Short yoke length writer having assist coils

Information

  • Patent Grant
  • 9799351
  • Patent Number
    9,799,351
  • Date Filed
    Monday, November 30, 2015
    8 years ago
  • Date Issued
    Tuesday, October 24, 2017
    6 years ago
Abstract
A magnetic apparatus has a media-facing surface (MFS), a pole, a top shield, a back gap and coil(s). The pole includes a yoke extension, a yoke between the yoke extension and the MFS, and a pole tip between the yoke and the MFS. The write gap is between the top shield and the pole tip. The back gap is recessed from the ABS and magnetically and physically connects the top shield to the yoke. The coil(s) energize the pole and have multiple turns. Part of a first turn is between the yoke and the top shield. Part of a second turn is recessed from the MFS and aligned with part of the yoke extension. Part of the first turn is between the part of the second turn and the MFS. The back gap is between part of the first turn and part of the second turn.
Description
BACKGROUND


FIG. 1 depicts a side view of a conventional magnetic recording apparatus 10. The magnetic recording apparatus 10 may be a perpendicular magnetic recording (PMR) apparatus. The conventional magnetic apparatus 10 includes a read apparatus 12 and a write apparatus 20. The conventional read apparatus 12 includes shields 14 and 18 and sensor 16. The read sensor 16 is typically a giant magnetoresistive (GMR) sensor or tunneling magnetoresistive (TMR) sensor. The write apparatus 20 includes a first or return pole 22, coils 24 and 32, back gap, auxiliary poles 28, main pole 30 and shield 34. Although not shown, the pole 30 may have leading and/or trailing edge bevels. In such cases, the pole 30 is shortest in the down track direction at the ABS.


Although the conventional magnetic recording head 10 functions, there are drawbacks. In particular, the conventional magnetic recording head 10 may not perform sufficiently at higher recording densities and higher recording speeds. For example, as recording areal density approaches 1 Tb/in2 and above, the data recording rate may exceed 2.2 Gb/s. High data rates require rapid changes in the magnetic flux provided by the pole 22. The pole 22 may not have sufficiently low rise time for the magnetic flux. The write field provided by the main pole 30 may also be desired to meet particular standards, such as magnitude and gradient. The pole 22 may not be capable of meeting these standards. Accordingly, what is needed is a system and method for improving the performance of a magnetic recording head, particularly at higher areal densities.





BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 depicts a side view of a conventional magnetic recording head.



FIG. 2 depicts an exemplary embodiment of a magnetic recording disk drive.



FIG. 3 depicts a side view of an exemplary embodiment of a magnetic recording write apparatus.



FIG. 4 depicts a side view of another exemplary embodiment of a magnetic recording write apparatus.



FIG. 5 depicts a side view of another exemplary embodiment of a magnetic recording apparatus.



FIG. 6 depicts a side view of another exemplary embodiment of a magnetic recording write apparatus.



FIG. 7 depicts a plan view of an exemplary embodiment of a magnetic recording apparatus.



FIG. 8 depicts a plan view of another exemplary embodiment of a magnetic recording apparatus.



FIG. 9 is flow chart depicting an exemplary embodiment of a method for fabricating a magnetic recording head.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

While the various embodiments disclosed are applicable to a variety of data storage devices such as magnetic recording disk drives, solid-state hybrid disk drives, networked storage systems etc., for the sake of illustration the description below uses disk drives as examples.



FIG. 2 depicts a side view of an exemplary embodiment of a portion of a disk drive 100 including a write apparatus 120. FIG. 3 depicts a close-up side view of an exemplary embodiment of a magnetic disk drive 100/write apparatus 120. For clarity, FIGS. 2-3 are not to scale. Referring to FIGS. 2-3, for simplicity not all portions of the disk drive 100 are shown. In addition, although the disk drive 100 is depicted in the context of particular components other and/or different components may be used. For example, circuitry used to drive and control various portions of the disk drive 100 is not shown. For simplicity, only single components 102, 110, 120 and their components are shown. However, multiples of each components 102, 110, 120 and/or and their sub-components, might be used. The disk drive 100 may be a PMR disk drive. However, in other embodiments, the disk drive 100 may be configured for other types of magnetic recording.


The disk drive 100 includes media 102, a slider 110 and the write apparatus 120. Additional and/or different components may be included in the disk drive 100. Although not shown, the slider 110 and thus the write apparatus 120 are generally attached to a suspension (not shown). The write apparatus 120 is fabricated on the slider 110 and includes a media-facing surface (MFS) proximate to the media 102 during use. In the embodiment shown, the MFS is an air-bearing surface (ABS). In general, the disk drive 100 includes a write apparatus 120 and a read apparatus. However, for clarity, only the write apparatus 120 is shown.


The write apparatus 120 includes a pole 130, a back gap 140, a top shield 142/144, write gap 146 and coil(s) 150. In other embodiments, different and/or additional components may be used in the write apparatus 120. For example, the write apparatus 120 might include a return pole.


The pole 130 includes a pole tip 132, a yoke 134 and a yoke extension 136. The separate portions 132, 134 and 136 of the pole 130 are delineated by dashed lines. The pole tip 132 is shown as occupying a portion of the ABS. However, in other embodiments, the pole tip 132 might be recessed from the ABS. The pole tip 132 is between the yoke 134 and the ABS. Similarly, the yoke 134 is between the yoke extension 136 and the ABS. The write gap 146 separates the pole tip 132 from a portion 144 of the top shield 142/144. The back gap 140 is recessed from the ABS. The back gap 140 magnetically and physically connects a portion 142 of the top shield 142/144 to the yoke 134 of the pole 130. In some embodiments, the edge of the back gap 140 furthest from the ABS defines the back edge of the yoke 134. The yoke extension 136 is the portion of the pole 130 that extends beyond the back gap 140 in the yoke direction. The yoke length, YL, of the pole 130, defined herein as the distance from the ABS to the front of the back gap 140, is reduced. In some embodiments, the yoke length is not more than three micrometers. In some such embodiments, the yoke length may be two micrometers or less.


The coil(s) 150 are used to energize the pole 130 for writing and include turns 152, 154, 156 and 158. In other embodiments, another number of turns may be used. For example, more turns recessed from the ABS in a manner analogous to the turns 154 and 158 may be used. Although termed separate turns, the turns 152, 154, 156 and 158 may be connected such that fewer turns are present. For example, the coil(s) 150 may be a helical coil. In such a case, the turns 152 and 156 may be part of the same turn. The turns 154 and 158 may be then part of the same turn. Similarly, if the coil(s) 150 are spiral coil(s), then the turns 152 and 154 may be part of the same turn. The turns 156 and 158 may thus be part of the same turn. Thus, as used herein, a “turn” of a coil may be the portion of the turn depicted in the drawing. In addition, although not shown, it is possible for the write apparatus 120 to have coil turns that are far from the ABS and not depicted in the drawings. Finally, in some embodiments, the turns 156 and 158 might be omitted.


