 506) or a frequency hopping approach (Step 508) may be appropriate. However, when the system is required to perform short-term noise suppression sensing (as described in Step 512), more noise sensing bursts, e.g., 20 noise sensing bursts may be emitted in Step 502. When a sufficient number of noise sensing bursts (e.g., 20 noise sensing bursts) are emitted, the duration of the noise emission may also be determined, in addition to the amplitude, as described below in reference to
In Step 504, a test is performed to determine whether the noise amplitude is above or below a specified threshold. If the noise amplitude is below the specified threshold, the execution of the method may proceed with Step 506. If the noise amplitude reaches or exceeds the specified threshold, the execution of the method may proceed with Step 508.
In Step 506, a touch sensing is performed using a default sensing frequency and a multi-burst pattern. The multi-burst pattern may be as described in
In Step 508, a touch sensing is performed using a frequency hopping approach. In the frequency hopping approach, a sensing frequency may be chosen from a set of possible sensing frequencies, for example, in the range of 100-250 kHz. The frequency to be used may be chosen to avoid the frequency of the noise emission. Assume, for example, that the frequency hopping approach provides two sensing frequencies: 204 kHz and 170 kHz. If the frequency of the noise emission is found to be at 200 kHz, the frequency hopping approach would use the 170 kHz sensing frequency. Specifically, in the example, Step 502 may first be performed for the 204 kHz sensing frequency. In Step 504 it is determined that the noise amplitude exceeds the specified threshold, and as a result, the 170 kHz sensing frequency is selected to repeat Steps 502-508. The frequency hopping may be performed for any number of available sensing frequencies, e.g., until an appropriate sensing frequency is found. The used multi-burst pattern may be non-repetitive. Referring to the previously discussed example, a sensing at a capacitive sensing element may be performed at 170 kHz (cycle period ˜6 μs), a burst size of 40, and a resulting burst duration of ˜240 μs. With 18 bursts used for the CDM scheme, the duration of the transcapacitive sensing at the capacitive sensing element may be performed in ˜4.3 ms. A low-pass filter and a demodulator circuit may produce a resulting signal indicative of touch, while eliminating or reducing noise interference that is not in direct proximity (e.g., within a few kHz) of the default frequency used for the sensing.
In Step 510, a test is performed to determine whether the frequency hopping approach of Step 508 succeeded or failed. The frequency hopping approach may be determined to have failed, if all available sensing frequencies have been tested (through repeated execution of Steps 502-508) without producing a noise amplitude below the specified threshold. If the frequency hopping approach is found to have failed, the method may proceed with the execution of Step 512. If the frequency hopping approach is found to have succeeded, the output of Step 508 may be used as the result of the touch sensing, indicating a presence or absence of touch, and the execution of the method may return to Step 502, to continue with the next sensing cycle.
In Step 512, a touch sensing is performed using a short-term noise suppression sensing, as further described below with reference to
In Step 602, the duration of the noise emission is determined. The duration of the noise emission may be determined based on the noise measurement performed in Step 502. The duration may be a measured time interval during which the amplitude exceeds a previously specified threshold, at frequencies in proximity to the sensing frequency.
In Step 604, based on the duration of the noise emission, a repetitive multi-burst pattern is defined. In one or more embodiments, the arrangement of the repetitive bursts in the repetitive multi-burst pattern depends on the duration of the bursts and the duration of the noise emission. In one or more embodiments, bursts and repetitions of the bursts are interleaved. Specifically, as discussed with reference to
In Step 606, the repetitive multi-burst pattern is emitted on a Tx electrode.
In Step 608, concurrently with the execution of Step 606, a resulting signal in response to the emitted repetitive multi-burst pattern is received on a Rx electrode. The resulting signal may include the repetitive multi-burst pattern, modulated by the presence or absence of an input object, and/or by noise emissions that occur during the receiving of the resulting signal.
In Step 610, in the resulting signal obtained in Step 608, clean segments with bursts that are unaffected by the noise emission are identified. The clean segment is a segment unaffected by the noise emission. Referring to
A previously received resulting signal (e.g., from the previous execution of the method of
Consider, for example, a resulting signal that includes the repetitive multi-burst pattern (452) in
In one embodiment, the comparison is performed using a minimum maximum distance operation, which may be performed as follows. When a sensing operation is performed by emitting a sensing signal on a Tx electrode, a resulting signal may be obtained by Rx electrodes at each capacitive sensing element associated with the Tx electrode. Each of these resulting signals may include the low-pass filtered non-demodulated signal, obtained from the corresponding Rx electrode. Consider, for example, the sensing scenario (200) of
In Step 612, a touch is decoded from the resulting signal obtained in Step 610. The decoding of touch may involve a demodulation, in addition to the previously mentioned low-pass filtering. The demodulated resulting signal may be analog to digital (A/D) converted to enable further processing, including the detection of a presence or absence of touch. The touch decoding in Step 612 may be unsuccessful and may be skipped, if both bursts are affected by the noise emission. In this case, Step 510 of
Embodiments of the disclosure may have various features. Embodiments of the disclosure may perform a touch sensing in presence of noise emissions with various characteristics, including noise that includes brief repetitive bursts at discrete frequencies. Embodiments of the disclosure may perform the touch sensing in presence of high amplitude noise. Embodiments of the disclosure do not necessitate a narrow band-pass filtering, which would increase the burst cycles. Embodiments of the disclosure do not necessitate an increase of the sensing signal amplitude, which would increase power consumption and could cause interference with other components, e.g., a display.
