Connecting together tubulars is part of any drilling operation. For example, during drilling operations, a bottom-hole assembly may be connected to a drill string used to bore into the earth and create a well. The drill string is made up of tubular drill pipes, which are connected together, end-to-end. As the drill string advances, additional drill pipes are added to the string, permitting additional advancement into the well. Further, the bottomhole assembly is typically made up of several, shorter (in comparison to the drill pipe) tubular collars, subs, etc. Similarly, the drill string itself may include differently-sized pipes, e.g., to support tools such as cross-overs.
Oftentimes, two or more drill pipes are connected together adjacent to the drilling rig (or even off-site) into “stands” of two tubulars (“doubles”) or three tubulars (“triples”). This may reduce the number of times that drilling is halted to add a new drill pipe to the string. Such stands are generally built in a vertical orientation, using a mousehole and a crane, but can also be built with the drill pipes in a horizontal orientation. For connecting in a horizontal orientation, a bucking assembly may be used. The bucking assembly generally includes two rotational devices used to apply torque to two tubulars so that the connection there between is made up to a predetermined torque specification. The bucking assembly is generally configured specifically to handle long tubulars, such as drill pipes. Horizontal mechanized tubular handling system, used to feed tubulars into and out of the bucking assembly are designed to maneuver tubular items of longer lengths; 25 feet or more. They are not equipped to handle shorter tubulars or support tools such as those used in parts of the of the bottomhole assembly (or other relatively short tubulars, such as lifting subs and crossovers). Thus, if the bottomhole assembly is not pre-assembled, for example, it can be time consuming and difficult to torque the connections thereof at or near the drilling rig.
Embodiments of the disclosure include a system for connecting together tubular. The system includes a first torque-applying device configured to apply torque to a tubular, a second torque-applying device configured to apply torque to a tubular, the second torque-applying device being offset from the first torque applying device in a first horizontal direction by a first length, a loading assembly configured to convey a first tubular at least in a second horizontal direction into axial alignment with the first and second torque-applying devices, the first tubular having an axial length that is smaller than the first length between the first and second torque-applying devices, and a tubular spinner configured to spin a second tubular into connection with the first tubular. The first torque-applying device is configured to engage the first tubular, and the second torque-applying device is configured to engage the second tubular so as to apply torque to a connection between the first tubular and the second tubular.
Embodiments of the disclosure also include a method including loading a plurality of first tubulars into a loading assembly, moving one of the first tubulars in a first horizontal direction into alignment with a first torque-applying device using the loading assembly, spinning a second tubular into connection with the one of the first tubulars, moving the second tubular and the one of the first tubulars through the first torque-applying device in a second horizontal direction, such that the one of the first tubulars moves into a second torque-applying device, the second torque-applying device being spaced apart from the first torque-applying device by a distance that exceeds an axial length of each of the first tubulars, and applying a torque to the one of the first tubulars and to the second tubular using the first and second torque applying devices.
Embodiments of the disclosure further include a system for connecting together tubulars. The system includes a loading assembly for receiving a plurality of first tubulars, a handling assembly including one or more supports for receiving a second tubular, the second tubular being axially longer than each of the first tubulars, the one or more supports being configured to hold the second tubular in axial alignment with one of the plurality of first tubulars in the loading assembly and permit axial movement of the second tubular through one or more torque-applying devices, and a spinner configured to spin at least one of the second tubular or the one of the plurality of first tubulars relative to the other, so as to connect the second tubular and the one of the plurality of first tubulars, such that the one of the first tubulars is prevented, by way of connection with the second tubular, from vertical displacement relative to the second tubular.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present teachings and together with the description, serve to explain the principles of the present teachings. In the figures:
Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings and figures. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be apparent to one of ordinary skill in the art that the invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits and networks have not been described in detail so as not to unnecessarily obscure aspects of the embodiments.
It will also be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first object could be termed a second object, and, similarly, a second object could be termed a first object, without departing from the scope of the invention. The first object and the second object are both objects, respectively, but they are not to be considered the same object.
The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. Further, as used herein, the term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context.