One turn 152 is between the yoke 134 and a portion 142 of the top shield 142/144. Another turn 154 is recessed from the ABS such that the turn 154 is aligned with part of the yoke extension 136. Although shown as having its back edge aligned with the back edge of the yoke extension 136, the turn 154 might be closer to the ABS. However, the back gap 140 is between the turns 152 and 154. In some embodiments, the turn 154 is recessed from the ABS by at least two micrometers and not more than eight micrometers. In some embodiments, the turn 154 is recessed from the ABS by at least three micrometers. In addition, the turn 154 is separated from the back gap 140 by length RL. RL may be at least 0.25 μm, which allows the turn 154 to be electrically insulated from the back gap 140. In some embodiments, however, RL is significantly larger than 0.25 μm. In the embodiment shown, the turns 152 and 154 have the same cross-sectional area and shape. In other embodiments, the cross-sectional areas and/or shapes may differ.


As can be seen from FIG. 3, the turns 156 and 158 may be considered analogous to the turns 152 and 154, respectively. Thus, the turn 158 is recessed further from the ABS and aligned with the yoke extension 136. The turn 156 is aligned with the yoke 134. In the embodiment shown, the turns 156 and 158 have the same cross-sectional area and shape. In other embodiments, the cross-sectional areas and/or shapes may differ. In addition, the turns 152 and 156 are shown as having different cross-sectional area(s) than the turns 156 and 158. However, in other embodiments, the cross-sectional area(s) may be the same. Alternatively, the cross-sectional areas of the turns 156 and 158 may be smaller than that of the turns 152 and 154.


The turns 152 and 156 are closer to the ABS than the back edge of the back gap 140. Thus, the turns 152 and 156 may be considered primary turns while the turns 154 and 158 may be considered assist turns. The assist turns 154 and 158 provide additional current that aids (or assists) the turns 152 and 156 in energizing the pole 130. For example, the turns 152 and 158 may carry current in one direction (e.g. out of the plane of the page in FIG. 3) while the turns 154 and 156 carry current in the opposite direction. In other embodiments, the turns 152 and 156 may carry current in one direction while the turns 154 and 158 carry current in the opposite direction. Similarly, the turns 152 and 154 may carry current in one direction while the turns 156 and 158 carry current in the opposite direction. Other configurations for carrying current are possible.


In operation, current is driven through the turns 152, 154, 156 and 158 of the coil(s) 150 to energize the pole 130. In some embodiments, the current carried by the turns 152, 154, 156 and 158 is increased over that which might be used in the coils 24 and 32 of the conventional write apparatus 10. The current through the turns 152, 154, 156 and 158 may be increased such that the magnitude of the field produced by the pole 130 is analogous to that produced by the conventional pole 30. For example, the 150 coil may carry a current that is 150% of the current carried by the conventional coils 24 and 32. However, other values of the current are possible.


The magnetic disk drive 100 may exhibit improved performance. Because of the configuration of the turns 152, 154, 156 and 158 of the coil 150, the yoke length may be reduced. For example, in some embodiments, the yoke length for the main pole 130 may be not more than three micrometers. In some such embodiments, the yoke length may be not more than two micrometers. The response time of the pole 130 may thus be reduced. Data may be written at a higher rate. Further, because of the presence of the assist turns 154 and 158, the coil(s) 150 may include greater than one turn. Thus, more current may be driven in proximity to the pole 130. Therefore, the coil(s) 150 may better energize the pole 130. In particular, the pole 130 may be configured for a single turn 152/156 near the ABS, but include additional, assist turn(s) 154/158. As a result, a higher magnetic field may be generated in the main pole 130 for the same write current driven through the coil(s) 150. Thus, performance of the disk drive 100 may be improved.



FIG. 4 depicts a side view of an exemplary embodiment of a magnetic disk drive 100′. More specifically, a portion of the apparatus 120′ is depicted. For simplicity, only a portion of the magnetic recording apparatus 120′ is shown. FIG. 4 is not to scale for clarity. The magnetic recording disk drive 100′ is analogous to the magnetic disk drive 100. Consequently, analogous components have similar labels. The write apparatus 120′ thus includes a slider (not shown), a pole 130, a back gap 140, a top shield 142/144, write gap 146 and coil(s) 150′ analogous to the pole 130, back gap 140, top shield 142/144, write gap 146 and coil(s) 150, respectively, depicted in FIGS. 2-3.


The pole 130 includes a pole tip 132, a yoke 134 and a yoke extension 136 and which are analogous to those described in FIG. 2. The yoke length, YL, of the pole 130 is reduced. In some embodiments, the yoke length is not more than three micrometers. In some such embodiments, the yoke length may be two micrometers or less. The coil(s) 150′ are used to energize the pole 130 for writing and include turns 152, 154, 156 and 158. The coil(s) 150′ may be spiral or helical coils, as mentioned above. Turns 154 and 158 are still assist turns that are recessed from the ABS. One turn 152 is between the yoke 134 and a portion 142 of the top shield 142/144. The turn 154 further from the ABS. Thus, the turn 154 is a distance RL′ from the back gap 140. The back gap 140 remains between the turns 152 and 154. The turn 154 is recessed from the ABS by a distance in the range of distances described above. As can be seen from FIG. 4, the turns 156 and 158 may be considered analogous to the turns 152 and 154, respectively. The turn 158, though recessed from the ABS and aligned with the yoke extension 136, is closer to the ABS than in FIGS. 2-3. Thus, the back edge of the turn 158 is not substantially the same distance from the ABS as is the back edge of the yoke extension 136.


The magnetic write apparatus 120′ also includes a return pole 170. The return pole 170 includes a front gap connection 174, a back gap connection 172 and a central region 176. The front gap connection 174 has a portion at the ABS that may act as a leading shield. The back gap connection 172 that connects the return pole 170 to the yoke 134 and, in the embodiment shown, the yoke extension 136 of the pole 130. Thus, in the embodiment shown, the back gap connection 172 is recessed further from the ABS in the yoke direction than the back gap 140. However, the back gap connection 172 may be a different distance from the ABS. In some embodiments, the front gap connection 174 and/or the back gap connection 172 might be omitted.


The magnetic write apparatus 120′ may share the benefits of the magnetic write apparatus 120. Because of the configuration of the turns 152, 154, 156 and 158 of the coil 150′, the yoke length may be reduced. For example, in some embodiments, the yoke length for the main pole 130 may be not more than three micrometers. In some such embodiments, the yoke length may be not more than two micrometers. The response time of the pole 130 may be reduced and data written at a higher rate. Because of the use of the assist turns 154 and 158, the coil(s) 150′ may include more than one turn close to the pole 130 despite the reduced yoke length. As a result, a higher magnetic field may be generated in the main pole 130 for the same write current driven through the coil(s) 150′. Thus, performance of the disk drive 100′ may be improved. Further, use of the return pole 170 including the front gap connection 174 and the back gap connection 172 may improve the wide area track erasure (WATER) for the write apparatus 120′. The return pole 170 may aid in shielding other tracks from the (possibly higher) current driven through the coils 150′. Thus, the improved data rate may be attained without adversely affecting WATER.



FIG. 5 depicts a side view of an exemplary embodiment of a magnetic disk drive 200. More specifically, a portion of a write apparatus 220 is depicted. For simplicity, only a portion of the magnetic recording apparatus 220 is shown. FIG. 5 is not to scale for clarity. The magnetic recording disk drive 200 is analogous to the magnetic disk drive 100 and 100′. Consequently, analogous components have similar labels. The write apparatus 220 thus includes a slider (not shown), a pole 230, a back gap 240, a top shield 242/244, write gap 246, coil(s) 250 and return pole 270 analogous to the pole 130, back gap 140, top shield 142/144, write gap 146, coil(s) 150/150′ and return pole 170, respectively.