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.
Number | Name | Date | Kind |
---|---|---|---|
6204649 | Roman | Mar 2001 | B1 |
6266633 | Higgins | Jul 2001 | B1 |
7031886 | Hargreaves | Apr 2006 | B1 |
7240252 | Fessler | Jul 2007 | B1 |
8824288 | Gao | Sep 2014 | B2 |
9209802 | Maharyta | Dec 2015 | B1 |
9454278 | Keppel | Sep 2016 | B2 |
9600121 | Stevenson | Mar 2017 | B2 |
10627957 | Khazeni | Apr 2020 | B2 |
10969904 | Jiang | Apr 2021 | B2 |
11050435 | Poulsen | Jun 2021 | B1 |
11126304 | Yamada | Sep 2021 | B2 |
20030210749 | Asjadi | Nov 2003 | A1 |
20040064775 | Gaskill | Apr 2004 | A1 |
20070140164 | Zeng | Jun 2007 | A1 |
20070257890 | Hotelling | Nov 2007 | A1 |
20080155376 | Williams | Jun 2008 | A1 |
20080157893 | Krah | Jul 2008 | A1 |
20080158169 | O'Connor | Jul 2008 | A1 |
20080309625 | Krah | Dec 2008 | A1 |
20080309628 | Krah | Dec 2008 | A1 |
20090029660 | Cha | Jan 2009 | A1 |
20090303198 | Yilmaz | Dec 2009 | A1 |
20100085325 | King-Smith | Apr 2010 | A1 |
20100214259 | Philipp | Aug 2010 | A1 |
20100259434 | Rud | Oct 2010 | A1 |
20100260353 | Ozawa | Oct 2010 | A1 |
20100296549 | Okada | Nov 2010 | A1 |
20110061948 | Krah | Mar 2011 | A1 |
20110063993 | Wilson | Mar 2011 | A1 |
20110134076 | Kida | Jun 2011 | A1 |
20110157077 | Martin | Jun 2011 | A1 |
20110210939 | Reynolds | Sep 2011 | A1 |
20110241651 | Oda | Oct 2011 | A1 |
20120001859 | Kim | Jan 2012 | A1 |
20120157167 | Krah | Jun 2012 | A1 |
20120268415 | Konovalov | Oct 2012 | A1 |
20130057512 | Lillie | Mar 2013 | A1 |
20130106436 | Brunet | May 2013 | A1 |
20130257765 | Lee | Oct 2013 | A1 |
20130293511 | Nam | Nov 2013 | A1 |
20140022203 | Karpin | Jan 2014 | A1 |
20140049507 | Shepelev | Feb 2014 | A1 |
20140198053 | Yoon | Jul 2014 | A1 |
20140225856 | Shepelev | Aug 2014 | A1 |
20140253032 | Bruwer | Sep 2014 | A1 |
20150212623 | Hatano | Jul 2015 | A1 |
20150309658 | Stevenson | Oct 2015 | A1 |
20170102826 | Hamaguchi | Apr 2017 | A1 |
20170123523 | Huang | May 2017 | A1 |
20180046323 | Yang | Feb 2018 | A1 |
20180239493 | Khazeni | Aug 2018 | A1 |
20180267639 | Han | Sep 2018 | A1 |
20190034028 | Stevenson | Jan 2019 | A1 |
20190042056 | Monson | Feb 2019 | A1 |
20190317637 | Jiang | Oct 2019 | A1 |
20200089385 | Han | Mar 2020 | A1 |
20200159352 | Shimada | May 2020 | A1 |
20200252907 | Rune | Aug 2020 | A1 |
20200336241 | Kilian | Oct 2020 | A1 |
20210185652 | Rune | Jun 2021 | A1 |
20210191562 | Han | Jun 2021 | A1 |
20210314910 | Rune | Oct 2021 | A1 |
20210326024 | Jun | Oct 2021 | A1 |
Number | Date | Country | |
---|---|---|---|
20220121298 A1 | Apr 2022 | US |