This application claims the benefit of priority to Taiwan Patent Application No. 108132992, filed on Sep. 12, 2019. The entire content of the above identified application is incorporated herein by reference.
Some references, which may include patents, patent applications and various publications, may be cited and discussed in the description of this disclosure. The citation and/or discussion of such references is provided merely to clarify the description of the present disclosure and is not an admission that any such reference is “prior art” to the disclosure described herein. All references cited and discussed in this specification are incorporated herein by reference in their entireties and to the same extent as if each reference was individually incorporated by reference.
The present disclosure relates to a shot blasting machine and an impeller assembly thereof, and more particularly to a shot blasting machine that is capable of combining advantages of sand blasting and shot peening, with the impeller assembly being able to shoot shots at a high speed, so as to form a matte surface or an eroded surface on a surface of a workpiece to be processed.
Sand blasting is one of the conventional methods for surface finishing of a workpiece. It is commonly seen in sand blasting to shoot a blasting material onto a surface of a workpiece at a high speed by using compressed air as power, so that an exterior or a shape of the workpiece is changed. Due to impact and cutting done by the blasting material on the surface of the workpiece, the surface of the workpiece is cleaned to a certain extent and can have different degrees of roughness. However, when the compressed air is used as the power to accelerate sand blasting, the shooting speed of the blasting material is subjected to a certain limitation.
Another similar method for surface finishing is shot peening, which is to have the surface of the workpiece be continuously struck with a plurality of round and small steel beads. Each of the plurality of steel beads strikes the surface of the workpiece (e.g., a metal component) makes a small indentation or a recess, so that the surface can be hardened to thereby achieve the effect of increased hardness. During the process of shot peening, a plurality of recesses are formed on the surface of the workpiece, and a surface layer of the metal component is extended, so as to further increase the hardness of the surface of the workpiece.
The main function of sand blasting is to clean and to enhance the roughness of a surface, so as to facilitate the following processes. On the other hand, shot peening focuses on increasing fatigue resistance, stress corrosion resistance, and the surface hardness of the workpiece, so as to achieve the effect of extending the service life of the workpiece.
Compared to sand blasting, shot peening machines, including equipment for increasing the speed of shot peening beads and surrounding walls of an area for processing the workpiece, are easily damaged, given that shot peening materials used by the shot peening machines are relatively larger in particle diameter.
The present disclosure provides a shot blasting machine that combines the advantages of both sand blasting and shot peening. The impeller assembly of the shot blasting machine is able to shoot shots at a high speed, and particle diameters of the shots are between that of the blasting material for sand blasting and that of the steel beads for shot peening. Therefore, the shot blasting machine can not only provide a cleaning effect and enhance the surface roughness, but also increase the fatigue resistance and the surface hardness of the workpiece, thereby extending the service life of the workpiece.
In response to the above-referenced technical inadequacies, the present disclosure provides a shot blasting machine and an impeller assembly thereof.
In one aspect, the present disclosure provides an impeller assembly of a shot blasting machine, including a pair of rotary plates, a plurality of impeller blades, a plurality of connecting rods, and a protective case body. Each of the pair of rotary plates includes a central hole, a plurality of impeller blade grooves, and a plurality of limiting recesses. The plurality of impeller blade grooves extend from the central hole toward a circumference of each of the pair of rotary plates. Each of the plurality of impeller blade grooves has a groove bottom part that is adjacent to the central hole and a groove top part that is adjacent to the circumference of each of the pair of rotary plates, and an inner groove width of the groove bottom part is greater than an inner groove width of the groove top part. The plurality of limiting recesses are further recessed in the plurality of impeller blade grooves. Each of the plurality of impeller blades includes a vane part and a pair of blade side parts, the pair of blade side parts are connected to two sides of the vane part, and each of the blade side part has a limiting protrusion. One of the blade side parts of each of the plurality of impeller blades is accommodated in one of the plurality of impeller blade grooves, and the limiting protrusion is accommodated in the limiting recess. A shape of the pair of blade side parts corresponds to a shape of the plurality of impeller blade grooves. Each of the pair of blade side parts has a root thickness corresponding to the groove bottom part and a top thickness corresponding to the groove top part, and the root thickness is greater than the top thickness. The plurality of connecting rods are connected to the pair of rotary plates. The protective case body covers the pair of rotary plates and the plurality of impeller blades, and defines a blast-exiting plane. The protective case body includes a front inclined baffle and a back baffle, the back baffle is substantially orthogonal to the blast-exiting plane, and the front inclined baffle is inclined toward the blast-exiting plane.
