1. Field of the Invention
The invention relates to a dipole loop (folded dipole) or monopole loop.
2. Description of the Related Art
A dipole loop or folded dipole consists of two closely adjacent lambda/2 dipoles, connected at the ends, but only one of which is fed. The same current direction is set on the dipoles. Both dipoles support one another in their action. By means of different thicknesses of the two dipoles the input impedance can be influenced via transformatory effects. A so-called monopole loop, which can be interpreted as a half dipole loop on a conducting plane and consists of two lamda/4 long dipoles, which again are arranged closely adjacent and are connected to one another at the upper end, acts on the same principle. Dipole or monopole loops of this kind on a conducting plane are used as transmitting and receiving aerials in the short- and ultra-short-wave range in various embodiments.
Radio operation is also carried out in the so-called threshold wave range in amateur and also military radio. The lowest practical frequency is approximately 1.5 MHz, which corresponds to a wavelength of just under 200 meters. A conventional lambda/2 aerial would consequently have a length of approximately 100 meters, the implementation of which as a horizontal or vertical aerial means a considerable mechanical outlay. It is known to shorten such aerials mechanically with respect to their theoretical length and to balance the associated disadvantage in efficiency by suitable measures, such as roof capacities and/or series inductivities, but these known solutions also require a further considerable outlay, especially with, an aerial in multi-band operation.
It is therefore the object of the invention to create a dipole loop (folded dipole) or monopole loop, which, in spite of much shortening, to for example only 5 to 10% of the operational wavelength, has an adequately large radiation resistance of more than 10 ohms, this being without the use of discrete transformation elements such as roof capacities or inductivities.
This object is achieved for a dipole or monopole loop by the measures according to coordinated claims 1 and 2. Advantageous further developments emerge from the subordinate claims.
A dipole or monopole loop according to the invention can be greatly shortened, for example to only 5 to 6% of the operational wavelength at the lowest operational frequency, so the mechanical length of a dipole loop for an operational frequency of 1.5 MHz is equal to a mechanical length of only 10 to 12 meters. In spite of this the radiation resistance is still adequately great and greater than 10 ohms. Therefore a dipole loop of this kind according to the invention has almost equally good properties as a normal lamda/2 dipole. Tests have shown that the efficiency of the emitting aerial part of an aerial according to the invention is also more than 50% at 1.8 MHz and more than 80% at 3.6 MHz without loss of matching elements and earth losses, in other words in this respect too equally good properties as with a lamda/2 dipole are achieved. In spite of this, the dipole or monopole loop according to the invention can be constructed very simply and cost-effectively, as only one non-emitting conductor piece of appropriate length is placed on the ends. Geometrically complicated roof capacities in the form of stretched out wires or complicated shortening coils in the dipole are avoided. The use of a non-emitting conductor piece for compensating the shortening of the emitter is also particularly advantageous owing to the small losses of such conductor pieces. The arrangement according to the invention is also especially suitable for the construction of multi-band aerials, which can easily by switched over in frequency. A vertical dipole according to the invention can also still generate even radiation at relatively low frequencies owing to its small length. The field strength of the aerial in the near field is therein relatively low downwards, so the strict regulations for operating such transmitting aerials can easily be complied with.
The principle according to the invention can be applied in all the normal known forms of dipole and monopole loops, both with simple emitting dipoles and with reflectors or directors of more complex aerial arrangements and also with logarithmic-periodic aerials which are constructed with dipole or monopole loops of this kind. Existing aerials can also be supplemented or converted with little outlay according to the principle according to the invention. As the switchover devices assigned to the non-emitting conductor pieces can easily be remote-controlled, an aerial consisting of several dipole loops can be tuned not only to optimal radiation resistance, but also to an optimal reflection factor or direction factor.
The invention is explained in detail below using embodiment examples with the aid of schematic drawings.
The same principle can also be applied according to
The non-emitting conductor pieces 3, 4 and 8 can be accommodated mechanically in a small housing 30 attached according to
The arrangement according to
By binary grading of the conductor pieces L1, L2 and L3 of different lengths, quasi continuous adjustment can be achieved in that the first conductor piece L1 is chosen for example as 2°=1 unit, the second conductor piece L2 as 21=2 units and the third conductor piece L3 as 22=4 units in length, so in this way all the possible lengths can be set. It is therein advantageous to relate the tuning step width to the VSWR (voltage standing wave ratio) bandwidth, in other words, for example, in the threshold wave range for a VSWR less than 2 to choose a step width of 50 to 100 KHz. A combination of conductor pieces switched depending on band and conductor pieces switched quasi continuously can be useful in many cases of application.
In order to match the real radiation resistance of the aerial, which is usually too low in ohms, better to the impedance of the source or the consumer, it can be advantageous to construct the fed part 1 or 5 of the dipole loop according to
Aerial matching devices available on the market can be used to match a dipole loop according to the invention at the feed point to a feed cable leading to the transmitter or receiver. It has proved particularly advantageous with multi-band operation to use an adaptation circuit according to
Number | Date | Country | Kind |
---|---|---|---|
100 40 794 | Aug 2000 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP00/11402 | 11/16/2000 | WO | 00 | 2/21/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/17433 | 2/28/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5886669 | Kita | Mar 1999 | A |
6028564 | Duan et al. | Feb 2000 | A |
6097347 | Duan et al. | Aug 2000 | A |
6204824 | Davi et al. | Mar 2001 | B1 |