The pole 230 includes a pole tip 232, a yoke 234 and a yoke extension 236 which are delineated by dashed lines and analogous to those described in FIGS. 2-4. The yoke length, YL, of the pole 230 is reduced. In some embodiments, the yoke length is not more than three micrometers. In some such embodiments, the yoke length may be two micrometers or less. The coil(s) 250 are used to energize the pole 230 for writing and include turns 252, 254, 256 and 258. The coil(s) 250 may be spiral or helical coils, as mentioned above. Turns 254 and 258 are assist turns that are recessed from the ABS. One turn 252 is between the yoke 234 and a portion 242 of the top shield 242/244. The turn 254 is further from the ABS. Thus, the turn 254 is a distance RL″ from the back gap 240. Although a portion of the turn 254 is aligned with the yoke extension 236, another portion of the turn 254 further from the ABS than the yoke extension 236. The back gap 240 remains between the turns 252 and 254. The turns 256 and 258 are analogous to the turns 252 and 254, respectively. The turn 258, though recessed from the ABS and partially aligned with the yoke extension 236, the back edge of the turn 258 is further from the ABS than the back edge of the yoke extension 236. The magnetic write apparatus 220 also includes a return pole 270 having a front gap connection 274, a back gap connection 272 and a central region 276. In another embodiment, the return pole 270 might be omitted. Also depicted in FIG. 5 is one configuration in which current may be driven through the turns 252, 254, 256 and 258.


The magnetic write apparatus 220 may share the benefits of the magnetic write apparatuses 120 and 120′. Because of the configuration of the turns 252, 254, 256 and 258, the yoke length may be reduced in a manner analogous to that described above. The response time of the pole 230 may be reduced and data written at a higher rate. Use of the assist turns 254 and 258, more current can be driven close to the pole 230 despite the reduced yoke length. As a result, a higher magnetic field may be generated in the main pole 230 for the same write current driven through the coil(s) 250. Further, the use of the return pole 270 having front gap connection 274 and the back gap connection 272 may improve the WATER for the write apparatus 220. Thus, the improved data rate and field may be attained without adversely affecting WATER.



FIG. 6 depicts a side view of an exemplary embodiment of a magnetic disk drive 200′. More specifically, a portion of a write apparatus 220′ is depicted. For simplicity, only a portion of the magnetic recording apparatus 220′ is shown. FIG. 6 is not to scale for clarity. The magnetic recording disk drive 200′ is analogous to the magnetic disk drive 100, 100′ and 200. Consequently, analogous components have similar labels. The write apparatus 220′ thus includes a slider (not shown), a pole 230, a back gap 240, a top shield 242/244, write gap 246, coil(s) 250′ and return pole 270 analogous to the pole 130/230, back gap 140/240, top shield 142/144/242/244, write gap 146/246, coil(s) 150/150′/250 and return pole 270, respectively.


The pole 230 includes a pole tip 232, a yoke 234 and a yoke extension 236 which are delineated by dashed lines and analogous to those described in FIGS. 2-4. The yoke length, YL, of the pole 230 is reduced. In some embodiments, the yoke length is not more than three micrometers. In some such embodiments, the yoke length may be two micrometers or less. The coil(s) 250′ are used to energize the pole 230 for writing and include turns 252, 254, 256 and 258. The coil(s) 250′ may be spiral or helical coils, as mentioned above. Turns 254 and 258 are assist turns that are recessed from the ABS. One turn 252 is between the yoke 234 and a portion 242 of the top shield 242/244. The turn 254 is further from the ABS. Thus, the turn 254 is a distance RL′″ from the back gap 240. The turn 254 is aligned with part of the yoke extension 236. The back gap 240 remains between the turns 252 and 254. The turns 256 and 258 are analogous to the turns 252 and 254, respectively. The turn 258, though recessed from the ABS and partially aligned with the yoke extension 236, the back edge of the turn 258 is further from the ABS than the back edge of the yoke extension 236. The magnetic write apparatus 220 also includes a return pole 270 having a front gap connection 274, a back gap connection 272 and a central region 276. Also depicted in FIG. 6 is another configuration in which current may be driven through the turns 252, 254, 256 and 258.


The magnetic write apparatus 220′ may share the benefits of the magnetic write apparatuses 120, 120′ and 220. Because of the configuration of the turns 252, 254, 256 and 258, the yoke length may be reduced in a manner analogous to that described above. The response time of the pole 230 may be reduced and data written at a higher rate. Use of the assist turns 254 and 258, more current can be driven close to the pole 230 despite the reduced yoke length. As a result, a higher magnetic field may be generated in the main pole 230 for the same write current driven through the coil(s) 250′. Further, the use of the return pole 270 having front gap connection 274 and the back gap connection 272 may improve the WATER for the write apparatus 220. Thus, the improved data rate and field may be attained without adversely affecting WATER.



FIG. 7 depicts a plan view of an exemplary embodiment of a magnetic write apparatus 280. For simplicity, only a portion of the magnetic recording apparatus 280 is shown. FIG. 7 is not to scale for clarity. The magnetic write apparatus 280 is analogous to the magnetic write apparatus 120, 120′, 220 and 220′. Consequently, analogous components have similar labels. The write apparatus 280 thus includes a pole 281 analogous to the pole 130/230. For simplicity, other components of the write apparatus 280 are not shown. In the embodiment shown, the yoke and yoke extension region have a substantially rectangular footprint. However, other shapes are possible.



FIG. 8 depicts a plan view of an exemplary embodiment of a magnetic write apparatus 280′. For simplicity, only a portion of the magnetic recording apparatus 280′ is shown. FIG. 8 is not to scale for clarity. The magnetic write apparatus 280′ is analogous to the magnetic write apparatus 120, 120′, 220, 220′ and 280. Consequently, analogous components have similar labels. The write apparatus 280 thus includes a pole 281′ analogous to the pole 130/230/281. For simplicity, other components of the write apparatus 280′ are not shown. In the embodiment shown, the yoke and yoke extension region have a substantially oval footprint. However, other shapes are possible. Various configurations have been depicted in FIGS. 2-8. Although specific features have been highlighted, one of ordinary skill in the art that the features described herein may be combined in other manners not explicitly depicted.



FIG. 9 depicts an exemplary embodiment of a method 300 for providing a magnetic recording apparatus having a pole that may have a shortened yoke length. For simplicity, some steps may be omitted, interleaved, combined and/or include substeps. The method 300 is also described in the context of providing a magnetic recording head 100′ depicted in FIG. 4. The method 300 may also be used to fabricate other magnetic recording apparatuses including but not limited to any combination of 120, 120′, 220, 220′, 280 and/or 280′. In addition, the method 300 may be used to fabricate multiple magnetic recording heads at substantially the same time. The method 300 is also described in the context of particular layers. A particular layer may include multiple materials and/or multiple sub-layers. The method 300 also may start after formation of other portions of the magnetic recording apparatus. For example, the method 300 may start after a read apparatus, return pole/shield and/or other structure have been fabricated.