In the illustrated example, the surface system 106 further includes drilling fluid or mud 114 stored in a pit 116 formed at the well site. A pump 118 delivers the drilling fluid to the interior of the drill string 100 via a port (not shown) in the swivel 112, causing the drilling fluid to flow downwardly through the drill string 100 as indicated by the directional arrow 120. The drilling fluid exits the drill string 100 via ports (not shown) in the drill bit 105, and then circulates upwardly through an annulus region between the outside of the drill string 100 and the wall of the borehole 102, as indicated by the directional arrows 130A and 130B. In this manner, the drilling fluid lubricates the drill bit 105 and carries formation cuttings up to the surface as it is returned to the pit 116 for recirculation.
The BHA 104 of the illustrated embodiment may include a measuring-while-drilling (MWD) tool 132, a logging-while-drilling (LWD) tool 134, a rotary steerable directional drilling system 136 and motor, and the drill bit 105. It will also be understood that more than one LWD tool and/or MWD tool can be employed, e.g., as represented at 138.
The LWD tool 134 is housed in a drill collar and can contain one or a plurality of logging tools. The LWD tool 134 may include capabilities for measuring, processing, and storing information, as well as for communicating with the surface equipment. In the present example, the LWD tool 134 may include one or more tools configured to measure, without limitation, electrical resistivity, acoustic velocity or slowness, neutron porosity, gamma-gamma density, neutron activation spectroscopy, nuclear magnetic resonance and natural gamma emission spectroscopy.
The MWD tool 132 is also housed in a drill collar and can contain one or more devices for measuring characteristics of the drill string and drill bit. The MWD tool 132 further includes an apparatus 140 for generating electrical power for the downhole system. This may typically include a mud turbine generator powered by the flow of the drilling fluid, it being understood that other power and/or battery systems may be employed. In the present embodiment, the MWD tool 132 may include one or more of the following types of measuring devices, without limitation: a weight-on-bit measuring device, a torque measuring device, a vibration measuring device, a shock measuring device, a stick slip measuring device, a direction measuring device, and an inclination measuring device. The power generating apparatus 140 may also include a drilling fluid flow modulator for communicating measurement and/or tool condition signals to the surface for detection and interpretation by a logging and control unit 142.
A base 214 extends along the ground and horizontally in a first horizontal direction between the first and second torque-applying devices 204, 206, the loading assembly 202, and the handling assembly 208, so as to rigidly connect together these components. The first horizontal direction may be parallel to the longitudinal axes of the first and second tubulars 210, 212.
The loading assembly 202 includes a ramp 220 that is positioned on legs 222 that extend upward from the base 214. The ramp 220 may be inclined, as shown, such that the elevation of the ramp 220 increases in a second horizontal direction that is transverse to the first horizontal direction. For example, the ramp 220 may have a loading side 224, into which the first tubulars 210 are loaded, such that gravity tends to hold the first tubulars 210 packed together laterally while staged. Thus, several first tubulars 210 can be loaded into the ramp 220 and subsequently connected to other tubulars (e.g., the second tubular 212).
The loading assembly 202 may also include a mechanized conveyor or “feeder” 226 of any type that may move the first tubulars 210 sequentially up the ramp 220 and in the second horizontal direction toward axial alignment with the first and second torque-applying devices 204, 206. Suitable conveyors 226 may include tracks, rollers, gears, arms, etc. The handling assembly 208 may include supports 230, 231 that may be configured to position the second tubular 212 with respect to the first and second torque-applying devices 204, 206. For example, the supports 230, 231 may be configured to engage the second tubular 212 along its length, supporting the second tubular 212 in a horizontal orientation. The supports 230, 231 may be vertically adjustable so as to permit raising and lowering of the second tubular 212. The supports 230, 231 may include rollers or low-friction surfaces, e.g., in a V-shape, so as to facilitate supporting and sliding of the second tubular 212 while avoiding abrasion thereto.
The handling assembly 208 may also include one or more, e.g., two, spinners 232, 234. In an embodiment, the spinners 232, 234 may each take the form of a pair of wheels, as shown. Either or both of the spinners 232, 234 may be powered and configured to rotate the second tubular 212. In some cases, one of the spinners 232 is powered and the other spinner 234 may be unpowered (idler) and may support the second tubular 212 while it rotates. In an embodiment, the supports 230, 231 may be configured to lower the second tubular 212 onto the spinners 232, 234, so as to engage therewith and permit rotation when in the appropriate position.
