This invention relates to a shot-treatment apparatus for projecting shot (metallic, glass, or ceramic particles) against a workpiece.
There is a type of shot-treatment machine which comprises a table being rotatable in a substantially horizontal plane, and a plurality of workpiece-stages fixed to the table (e.g., see Patent Document 1). Items (i.e., workpieces) placed on the workpiece-stages are blasted when the table is rotating.
However, in this type of prior art machine, a blasting operation needs to be suspended during the loading and unloading operations of the items. Thus, the utilization rate of the machine is not high due to the idle time caused by the loading and unloading operations.
The present invention aims to provide a shot-treatment apparatus which allows a high throughput of workpieces with the least possible idle time while achieving a uniform shot-treatment effect on workpieces.
The shot-treatment apparatus of the present invention comprises the following Features: a projecting device for projecting shot with compressed air through a nozzle against a workpiece; a rotatable main table located in a place where both a projection area to be projected by the shot from the projecting device and a non-projection area which is the area other than the projection area are included; a plurality of rotatable satellite tables mounted on the main table, wherein each of the satellite tables for placing workpieces has a driven shaft in parallel with a main shaft of the main table; a holding assembly disposed above the projection area of the main table, wherein the holding assembly holds down the workpiece placed on the satellite table with a holding member which is configured to be rotatable along with the workpiece. Preferably, the satellite tables are arranged in a circle around the main shaft of the main table. When the main table is rotated, one or more satellite tables are positioned in the projection area. Preferably, the holding member holds down the workpiece when at least one satellite table is positioned in the projection area. Further, the holding member rotates about the rotational axis of the satellite table along with the satellite table.
The shot-treatment apparatus of the present invention has the rotatable main table located in the place where both the projection area to be projected upon by the shot from the projecting device and the non-projection area which is the area other than the projecting area are included. A plurality of satellite tables for placing workpieces are rotatably mounted on the main table. Each satellite table has a driven shaft which is in parallel with the main shaft of the main table. The shot is projected through the nozzle of the projecting device against the workpiece with compressed air.
The holding assembly is disposed above the projection area of the main table. The holding member, which is included in the holding assembly, holds down the workpiece placed on the satellite table. The holding member is configured to be rotatable along with the workpiece. By this, the workpiece is secured on the satellite table when it is subjected to a shot-treatment. Further, even when one or more workpieces are subjected to the shot-treatment, other workpieces sitting in the non-projection area can be loaded to and unloaded from the satellite table.
In some embodiments, the shot-treatment apparatus has a rotation-sensing means for detecting the rotation of the holding member.
In this embodiment, when the holding member is rotating along with the workpiece, the rotation-sensing means detects the rotation of the holding member. Accordingly, the apparatus can judge whether a uniform shot-treatment effect on the workpieces is achieved, by detecting the state of the rotation of the workpieces.
In another embodiment, the shot-treatment apparatus further comprises the following features: a driving assembly which rotates the main table about the main shaft in a stepwise manner by a specific angle which is predetermined based on the arrangement of the satellite tables on the main table, so that at least one satellite table is positioned within the projection area when the rotation of the main table is suspended; and a controlling unit which suspends the projection of the shot from the projecting device while the main table is being rotated by the dividing assembly, and resumes the projection of the shot when the rotation of the main table is suspended. Preferably, the control unit lowers the holding member to secure the workpiece on the satellite table before starting the projection of shot. Further, the control unit raises the holding member and suspends the projection of shot before starting the rotation of the main table.
In such an embodiment, the dividing assembly rotates the main table about the main shaft in a stepwise manner by a specific angle which is predetermined based on the arrangement of the satellite tables on the main table. When the rotation of the main table is suspended, at least one satellite table is positioned within the projection area. The controlling unit suspends the projection of the shot from the projecting device while the main table is being rotated by the dividing assembly. Further, the controlling unit resumes the projection of the shot when the rotation of the main table is suspended. By this, any leakage of shot from the apparatus is reduced, and a uniform shot-treatment effect on workpieces is achieved.