Referring to FIGS. 4 and 9, the return pole 170 may optionally be provided, via step 302. In some embodiments, the back gap connection 172 and/or the front gap connection 174 may be omitted. The pole 130 is provided, via step 304. Step 304 may include using a damascene process. For example, a trench may be formed in a layer and the material(s) for the pole 130 deposited and patterned. One or more ferromagnetic materials are deposited. The pole tip 132, yoke 134 and yoke extension 136 may be formed. Other methods may also be used to form the pole 130 including but not limited to full film deposition of magnetic materials and removal for example via milling and/or lapping.


The write gap 146 may be provided, via step 306. In addition, the back gap 140 is formed, via step 308. The coil(s) 150 are provided, via step 310. Portions of step 310 may thus be interleaved with the remaining steps of the method 300. For example, the turns 156 and 158 may be provided before the formation of the pole 130. However, the other portions of the coil(s) 150 may be provided after the pole 130 has been formed. Step 310 may also include depositing and patterning the material(s) used for the coil(s) 150. Step 310 may include forming helical coil(s) formed of the coils 150. Alternatively, one or two spiral coils may be formed using turns 152, 154, 156 and 158. The turns 152, 154, 156 and 158 are also located as depicted in the drawings. For example, the turn 152 is separated from the turn 154 by the back gap 140. The shield(s) 142/144 may also optionally be provided, via step 312.


Using the method 300, the magnetic write apparatuses 120, 120′, 220, 220′, 280 and/or 280′ may be provided. Thus, the benefits of the magnetic apparatuses 120, 120′, 220, 220′, 280 and/or 280′ may be achieved.

