The present invention relates to the field of electromagnetic transducers and actuators, and more particularly it relates to improvements in loudspeaker drivers of the type having dual voice coils axially located in corresponding dual annular magnetic air gaps on a common axis.
In addressing fundamental design issues of dual-voice-coil dual magnetic-gap loudspeaker drivers as related to conventional single-voice-coil drivers, the present inventors have found that the dual-voice-coil dual-gap type offers advantages with regard to linearity, efficiency, available voice coil excursion, power compression, heat dissipation and maximum sound pressure output capability. Furthermore, they have found that certain benefits of the dual-coil dual gap approach can be further enhanced by introducing shorting rings in the region of the two magnetic gaps near the voice coils.
Japanese patent 61-137496 to Okada introduces a conductive annular plate in a speaker magnet structure to prevent burning of a voice coil and to prevent an eddy current giving adverse influences to a voice coil current.
U.S. Pat. No. 5,381,483 to Grau discloses a minimal inductance electrodynamic transducer having ferromagnetic shunting rings coated with a highly conductive material to increase the induced current carrying capacity of the transducer.
U.S. Pat. No. 3,830,986 to Yamamuro discloses a MAGNETIC CIRCUIT FOR AN ELECTRO-ACOUSTIC CONVERTER having an air gap formed of a magnetic material laminated with a conductive layer for acting as shorting rings to decrease the inductance of the voice coil.
Japanese patent WO 81/02501 discloses a MAGNETIC CIRCUIT FOR AN ELECTRO-MECHANICAL TRANSDUCER OF A DYNAMIC ELECTRICITY TYPE wherein compensating coils or conductors within the magnetic gaps are supplied with signal current to prevent disturbances in the magnetic field.
Japanese patent 198208 discloses an ELECTROMAGNETIC CONVERTER wherein a magnetic ring is located in the air gap so that it can be moved axially between a circumferential yoke and a center yoke to provide good conversion efficiency by using a hollow disk permanent magnet that is magnetized in different poles at the center and external circumference.
U.S. Pat. No. 3,783,311 to Sato et al. discloses a MAGNETIC DEVICE FOR USE IN ACOUSTIC APPARATUS wherein a metallic member in a voice coil gap permits the lines of magnetic force to move substantially in one direction only, for distortion reduction.
Soviet Union patent 587645/SU197801 to Rotshtein for an electromagnetic loudspeaker magnetic circuit disclose a magnetic shunt of soft magnetic material placed over a core pole piece to increase acoustic pressure by decreasing magnetic resistance.
The foregoing patents are confined to conventional loudspeaker driver/actuator construction having only a single gap and sing voice coil.
Patents that disclose dual voice coil dual magnetic gap drivers/actuators include U.S. Pat. Nos. 4,612,592 to Frandsen, 5,231,336 to Van Namen, and French patent 1,180,456 to Kritter; however, these do not disclose the use of shorting rings.
U.S. Pat. No. 4,914,707 to Kato et al. for a BALANCE VEHICULAR SPEAKER SYSTEM suggests attaching a shorting ring to a coil of a dual-coil dual-gap front speaker in a vehicle to decrease the high frequency impedance as an alternative to connecting a resistor in series with a rear speaker, for purposes of making the impedance of the rear speaker higher than that of the front one.
It is a primary object of the present invention to provide improvements in a dual-voice-coil/dual-magnetic-gap type transducer that will reduce harmonic distortion in the acoustic output.
It is a further object of the present invention to implement the aforementioned improvements in a manner that will reduce even order harmonic distortion including particularly second harmonic distortion.
It is a still further object of the present invention to implement the aforementioned improvements in a manner that will reduce odd order distortion including particularly third harmonic distortion.
The above-mentioned objects have been accomplished and the advantages have been realized by the present invention as applied as an improvement to loudspeakers and other transducers of the dual-voice-coil/dual-magnetic-gap type by the addition of one or more shorting rings of high conductivity metal strategically located in the vicinity of the two magnetic gaps close to the voice coils and secured in place in fixed relationship relative to the main structure of the loudspeaker or transducer.