In some embodiments, the shot-treatment apparatus further comprises the following features: first mating members disposed on the individual driven shafts extending downward from each of the satellite tables; at least one second mating member located below the main table in the projection area, wherein the second mating member is engageable with any of the first mating members to transmit rotational driving force to the first mating member; and a meshing assembly for engaging the second mating member with the first mating member when the rotation of the main table is suspended, and for disengaging the second mating member from the first mating member before starting the rotation of the main table.
In such embodiments, the satellite table of the shot-treatment apparatus has the first mating member disposed on the driven shaft which is extending downward from the satellite table. The second mating member, which is disposed below the main table in the projection area, is capable of engaging with the first mating member. The meshing assembly engages the second mating member with the first mating member when the rotation of the main table is suspended. Further, the second mating member transmits a rotational driving force to the first mating member when the second mating member is engaged with the first mating member. The meshing assembly disengages the second mating member from the first mating member before starting the rotation of the main table. By this, when the rotation of the main table is suspended, the workpiece constantly rotates while being secured on the satellite table. As a result, a uniform shot-treatment effect on the entire surface of the workpiece is achieved. Further, the main table is allowed to rotate without interruption when the rotation of the table is resumed.
In some embodiments, the meshing assembly of the shot-treatment apparatus further comprises the following features: a rod member having the second mating member at one end thereof; and a cylinder mechanism for driving the rod member in the direction of disengaging the second mating member from the first mating member.
In such embodiments, the second mating member is disposed at one end of the rod member, and the cylinder mechanism drives the rod member in the direction of disengaging the second mating member from the first mating member. By this, the engagement and disengagement of the first and second mating members are conducted with a simple mechanism.
In some embodiments, the shot-treatment apparatus further comprises a driving motor disposed below the rod member for rotating the second mating member together with the rod member, wherein the rod member is rotated by the motor through a means for transmitting the driving force.
In such embodiments, the second mating member and the rod member are rotated by the driving motor disposed below the rod member through the means for transmitting the driving force from the motor to the rod member. By this, the size of the shot-treatment apparatus is reduced.
In another embodiment, the cylinder mechanism is disposed below the driving motor so that the axis of the cylinder mechanism is in parallel with the rotational axis of the motor.
In such an embodiment, the cylinder mechanism is located below the driving motor so that the axis of the cylinder mechanism is in parallel with the rotational axis of the motor. By this, the size of the shot-treatment apparatus is further reduced.
In some embodiments, the shot-treatment apparatus includes at least one first section and at least one second section alternately formed on the main table by a plurality of walls extending from the inside of the table to the circumference thereof, wherein the first section is provided with the satellite table, and the second section has no satellite table. Preferably, the first and second sections are formed on the main table no as to be rotationally symmetric about the main shaft.
In such embodiments, the shot-treatment apparatus includes at least one first section and at least one second section alternately formed on the main table by a plurality of partitions extending from the inside of the table to the circumference thereof, wherein the first section is provided with the satellite table, and the second section has no satellite table. By this, any leakage of the shot from the apparatus is effectively prevented.
As described above, the present invention provides a shot-treatment apparatus which allows a high throughput of workpieces with the least possible idle time while achieving a uniform shot-treatment effect on workpieces.
The shot peening apparatus 10 according to the first embodiment of the invention is described below with reference to
As in
A work-table 18 for loading the workpieces 12 is disposed at the lower part of the interior of the cabinet 14. The work-table 18 will be discussed below in detail. A nozzle 20A of a projecting device 20 is disposed on the side wall of the cabinet 14. The projecting device 20 projects shot (i.e., particles, e.g., steel balls such as Round Cut Wire available from TOYO SEIKO K.K.) with compressed air through the nozzle 20A against the workpiece 12 placed in the shot-treatment chamber 16. As illustrated in
As in
The cut-gate 20H disposed below the pressure tank 22 is operated by a driving cylinder 20M. The controlling unit 64 (see
The shot peening apparatus 10 further includes a recycling assembly 26 for sending hack the shot projected from the projecting device 20 to the shot tank 20K. The recycling assembly 26 includes a hopper 26A, which is disposed under the work-table 18, for recovering the shot in the cabinet 14. A screw conveyor 26B equipped with a driving motor 26G is disposed under the hopper 26A.