Claims
  • 1. A magnetic write apparatus comprising: a pole comprising a pole tip, a yoke extending away from the pole tip, and a yoke extension extending away from the yoke, wherein a front edge of the yoke extension abuts the yoke and a back edge of the yoke extension faces away from the yoke;a first turn of a coil located above the yoke and aligned with the yoke; anda second turn of the coil located above the yoke and aligned with the yoke extension, wherein a back edge of the second turn that is farthest away from the pole tip is aligned with the back edge of the yoke extension.
  • 2. The magnetic write apparatus of claim 1, further comprising a third turn of the coil located below the yoke and aligned with the yoke, and a fourth turn of the coil located below the yoke, wherein a back edge of the fourth turn is aligned with the back edge of the second turn.
  • 3. A magnetic write apparatus having a media-facing surface (MFS), the magnetic write apparatus comprising: a pole including a pole tip proximate to the MFS, a yoke and a yoke extension, the pole tip being between the yoke and the MFS, the yoke being between the yoke extension and the MFS;a write gap at the MFS;a top shield having a first portion separated from the pole tip by the write gap;a back gap recessed from the MFS, the back gap magnetically and physically connecting a second portion of the top shield to the yoke of the pole; andat least one coil for energizing the pole, the at least one coil comprising a plurality of turns including a first turn, a second turn, a third turn, and a fourth turn, a portion of the first turn being between the yoke and the top shield, a portion of the second turn being recessed from the MFS such that the portion of the first turn is between the portion of the second turn and the MFS, the portion of the second turn being aligned with a first portion of the yoke extension, the back gap being between the portion of the first turn and the portion of the second turn in a direction perpendicular to the MFS, andwherein a portion of the third turn is located below the yoke and aligned with the yoke, and a portion of the fourth turn is located below the yoke extension and aligned with a second portion of the yoke extension,wherein a back edge of the second turn and a back edge of the fourth turn align with a back edge of the yoke extension.
  • 4. The magnetic write apparatus of claim 1 wherein the portion of the second turn is recessed from the MFS by at least two microns and not more than eight microns.
  • 5. The magnetic write apparatus of claim 1 wherein the at least one coil is selected from a helical coil and a spiral coil.
  • 6. The magnetic write apparatus of claim 1 wherein the yoke has a yoke length of not more than two microns.
  • 7. The magnetic write apparatus of claim 3, wherein the portion of the second turn and the portion of the fourth turn are located beyond the top shield.
  • 8. A data storage device comprising: a media; anda slider having a media-facing surface (MFS), the slider including a pole, a write gap, a top shield, a back gap and at least one coil, the pole comprising a pole tip proximate to the S, a yoke and a yoke extension, the pole tip being between the yoke and the MFS, the yoke being between the yoke extension and the MFS, the top shield having a first portion separated from the pole tip by the write gap, the back gap being recessed from the MFS, the back gap magnetically and physically connecting a second portion of the top shield to the yoke of the pole, the at least one coil having a plurality of turns including a first turn, a second turn, a third turn, and a fourth turn, a portion of the first turn being between the yoke and the top shield, a portion of the second turn being recessed from the MFS such that the portion of the first turn is between the portion of the second turn and the MFS, the back gap being between the portion of the first turn and the portion of the second turn in a direction perpendicular to the MFS, the yoke being between the portion of the first turn and a portion of the third turn, the yoke extension being between the portion of the second turn and a portion of the fourth turn, the portion of the second turn and the portion of the fourth turn being aligned with a portion of the yoke extension, and wherein the top shield does not extend over the portion of the second turn and the portion of the fourth turn,wherein a back edge of the second turn and a back edge of the fourth turn align with a back edge of the yoke extension.
US Referenced Citations (621)
Number Name Date Kind
6016290 Chen et al. Jan 2000 A
6018441 Wu et al. Jan 2000 A
6025978 Hoshi et al. Feb 2000 A
6025988 Yan Feb 2000 A
6032353 Hiner et al. Mar 2000 A
6033532 Minami Mar 2000 A
6034851 Zarouri et al. Mar 2000 A
6043959 Crue et al. Mar 2000 A
6046885 Aimonetti et al. Apr 2000 A
6049650 Jerman et al. Apr 2000 A
6055138 Shi Apr 2000 A
6058094 Davis et al. May 2000 A
6073338 Liu et al. Jun 2000 A
6078479 Nepela et al. Jun 2000 A
6081499 Berger et al. Jun 2000 A
6094803 Carlson et al. Aug 2000 A
6099362 Viches et al. Aug 2000 A
6103073 Thayamballi Aug 2000 A
6108166 Lederman Aug 2000 A
6118629 Huai et al. Sep 2000 A
6118638 Knapp et al. Sep 2000 A
6125018 Takagishi et al. Sep 2000 A
6130779 Carlson et al. Oct 2000 A
6134089 Barr et al. Oct 2000 A
6136166 Shen et al. Oct 2000 A
6137661 Shi et al. Oct 2000 A
6137662 Huai et al. Oct 2000 A
6160684 Heist et al. Dec 2000 A
6163426 Nepela et al. Dec 2000 A
6166891 Lederman et al. Dec 2000 A
6173486 Hsiao et al. Jan 2001 B1
6175476 Huai et al. Jan 2001 B1
6178066 Barr Jan 2001 B1
6178070 Hong et al. Jan 2001 B1
6178150 Davis Jan 2001 B1
6181485 He Jan 2001 B1
6181525 Carlson Jan 2001 B1
6185051 Chen et al. Feb 2001 B1
6185077 Tong et al. Feb 2001 B1
6185081 Simion et al. Feb 2001 B1
6188549 Wiitala Feb 2001 B1
6190764 Shi et al. Feb 2001 B1
6193584 Rudy et al. Feb 2001 B1
6195229 Shen et al. Feb 2001 B1
6198608 Hong et al. Mar 2001 B1
6198609 Barr et al. Mar 2001 B1
6201673 Rottmayer et al. Mar 2001 B1
6204998 Katz Mar 2001 B1
6204999 Crue et al. Mar 2001 B1
6212153 Chen et al. Apr 2001 B1