The shorting rings have no effect on a steady state magnetic field but act in opposition to any change in flux density or any displacement of the flux lines such a those that occur under the loading imposed when the voice coils are driven hard with audio frequency current. The location of the shorting rings determines their effect: location close to a voice coil reduces the voice coil inductance, location entirely within the magnetic flux loop centerline favors reduction of second harmonic and higher order even harmonic distortion, a centered location on the flux loop centerline, i.e. centered in the magnetic gap, favors reduction of third harmonic and higher order odd harmonic distortion, while location outside the flux loop centerline but near the voice coil acts to generally reduce harmonic distortion. Thus a plurality of rings can be differently located so as to optimally suppress both even and odd order harmonic distortion and reduce the voice coil inductance.
The above and further objects, features and advantages of the present invention will be more fully understood from the following description taken with the accompanying drawings in which:
The magnetic system of the foregoing structure sets up a magnetic flux loop in the path shown as a dashed line, i.e. flux loop center line 14, which is typically centered within each magnetic gap and within each voice coil 10A and 10B.
Voice coil assembly 10 is constrained by well known spring suspension diaphragm structure (not shown) so that it travels axially, typically driving a conventional speaker cone diaphragm (not shown) in response to AC (alternating current) applied to coils 10A and 10B, in accordance with the well known Right Hand rule of electromagnetic mechanics and in the general manner of loudspeakers, the two coils being phase-connected accordingly.
The half cross-section shown in
A common inherent shortcoming in loudspeakers is that the magnetic flux in the region of the voice coil(s) is subject to pattern deformation or modulation as a reaction to drive current in the voice coil(s); this in turn can distort the acoustic output as well as increase the inductance of the coil winding(s), altering the frequency response.
As indicated in the above discussion of related known art, it has been found that the introduction of shorting/shunting rings of highly conductive metal such as copper in the vicinity of the magnetic air gap of conventional single coil drivers can provide benefits by acting to stabilize the magnetic flux against such perturbation from modulation due to voice coil current. Such shorting rings have no effect on the flux pattern as long as it remains constant and stationary, however the rings react with an internal flow of current that opposes any change in the flux pattern such as would be caused by the drive current in voice coils, thus the rings can substantially reduce distortion in the acoustic output. Also a shorting ring located near a voice coil tends to reduce the inductance of the voice coil.
The present inventors, in research directed to improvements in dual-gap dual-coil transducer drivers, have identified key locations and configurations for such shorting rings, particularly with regard to distortion reduction, and have developed such locations and configurations for reducing second and/or third harmonic distortion selectively.
In
In
In
In
In
In
In
In
Alternative viable combinations of
In the various shorting ring patterns, suppression of harmonic distortion generally becomes more effective as the ring(s) are made more massive and/or numerous.
Shorting rings are most effective in reducing harmonic distortion in the audio frequency range 200 to 2,000 Hertz.
Typical results in distortion reduction were measured as follows:
This invention may be embodied and practiced in other specific forms without departing from the spirit and essential characteristics thereof. The present embodiments therefore are considered in all respects as illustrative and not restrictive. The scope of the invention is indicated by the appended claims rather that by the foregoing description. All variations, substitutions, and changes that come within the meaning and range or equivalency of the claims therefore are intended to be embraced therein.
This is a continuation of U.S. application Ser. No. 09/271,686 filed Mar. 18, 1999 (U.S. Pat. No, 6,768,806), which claims the benefit under 35 U.S.C. § 119(e) of provisional application No. 60/078,623 filed Mar. 19, 1998, both of which are incorporated herein in their entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
3632904 | Mauz | Jan 1972 | A |
3665352 | Dietrich et al. | May 1972 | A |
3783311 | Sato et al. | Jan 1974 | A |
3830986 | Yamamuro | Aug 1974 | A |
3867587 | Yamamuro | Feb 1975 | A |
3881074 | Kawamura | Apr 1975 | A |
3922501 | Yamamuro | Nov 1975 | A |
4289937 | Ikeda et al. | Sep 1981 | A |
4783824 | Kobayashi | Nov 1988 | A |
4914707 | Kato et al. | Apr 1990 | A |
5381483 | Grau | Jan 1995 | A |
5715324 | Tanabe et al. | Feb 1998 | A |
5815587 | Goller | Sep 1998 | A |
Number | Date | Country |
---|---|---|
61-137496 | Jun 1986 | JP |
6-014393 | Jan 1994 | JP |
6-054398 | Feb 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20030190052 A1 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
60078623 | Mar 1998 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09271686 | Mar 1999 | US |
Child | 10410005 | US |