In another aspect, the present disclosure provides a shot blasting machine including a shot processing assembly, at least one impeller assembly, a collecting assembly, and a lifting assembly. The shot processing assembly, which is used to process the shots, includes an output part. The at least one impeller assembly is positioned under the output part, and receives the shots.
Each of the at least one impeller assembly includes a pair of rotary plates, a plurality of impeller blades, a plurality of connecting rods, and a protective case body. Each of the pair of rotary plates includes a central hole, a plurality of impeller blade grooves, and a plurality of limiting recesses. The plurality of impeller blade grooves extend from the central hole toward a circumference of each of the pair of rotary plates. Each of the plurality of impeller blade grooves has a groove bottom part that is adjacent to the central hole and a groove top part that is adjacent to the circumferences of each of the pair of rotary plates. An inner groove width of the groove bottom part is greater than an inner groove width of the groove top part. The plurality of limiting recesses are further recessed in the plurality of impeller blade grooves. Each of the plurality of impeller blades includes a vane part and a pair of blade side parts, the pair of blade side parts are connected to two sides of the vane part, and each of the blade side part has a limiting protrusion. One of the blade side parts of each of the plurality of impeller blades is accommodated in one of the plurality of impeller blade grooves, and the limiting protrusion is accommodated in the limiting recess. A shape of the pair of blade side parts corresponds to a shape of the plurality of impeller blade grooves. Each of the pair of blade side parts has a root thickness corresponding to the groove bottom part and a top thickness corresponding to the groove top part, and the root thickness is greater than the top thickness. The plurality of connecting rods are connected to the pair of rotary plates. The protective case body covers the pair of rotary plates and the plurality of impeller blades, and defines a blast-exiting plane. The protective case body includes a front inclined baffle and a back baffle, the back baffle is substantially orthogonal to the blast-exiting plane, and the front inclined baffle is inclined toward the blast-exiting plane. The collecting assembly is positioned under the at least one impeller assembly, so as to collect the shots. The lifting assembly transports the shots that are collected back to the shot processing assembly.
One of the advantages of the present disclosure is that, through utilizing the centrifugal force generated when the plurality of impeller blades are rotating at a high speed, the plurality of impeller blades are more tightly engaged with the plurality of impeller blade grooves of each of the pair of rotary plates. This configuration can be easily manufactured and assembled, which is beneficial in increasing the speed of the shots for surface finishing, and enhancing the effect of surface finishing.
These and other aspects of the present disclosure will become apparent from the following description of the embodiment taken in conjunction with the following drawings and their captions, although variations and modifications therein may be affected without departing from the spirit and scope of the novel concepts of the disclosure.
The present disclosure will become more fully understood from the following detailed description and accompanying drawings.
The present disclosure is more particularly described in the following examples that are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art. Like numbers in the drawings indicate like components throughout the views. As used in the description herein and throughout the claims that follow, unless the context clearly dictates otherwise, the meaning of “a”, “an”, and “the” includes plural reference, and the meaning of “in” includes “in” and “on”. Titles or subtitles can be used herein for the convenience of a reader, which shall have no influence on the scope of the present disclosure.
The terms used herein generally have their ordinary meanings in the art. In the case of conflict, the present document, including any definitions given herein, will prevail. The same thing can be expressed in more than one way. Alternative language and synonyms can be used for any term(s) discussed herein, and no special significance is to be placed upon whether a term is elaborated or discussed herein. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms is illustrative only, and in no way limits the scope and meaning of the present disclosure or of any exemplified term. Likewise, the present disclosure is not limited to various embodiments given herein. Numbering terms such as “first”, “second” or “third” can be used to describe various components, signals or the like, which are for distinguishing one component/signal from another one only, and are not intended to, nor should be construed to impose any substantive limitations on the components, signals or the like.