6215625 Carlson Apr 2001 B1
6219205 Yuan et al. Apr 2001 B1
6221218 Shi et al. Apr 2001 B1
6222707 Huai et al. Apr 2001 B1
6229782 Wang et al. May 2001 B1
6230959 Heist et al. May 2001 B1
6233116 Chen et al. May 2001 B1
6233125 Knapp et al. May 2001 B1
6237215 Hunsaker et al. May 2001 B1
6252743 Bozorgi Jun 2001 B1
6255721 Roberts Jul 2001 B1
6258468 Mahvan et al. Jul 2001 B1
6266216 Hikami et al. Jul 2001 B1
6271604 Frank, Jr. et al. Aug 2001 B1
6275354 Huai et al. Aug 2001 B1
6277505 Shi et al. Aug 2001 B1
6282056 Feng et al. Aug 2001 B1
6296955 Hossain et al. Oct 2001 B1
6297955 Frank, Jr. et al. Oct 2001 B1
6304414 Crue, Jr. et al. Oct 2001 B1
6307715 Berding et al. Oct 2001 B1
6310746 Hawwa et al. Oct 2001 B1
6310750 Hawwa et al. Oct 2001 B1
6317290 Wang et al. Nov 2001 B1
6317297 Tong et al. Nov 2001 B1
6322911 Fukagawa et al. Nov 2001 B1
6330136 Wang et al. Dec 2001 B1
6330137 Knapp et al. Dec 2001 B1
6333830 Rose et al. Dec 2001 B2
6340533 Ueno et al. Jan 2002 B1
6349014 Crue, Jr. et al. Feb 2002 B1
6351355 Min et al. Feb 2002 B1
6353318 Sin et al. Mar 2002 B1
6353511 Shi et al. Mar 2002 B1
6356412 Levi et al. Mar 2002 B1
6359779 Frank, Jr. et al. Mar 2002 B1
6369983 Hong Apr 2002 B1
6376964 Young et al. Apr 2002 B1
6377535 Chen et al. Apr 2002 B1
6381095 Sin et al. Apr 2002 B1
6381105 Huai et al. Apr 2002 B1
6389499 Frank, Jr. et al. May 2002 B1
6392850 Tong et al. May 2002 B1
6396660 Jensen et al. May 2002 B1
6399179 Hanrahan et al. Jun 2002 B1
6400526 Crue, Jr. et al. Jun 2002 B2
6404600 Hawwa et al. Jun 2002 B1
6404601 Rottmayer et al. Jun 2002 B1
6404706 Stovall et al. Jun 2002 B1
6410170 Chen et al. Jun 2002 B1
6411522 Frank, Jr. et al. Jun 2002 B1
6417998 Crue, Jr. et al. Jul 2002 B1
6417999 Knapp et al. Jul 2002 B1
6418000 Gibbons et al. Jul 2002 B1
6418048 Sin et al. Jul 2002 B1
6421211 Hawwa et al. Jul 2002 B1
6421212 Gibbons et al. Jul 2002 B1
6424505 Lam et al. Jul 2002 B1
6424507 Lederman et al. Jul 2002 B1
6430009 Komaki et al. Aug 2002 B1
6430806 Chen et al. Aug 2002 B1
6433965 Gopinathan et al. Aug 2002 B1
6433968 Shi et al. Aug 2002 B1
6433970 Knapp et al. Aug 2002 B1
6437945 Hawwa et al. Aug 2002 B1
6445536 Rudy et al. Sep 2002 B1
6445542 Levi et al. Sep 2002 B1
6445553 Barr et al. Sep 2002 B2
6445554 Dong et al. Sep 2002 B1
6447935 Zhang et al. Sep 2002 B1
6448765 Chen et al. Sep 2002 B1
6451514 Iitsuka Sep 2002 B1
6452742 Crue et al. Sep 2002 B1
6452765 Mahvan et al. Sep 2002 B1
6456465 Louis et al. Sep 2002 B1
6459552 Liu et al. Oct 2002 B1
6462920 Karimi Oct 2002 B1
6466401 Hong et al. Oct 2002 B1
6466402 Crue, Jr. et al. Oct 2002 B1
6466404 Crue, Jr. et al. Oct 2002 B1
6468436 Shi et al. Oct 2002 B1
6469877 Knapp et al. Oct 2002 B1
6477019 Matono et al. Nov 2002 B2
6479096 Shi et al. Nov 2002 B1
6483662 Thomas et al. Nov 2002 B1
6487040 Hsiao et al. Nov 2002 B1
6487056 Gibbons et al. Nov 2002 B1
6490125 Barr Dec 2002 B1
6496330 Crue, Jr. et al. Dec 2002 B1
6496334 Pang et al. Dec 2002 B1
6504676 Hiner et al. Jan 2003 B1
6512657 Heist et al. Jan 2003 B2
6512659 Hawwa et al. Jan 2003 B1
6512661 Louis Jan 2003 B1
6512690 Qi et al. Jan 2003 B1
6515573 Dong et al. Feb 2003 B1
6515791 Hawwa et al. Feb 2003 B1
6532823 Knapp et al. Mar 2003 B1
6535363 Hosomi et al. Mar 2003 B1
6552874 Chen et al. Apr 2003 B1
6552928 Qi et al. Apr 2003 B1
6577470 Rumpler Jun 2003 B1
6583961 Levi et al. Jun 2003 B2
6583968 Scura et al. Jun 2003 B1
6597548 Yamanaka et al. Jul 2003 B1
6611398 Rumpler et al. Aug 2003 B1
6618223 Chen et al. Sep 2003 B1
6629357 Akoh Oct 2003 B1
6633464 Lai et al. Oct 2003 B2
6636394 Fukagawa et al. Oct 2003 B1
6639291 Sin et al. Oct 2003 B1
6650503 Chen et al. Nov 2003 B1
6650506 Risse Nov 2003 B1
6654195 Frank, Jr. et al. Nov 2003 B1
6657816 Barr et al. Dec 2003 B1
6661621 Iitsuka Dec 2003 B1
6661625 Sin et al. Dec 2003 B1
6674610 Thomas et al. Jan 2004 B1
6680863 Shi et al. Jan 2004 B1
6683763 Hiner et al. Jan 2004 B1
6687098 Huai Feb 2004 B1
6687178 Qi et al. Feb 2004 B1
6687977 Knapp et al. Feb 2004 B2
6691226 Frank, Jr. et al. Feb 2004 B1
6697294 Qi et al. Feb 2004 B1
6700738 Sin et al. Mar 2004 B1
6700759 Knapp et al. Mar 2004 B1
6704158 Hawwa et al. Mar 2004 B2
6707083 Hiner et al. Mar 2004 B1
6713801 Sin et al. Mar 2004 B1
6721138 Chen et al. Apr 2004 B1
6721149 Shi et al. Apr 2004 B1
6721203 Qi et al. Apr 2004 B1
6724569 Chen et al. Apr 2004 B1
6724572 Stoev et al. Apr 2004 B1
6729015 Matono et al. May 2004 B2
6735850 Gibbons et al. May 2004 B1
6737281 Dang et al. May 2004 B1
6744608 Sin et al. Jun 2004 B1
6747301 Hiner et al. Jun 2004 B1
6751055 Alfoqaha et al. Jun 2004 B1
6754049 Seagle et al. Jun 2004 B1
6756071 Shi et al. Jun 2004 B1
6757140 Hawwa Jun 2004 B1
6760196 Niu et al. Jul 2004 B1
6762910 Knapp et al. Jul 2004 B1
6765756 Hong et al. Jul 2004 B1
6775902 Huai et al. Aug 2004 B1
6778358 Jiang et al. Aug 2004 B1
6781927 Heanuc et al. Aug 2004 B1
6785955 Chen et al. Sep 2004 B1
6791793 Chen et al. Sep 2004 B1
6791807 Hikami et al. Sep 2004 B1
6798616 Seagle et al. Sep 2004 B1
6798625 Ueno et al. Sep 2004 B1
6801408 Chen et al. Oct 2004 B1
6801411 Lederman et al. Oct 2004 B1
6803615 Sin et al. Oct 2004 B1
6806035 Atireklapvarodom et al. Oct 2004 B1
6807030 Hawwa et al. Oct 2004 B1
6807332 Hawwa Oct 2004 B1
6809899 Chen et al. Oct 2004 B1
6816345 Knapp et al. Nov 2004 B1
6828897 Nepela Dec 2004 B1
6829160 Qi et al. Dec 2004 B1
6829819 Crue, Jr. et al. Dec 2004 B1
6833979 Knapp et al. Dec 2004 B1
6834010 Qi et al. Dec 2004 B1
6859343 Alfoqaha et al. Feb 2005 B1
6859997 Tong et al. Mar 2005 B1
6861937 Feng et al. Mar 2005 B1
6870712 Chen et al. Mar 2005 B2
6873494 Chen et al. Mar 2005 B2
6873547 Shi et al. Mar 2005 B1
6879464 Sun et al. Apr 2005 B2
6888184 Shi et al. May 2005 B1
6888704 Diao et al. May 2005 B1
6891702 Tang May 2005 B1
6894871 Alfoqaha et al. May 2005 B2
6894877 Crue, Jr. et al. May 2005 B1
6906894 Chen et al. Jun 2005 B2
6909578 Missell et al. Jun 2005 B1
6912106 Chen et al. Jun 2005 B1
6934113 Chen Aug 2005 B1
6934129 Zhang et al. Aug 2005 B1
6940688 Jiang et al. Sep 2005 B2
6942824 Li Sep 2005 B1
6943993 Chang et al. Sep 2005 B2
6944938 Crue, Jr. et al. Sep 2005 B1