The relatively short first tubulars 210 may be cross-overs, subs, components of a bottomhole assembly, lifting collars, etc. As can be appreciated from the figure (although not necessarily drawn to scale), the first tubulars 210 are too small in axial dimension (length) to span the horizontal distance between the first and second torque-applying devices 204, 206, and thus, if not attached to an external structure, would fall if moved through the first torque-applying device 204 toward the second torque-applying device 206. By contrast, the relatively long second tubular 212 may be a drill pipe (or stand of drill pipes), which may have a length that is sufficient (by itself or in combination with one of the first tubulars 210) to span the distance between the first and second torque-applying devices 204, 206.
In the illustrated embodiment, the method 400 may begin by loading one or more (e.g., a plurality of) first tubulars 210 into a loading assembly 202, as at 402. As discussed above, the loading assembly 202 may generally include a ramp 220 and a mechanized conveyor 226 that moves the first tubulars 210 up the ramp 220 and in a first horizontal direction (e.g., lateral with respect to the first tubulars 210). The method 400 may also include positioning a second tubular 212 into a handling assembly 208, as at 404. This initial stage of the method 400 is shown in
One of the first tubulars 210 and/or the second tubular 212 may then be moved, such that the one of the first tubulars 210 and the second tubular 212 are axially aligned (e.g., coaxial), as at 406. For example, the conveyor system 226 may load the one of the first tubulars 210 onto a platform 300, which may then be elevated from the ramp 220. Before, during, or after this time, the second tubular 212 may be loaded into spinners 232, 234, e.g., by lowering supports 230, 231. This stage of the method 400 is shown in
As shown in
As shown in
As also shown in
The method 400 may then include engaging the first tubular 210 using the second torque-applying device 206, as at 414. The method 400 may also include engaging the second tubular 212 using the first torque-applying device 204, as at 416. The method 400 may then include applying a torque to the connection between the first and second tubulars 210, 212 using the first and second torque-applying devices 204, 206, as at 418. For example, the first torque-applying device 204 may grip the second tubular 212 so as to prevent the second tubular 212 from rotating. The second torque-applying device 206 may grip the first tubular 210 and cause the first tubular 210 to rotate, thereby torquing the connection, e.g., to a predetermined torque specification.
The first and second tubulars 210, 212 may then be removed from engagement with the first and second torque-applying devices 204, 206, as at 419. In various embodiments, another first tubular 210 may then be connected to the end of the first tubular 210 that was just connected to the second tubular 212, e.g., by sliding the connected-together first and second tubulars 210, 212 away from the first and second torque-applying devices 204, 206 and treating the connected-together first and second tubulars 210, 212 as the second tubular 212 in the foregoing description. Alternatively, the connected-together first and second tubulars 210, 212 may be connected to other tubulars, e.g., after storage in a rack or otherwise prepared for deployment into a well.
Embodiments of the method 400 may also permit breaking apart connections. For example, the first and second tubulars 210, 212 may be loaded into the connection system 200 in an already-connected configuration, as at 420. The first and second torque-applying devices 204, 206 may engage the second and first tubulars 212, 210, respectively, and the second torque-applying device 206 may apply a reverse torque to the first tubular 210 so as to break apart the connection, but may permit the first and second tubulars 210, 212 to remain loosely connected together, as at 422. The first and second tubulars 210, 212 may then be withdrawn from the first and second torque-applying devices 204, 206, again with the connection therebetween serving to prevent the first tubular 210 from falling between the first and second torque-applying devices 204, 206, as at 424. The spinners 232, 234 may then be used to fully disengage the first and second tubulars 210, 212, and the disconnected first tubular 210 may be received back into the ramp 220 of the loading assembly 202.
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. Moreover, the order in which the elements of the methods are illustrated and described may be re-arranged, and/or two or more elements may occur simultaneously. The embodiments were chosen and described in order to best explain the principals of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated.
This application claims priority to U.S. Provisional Patent Application Ser. No. 63/089,363, which was filed on Oct. 8, 2020 and is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/054026 | 10/7/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63089363 | Oct 2020 | US |