Referring to
In this embodiment, each of the plurality of impeller blades 12 has a shape of the alphabet “I” from both a top view and a bottom view. The plurality of impeller blades 12 are arranged radially and at equiangular intervals from a center of one of the pair of rotary plates 11. Preferably, a quantity of the plurality of impeller blades 12 is an even number, and each of the plurality of impeller blades 12 is arranged along a diameter direction (as shown in
The present disclosure is able to restrict displacement of the plurality of impeller blades 12 under a high speed rotation, through the uniquely designed shape of the plurality of impeller blade grooves 111 of each of the pair of rotary plates 11. In the present disclosure, the centrifugal force generated when the plurality of impeller blades 12 are rotating at a high speed is utilized so that the plurality of impeller blades 12 are more outwardly and tightly engaged with the plurality of impeller blade grooves 111 of each of the pair of rotary plates 11. This configuration does not require assembling methods such as nuts and bolts or welding. In addition, due to a root width D2 being greater than a top width D1 of each of the plurality of impeller blades 12 along a direction that is parallel to an axis X, the plurality of impeller blades 12 are more tightly engaged with each of the pair of rotary plates 11.
In this embodiment, the plurality of connecting rods 13 are in a shape of a cylindrical rod. The plurality of connecting rods 13 are connected to the pair of rotary plates 11, such that the pair of rotary plates 11 can be evenly and stably connected to each other. Each of the plurality of connecting rods 13 is disposed between two of the plurality of impeller blades 12, and two sides of each of the plurality of connecting rods 13 are respectively fixed to, e.g., bolted on, one of a plurality of affixing recesses 113 of each of the pair of rotary plates 11.
The protective case body 14 covers the pair of rotary plates 11 and the plurality of impeller blades 12, and defines a blast-exiting plane 140. In this embodiment, the protective case body 14 is used for restricting the shots to be inside the protective case body 14. As such, the protective case body 14 has a sufficient wall thickness to prevent from being shot through. The protective case body 14 includes a front inclined baffle 141 and a back baffle 142, the back baffle 142 is substantially orthogonal to the blast-exiting plane 140, and the front inclined baffle 141 is inclined to the blast-exiting plane 140. As shown in
The protective case body 14 further includes an upper curved board 143 and a pair of side protective boards 144. Two ends of the upper curved board 143 are connected to the front inclined baffle 141 and an upper edge of the back baffle 142, respectively. The pair of side protective boards 144 are correspondingly positioned at two sides of the upper curved board 143, the front inclined baffle 141 and the back baffle 142, and are connected to side edges of the upper curved board 143, the front inclined baffle 141 and the back baffle 142. In this embodiment, except for the pair of side protective boards 144, the protective case body 14 is divided into three pieces (which are the front inclined baffle 141, the upper curved board 143, and the back baffle 142) along and above the blast-exiting plane 140, but the present disclosure is not limited thereto. For example, the protective case body 14 can be divided into two or four pieces. It is worth mentioning that, the front inclined baffle 141, the upper curved board 143, and the back baffle 142 can be fittingly engaged with one another, which makes disassembling and replacement easier.
The impeller assembly 100 further includes an outer cover shell 15, and the outer cover shell 15 covers the protective case body 14. Referring to
As shown in
Referring to
When the shots (not shown in the figures) enters the impeller assembly 100 through the input tube 22, the distributor 17, being powered by the motor M, rotates the shots at a high speed. The shots pass through the exit 180 of the control cage 18 from the penetrating slots 170 of the distributor 17 and move in-between the plurality of impeller blades 12, and then are shot outward by the plurality of impeller blades 12 at a high speed.
As shown in
As shown in
For ease of illustration, for this embodiment along with other types of shot blasting machines as described below, components and assemblies in-between the output part 94a and the plurality of impeller assemblies 100 are not shown in the following figures. A person having ordinary skill in the art is able to realize that the output part 94a and the plurality of impeller assemblies 100 can be connected by funnels or tubes.
As shown in
As shown in
As shown in
One of the advantages of the present disclosure is that, through utilizing the centrifugal force generated when the plurality of impeller blades 12 are rotating at a high speed, the plurality of impeller blades 12 are more tightly engaged with the plurality of impeller blade grooves 111 of each of the pair of rotary plates 11. This configuration can be easily manufactured and assembled, which is beneficial in increasing the speed of the shots for surface finishing. Therefore, the present disclosure can not only provide a cleaning effect and enhance the surface roughness, but also increase the fatigue resistance and the surface hardness of the workpiece, thereby extending the service life of the workpiece.
The foregoing description of the exemplary embodiments of the disclosure has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching.
The embodiments were chosen and described in order to explain the principles of the disclosure and their practical application so as to enable others skilled in the art to utilize the disclosure and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present disclosure pertains without departing from its spirit and scope.
Number | Date | Country | Kind |
---|---|---|---|
108132992 | Sep 2019 | TW | national |