6947258 Li Sep 2005 B1
6950266 McCaslin et al. Sep 2005 B1
6954332 Hong et al. Oct 2005 B1
6958885 Chen et al. Oct 2005 B1
6961221 Niu et al. Nov 2005 B1
6969989 Mei Nov 2005 B1
6975486 Chen et al. Dec 2005 B2
6987643 Seagle Jan 2006 B1
6989962 Dong et al. Jan 2006 B1
6989972 Stoev et al. Jan 2006 B1
7006327 Krounbi et al. Feb 2006 B2
7007372 Chen et al. Mar 2006 B1
7012832 Sin et al. Mar 2006 B1
7023658 Knapp et al. Apr 2006 B1
7026063 Ueno et al. Apr 2006 B2
7027268 Zhu et al. Apr 2006 B1
7027274 Sin et al. Apr 2006 B1
7035046 Young et al. Apr 2006 B1
7041985 Wang et al. May 2006 B1
7046490 Ueno et al. May 2006 B1
7054113 Seagle et al. May 2006 B1
7057857 Niu et al. Jun 2006 B1
7059868 Yan Jun 2006 B1
7092195 Liu et al. Aug 2006 B1
7110289 Sin et al. Sep 2006 B1
7111382 Knapp et al. Sep 2006 B1
7113366 Wang et al. Sep 2006 B1
7114241 Kubota et al. Oct 2006 B2
7116517 He et al. Oct 2006 B1
7124654 Davies et al. Oct 2006 B1
7126788 Liu et al. Oct 2006 B1
7126790 Liu et al. Oct 2006 B1
7131346 Buttar et al. Nov 2006 B1
7133253 Seagle et al. Nov 2006 B1
7134185 Knapp et al. Nov 2006 B1
7154715 Yamanaka et al. Dec 2006 B2
7170725 Zhou et al. Jan 2007 B1
7177117 Jiang et al. Feb 2007 B1
7193815 Stoev et al. Mar 2007 B1
7196880 Anderson et al. Mar 2007 B1
7199974 Alfoqaha Apr 2007 B1
7199975 Pan Apr 2007 B1
7211339 Seagle et al. May 2007 B1
7212384 Stoev et al. May 2007 B1
7238292 He et al. Jul 2007 B1
7239478 Sin et al. Jul 2007 B1
7248431 Liu et al. Jul 2007 B1
7248433 Stoev et al. Jul 2007 B1
7248449 Seagle Jul 2007 B1
7280325 Pan Oct 2007 B1
7283327 Liu et al. Oct 2007 B1
7284316 Huai et al. Oct 2007 B1
7286329 Chen et al. Oct 2007 B1
7289303 Sin et al. Oct 2007 B1
7292409 Stoev et al. Nov 2007 B1
7296339 Yang et al. Nov 2007 B1
7307814 Seagle et al. Dec 2007 B1
7307818 Park et al. Dec 2007 B1
7310204 Stoev et al. Dec 2007 B1
7318947 Park et al. Jan 2008 B1
7333295 Medina et al. Feb 2008 B1
7337530 Stoev et al. Mar 2008 B1
7342752 Zhang et al. Mar 2008 B1
7349170 Rudman et al. Mar 2008 B1
7349179 He et al. Mar 2008 B1
7354664 Jiang et al. Apr 2008 B1
7363697 Dunn et al. Apr 2008 B1
7371152 Newman May 2008 B1
7372665 Stoev et al. May 2008 B1
7375926 Stoev et al. May 2008 B1
7379269 Krounbi et al. May 2008 B1
7386933 Krounbi et al. Jun 2008 B1
7389577 Shang et al. Jun 2008 B1
7417832 Erickson et al. Aug 2008 B1
7419891 Chen et al. Sep 2008 B1
7428124 Song et al. Sep 2008 B1
7430098 Song et al. Sep 2008 B1
7436620 Kang et al. Oct 2008 B1
7436638 Pan Oct 2008 B1
7440220 Kang et al. Oct 2008 B1
7443632 Stoev et al. Oct 2008 B1
7444740 Chung et al. Nov 2008 B1
7493688 Wang et al. Feb 2009 B1
7508627 Zhang et al. Mar 2009 B1
7522377 Jiang et al. Apr 2009 B1
7522379 Krounbi et al. Apr 2009 B1
7522382 Pan Apr 2009 B1
7542246 Song et al. Jun 2009 B1
7551406 Thomas et al. Jun 2009 B1
7552523 He et al. Jun 2009 B1
7554767 Hu et al. Jun 2009 B1
7583466 Kermiche et al. Sep 2009 B2
7595967 Moon et al. Sep 2009 B1
7623322 Umehara et al. Nov 2009 B2
7639457 Chen et al. Dec 2009 B1
7660080 Liu et al. Feb 2010 B1
7672080 Tang et al. Mar 2010 B1
7672086 Jiang Mar 2010 B1
7684160 Erickson et al. Mar 2010 B1
7688546 Bai et al. Mar 2010 B1
7691434 Zhang et al. Apr 2010 B1
7695761 Shen et al. Apr 2010 B1
7719795 Hu et al. May 2010 B2
7726009 Liu et al. Jun 2010 B1
7729086 Song et al. Jun 2010 B1
7729087 Stoev et al. Jun 2010 B1
7736823 Wang et al. Jun 2010 B1
7785666 Sun et al. Aug 2010 B1
7796356 Fowler et al. Sep 2010 B1
7800858 Bajikar et al. Sep 2010 B1
7819979 Chen et al. Oct 2010 B1
7829264 Wang et al. Nov 2010 B1
7846643 Sun et al. Dec 2010 B1
7855854 Hu et al. Dec 2010 B2
7869160 Pan et al. Jan 2011 B1
7872824 Macchioni et al. Jan 2011 B1
7872833 Hu et al. Jan 2011 B2
7910267 Zeng et al. Mar 2011 B1
7911735 Sin et al. Mar 2011 B1
7911737 Jiang et al. Mar 2011 B1
7916426 Hu et al. Mar 2011 B2
7918013 Dunn et al. Apr 2011 B1
7968219 Jiang et al. Jun 2011 B1
7982989 Shi et al. Jul 2011 B1
8008912 Shang Aug 2011 B1
8012804 Wang et al. Sep 2011 B1
8015692 Zhang et al. Sep 2011 B1
8018677 Chung et al. Sep 2011 B1
8018678 Zhang et al. Sep 2011 B1
8024748 Moravec et al. Sep 2011 B1
8072705 Wang et al. Dec 2011 B1
8074345 Anguelouch et al. Dec 2011 B1
8077418 Hu et al. Dec 2011 B1
8077434 Shen et al. Dec 2011 B1
8077435 Liu et al. Dec 2011 B1
8077557 Hu et al. Dec 2011 B1
8079135 Shen et al. Dec 2011 B1
8081403 Chen et al. Dec 2011 B1
8091210 Sasaki et al. Jan 2012 B1
8097846 Anguelouch et al. Jan 2012 B1
8104166 Zhang et al. Jan 2012 B1
8116031 Alex et al. Feb 2012 B2
8116032 Contreras et al. Feb 2012 B2
8116043 Leng et al. Feb 2012 B2
8116171 Lee Feb 2012 B1
8125856 Li et al. Feb 2012 B1
8134794 Wang Mar 2012 B1
8136224 Sun et al. Mar 2012 B1
8136225 Zhang et al. Mar 2012 B1
8136805 Lee Mar 2012 B1
8141235 Zhang Mar 2012 B1
8146236 Luo et al. Apr 2012 B1
8149536 Yang et al. Apr 2012 B1
8151441 Rudy et al. Apr 2012 B1
8163185 Sun et al. Apr 2012 B1
8164760 Willis Apr 2012 B2
8164855 Gibbons et al. Apr 2012 B1
8164864 Kaiser et al. Apr 2012 B2
8165709 Rudy Apr 2012 B1
8166631 Tran et al. May 2012 B1
8166632 Zhang et al. May 2012 B1
8169473 Yu et al. May 2012 B1
8171618 Wang et al. May 2012 B1
8179633 Contreras et al. May 2012 B2
8179636 Bai et al. May 2012 B1
8191237 Luo et al. Jun 2012 B1
8194365 Leng et al. Jun 2012 B1
8194366 Li et al. Jun 2012 B1
8196285 Zhang et al. Jun 2012 B1
8200054 Li et al. Jun 2012 B1
8203800 Li et al. Jun 2012 B2
8208350 Hu et al. Jun 2012 B1
8220140 Wang et al. Jul 2012 B1
8222599 Chien Jul 2012 B1
8225488 Zhang et al. Jul 2012 B1
8227023 Liu et al. Jul 2012 B1
8228633 Tran et al. Jul 2012 B1
8231796 Li et al. Jul 2012 B1
8233248 Li et al. Jul 2012 B1
8248896 Yuan et al. Aug 2012 B1
8254060 Shi et al. Aug 2012 B1
8257597 Guan et al. Sep 2012 B1
8259410 Bai et al. Sep 2012 B1
8259539 Hu et al. Sep 2012 B1
8262918 Li et al. Sep 2012 B1
8262919 Luo et al. Sep 2012 B1
8264797 Emley Sep 2012 B2
8264798 Guan et al. Sep 2012 B1
8270126 Roy et al. Sep 2012 B1
8276258 Tran et al. Oct 2012 B1
8277669 Chen et al. Oct 2012 B1
8279719 Hu et al. Oct 2012 B1
8284517 Sun et al. Oct 2012 B1
8288204 Wang et al. Oct 2012 B1
8289821 Huber Oct 2012 B1
8291743 Shi et al. Oct 2012 B1
8307539 Rudy et al. Nov 2012 B1
8307540 Tran et al. Nov 2012 B1
8308921 Hiner et al. Nov 2012 B1
8310785 Zhang et al. Nov 2012 B1
8310901 Batra et al. Nov 2012 B1
8315019 Mao et al. Nov 2012 B1
8316527 Hong et al. Nov 2012 B2
8320076 Shen et al. Nov 2012 B1
8320077 Tang et al. Nov 2012 B1
8320219 Wolf et al. Nov 2012 B1
8320220 Yuan et al. Nov 2012 B1
8320722 Yuan et al. Nov 2012 B1
8322022 Yi et al. Dec 2012 B1
8322023 Zeng et al. Dec 2012 B1
8325569 Shi et al. Dec 2012 B1
8333008 Sin et al. Dec 2012 B1
8334093 Zhang et al. Dec 2012 B2
8336194 Yuan et al. Dec 2012 B2
8339738 Tran et al. Dec 2012 B1
8341826 Jiang et al. Jan 2013 B1
8343319 Li et al. Jan 2013 B1
8343364 Gao et al. Jan 2013 B1
8349195 Si et al. Jan 2013 B1
8351155 Contreras et al. Jan 2013 B2
8351307 Wolf et al. Jan 2013 B1
8357244 Zhao et al. Jan 2013 B1
8373945 Luo et al. Feb 2013 B1
8375564 Luo et al. Feb 2013 B1
8375565 Hu et al. Feb 2013 B2
8381391 Park et al. Feb 2013 B2
8385157 Champion et al. Feb 2013 B1
8385158 Hu et al. Feb 2013 B1
8394280 Wan et al. Mar 2013 B1
8400731 Li et al. Mar 2013 B1
8404128 Zhang et al. Mar 2013 B1
8404129 Luo et al. Mar 2013 B1
8405930 Li et al. Mar 2013 B1
8409453 Jiang et al. Apr 2013 B1
8411390 Franca-Neto et al. Apr 2013 B2
8413317 Wan et al. Apr 2013 B1
8416540 Li et al. Apr 2013 B1
8419953 Su et al. Apr 2013 B1
8419954 Chen et al. Apr 2013 B1
8422176 Leng et al. Apr 2013 B1
8422342 Lee Apr 2013 B1
8422841 Shi et al. Apr 2013 B1
8424192 Yang et al. Apr 2013 B1
8441756 Sun et al. May 2013 B1
8443510 Shi et al. May 2013 B1
8444866 Guan et al. May 2013 B1
8446690 Alex et al. May 2013 B2
8449948 Medina et al. May 2013 B2
8451556 Wang et al. May 2013 B1
8451563 Zhang et al. May 2013 B1
8454846 Zhou et al. Jun 2013 B1
8455119 Jiang et al. Jun 2013 B1
8456961 Wang et al. Jun 2013 B1
8456963 Hu et al. Jun 2013 B1
8456964 Yuan et al. Jun 2013 B1
8456966 Shi et al. Jun 2013 B1
8456967 Mallary Jun 2013 B1
8458892 Si et al. Jun 2013 B2
8462592 Wolf et al. Jun 2013 B1
8468682 Zhang Jun 2013 B1
8472288 Wolf et al. Jun 2013 B1
8480911 Osugi et al. Jul 2013 B1
8486285 Zhou et al. Jul 2013 B2
8486286 Gao et al. Jul 2013 B1
8488272 Tran et al. Jul 2013 B1
8491801 Tanner et al. Jul 2013 B1
8491802 Gao et al. Jul 2013 B1
8493693 Zheng et al. Jul 2013 B1
8493695 Kaiser et al. Jul 2013 B1
8495813 Hu et al. Jul 2013 B1
8498084 Leng et al. Jul 2013 B1
8506828 Osugi et al. Aug 2013 B1
8514517 Batra et al. Aug 2013 B1
8518279 Wang et al. Aug 2013 B1
8518832 Yang et al. Aug 2013 B1
8520336 Liu et al. Aug 2013 B1
8520337 Liu et al. Aug 2013 B1
8524068 Medina et al. Sep 2013 B2
8526275 Yuan et al. Sep 2013 B1
8531801 Xiao et al. Sep 2013 B1
8532450 Wang et al. Sep 2013 B1
8533937 Wang et al. Sep 2013 B1
8537494 Pan et al. Sep 2013 B1
8537495 Luo et al. Sep 2013 B1
8537502 Park et al. Sep 2013 B1
8545999 Leng et al. Oct 2013 B1
8547659 Bai et al. Oct 2013 B1
8547667 Roy et al. Oct 2013 B1
8547730 Shen et al. Oct 2013 B1
8555486 Medina et al. Oct 2013 B1
8559141 Pakala et al. Oct 2013 B1
8563146 Zhang et al. Oct 2013 B1
8565049 Tanner et al. Oct 2013 B1
8576517 Tran et al. Nov 2013 B1
8578594 Jiang et al. Nov 2013 B2
8582238 Liu et al. Nov 2013 B1
8582241 Yu et al. Nov 2013 B1
8582253 Zheng et al. Nov 2013 B1
8588039 Shi et al. Nov 2013 B1
8593914 Wang et al. Nov 2013 B2
8597528 Roy et al. Dec 2013 B1
8599520 Liu et al. Dec 2013 B1
8599657 Lee Dec 2013 B1
8603593 Roy et al. Dec 2013 B1
8607438 Gao et al. Dec 2013 B1
8607439 Wang et al. Dec 2013 B1
8611035 Bajikar et al. Dec 2013 B1
8611054 Shang et al. Dec 2013 B1
8611055 Pakala et al. Dec 2013 B1
8614864 Hong et al. Dec 2013 B1
8619512 Yuan et al. Dec 2013 B1
8625233 Ji et al. Jan 2014 B1
8625941 Shi et al. Jan 2014 B1
8628672 Si et al. Jan 2014 B1
8630068 Mauri et al. Jan 2014 B1
8634280 Wang et al. Jan 2014 B1
8638527 Franca-Neto et al. Jan 2014 B2
8638529 Leng et al. Jan 2014 B1
8643980 Fowler et al. Feb 2014 B1
8649123 Zhang et al. Feb 2014 B1
8665561 Knutson et al. Mar 2014 B1
8670211 Sun et al. Mar 2014 B1
8670213 Zeng et al. Mar 2014 B1
8670214 Knutson et al. Mar 2014 B1
8670294 Shi et al. Mar 2014 B1
8670295 Hu et al. Mar 2014 B1
8675318 Ho et al. Mar 2014 B1
8675455 Krichevsky et al. Mar 2014 B1
8681594 Shi et al. Mar 2014 B1
8689430 Chen et al. Apr 2014 B1
8693141 Elliott et al. Apr 2014 B1
8703397 Zeng et al. Apr 2014 B1
8705205 Li et al. Apr 2014 B1
8711518 Zeng et al. Apr 2014 B1
8711528 Xiao et al. Apr 2014 B1
8717709 Shi et al. May 2014 B1
8720044 Tran et al. May 2014 B1
8721902 Wang et al. May 2014 B1
8724259 Liu et al. May 2014 B1
8749790 Tanner et al. Jun 2014 B1
8749920 Knutson et al. Jun 2014 B1
8753903 Tanner et al. Jun 2014 B1
8760807 Zhang et al. Jun 2014 B1
8760818 Diao et al. Jun 2014 B1
8760819 Liu et al. Jun 2014 B1
8760822 Li et al. Jun 2014 B1
8760823 Chen et al. Jun 2014 B1
8763235 Wang et al. Jul 2014 B1
8780498 Jiang et al. Jul 2014 B1
8780505 Xiao Jul 2014 B1
8786983 Liu et al. Jul 2014 B1
8790524 Luo et al. Jul 2014 B1
8790527 Luo et al. Jul 2014 B1
8792208 Liu et al. Jul 2014 B1
8792312 Wang et al. Jul 2014 B1
8793866 Zhang et al. Aug 2014 B1
8797680 Luo et al. Aug 2014 B1
8797684 Tran et al. Aug 2014 B1
8797686 Bai et al. Aug 2014 B1
8797692 Guo et al. Aug 2014 B1
8804284 Ohtake et al. Aug 2014 B1
8813324 Emley et al. Aug 2014 B2
20090116144 Lee et al. May 2009 A1
20100061015 Tanida Mar 2010 A1
20100290157 Zhang et al. Nov 2010 A1
20110086240 Xiang et al. Apr 2011 A1
20120111826 Chen et al. May 2012 A1
20120182644 Matsumoto et al. Jul 2012 A1
20120216378 Emley et al. Aug 2012 A1
20120230167 Aoyama et al. Sep 2012 A1
20120237878 Zeng et al. Sep 2012 A1
20120298621 Gao Nov 2012 A1
20130016441 Taguchi et al. Jan 2013 A1
20130038966 Sasaki et al. Feb 2013 A1
20130215532 Taguchi et al. Aug 2013 A1
20130216702 Kaiser et al. Aug 2013 A1
20130216863 Li et al. Aug 2013 A1
20130257421 Shang et al. Oct 2013 A1
20130329319 Sasaki et al. Dec 2013 A1
20140154529 Yang et al. Jun 2014 A1
20140175050 Zhang et al. Jun 2014 A1
20140177099 Sasaki et al. Jun 2014 A1
Foreign Referenced Citations (2)
Number Date Country
519729 Dec 1992 EP
557094 Aug 1993 EP