As in
As illustrated in
A ventilator 28A is disposed at the top of the cabinet 14. An exhaust port 14E of the cabinet 14 is connected to a duct 28C. Fine particles generated in the cabinet 14 are sucked out through the exhaust port 14E and the duct 28C. The duct 28C includes a settling chamber 28D for settling down the fine particles contained in the sucked air. The settling chamber 28D is connected to the inlet of the elevating screw conveyor 26C, so that the shot separated in the settling chamber 28D can be reused. As illustrated in
As illustrated in
Further, the duct 28C has a pre-coat feeder 28F, which is for mixing inactive powders with inflammable powders so that the mixture becomes flame-retardant.
The waste receiver 28E is connected to a sifter 28G through a conduit. The sifter 28G is connected to both the shot tank 20K and the inlet of the elevating screw conveyor 26C through separate conduits. The sifter 28G transfers usable shot contained in the shot coming from the shot tank 20K to the inlet of the elevating screw conveyor 26C, and transfers separated fine particles to the waste receiver 28E.
The details of the work-table 18 are discussed below.
As illustrated in
As in
Since a variety of dividing assemblies are well known, detailed drawings of the dividing assembly 42 are omitted. In this embodiment, the dividing assembly 42 comprises a motor equipped with a brake for rotating the main table 30 in a stepwise manner, a positioning clamp for holding the main table at a specific rotational angle, and a positioning cylinder for operating the positioning clamp. By this, the dividing assembly 42 rotates the main table 30 about the main shaft 31 in a stepwise manner by the specific angle (90 degrees, in this embodiment) which is predetermined based on the arrangement of the satellite tables. When the main table 30 is rotated by the specific angle, the dividing assembly 42 temporarily stops the rotation of the main table 30 by means of the positioning clamp. Thus, the dividing assembly 42 rotates the main table 30 in a stepwise manner by the specific angle which is predetermined based on the arrangement of the satellite tables. Further, the dividing assembly 42 temporarily stops the rotation of the main table 30, so that at least one satellite table 32 (two tables, in this embodiment) is positioned in the projection area (see
With reference to
As in
As in
As in
The cylinder 56 of the holding assembly 46 is connected to an air source 62 through an air-direction regulator (e.g., a solenoid valve) 60 which communicates with the controlling unit 64. The controlling unit 64 moves the piston 57 and the rod 58 up and down by controlling the air-direction regulator 60.
Accordingly, the holding member 48 is allowed to move down to contact the top of the workpiece 12. When the workpiece 12 is rotated about a vertical axis, the holding member 48 is rotated along with the workpiece 12.
As in
As in
The second mating member 76, which is concentrically fixed to one end of a rod member 78, has a smaller diameter than the first mating member 74. However, the diameter of the second mating member 76 can be the same as that of the first mating member 74 (i.e., miter gears having the same number of teeth can be used). The rod member 78, which is rotatably supported by the shaft bearings 80A, 80B, has a chain wheel 82 fixed to the end opposed to the second mating member 76. A driving motor 84, fixed to the lower surface of a base plate 90 by a fixing means, is located below a pair of rod members 78 and closer to the chain wheel 82 (see
The second mating members 76 are combined with a meshing assembly 100 for conducting the engagement and disengagement of the first and second mating members 74, 76. The meshing assembly 100, which includes the rod member 78, engages the second mating members 76 with the first mating members 74 when the rotation of the main table 30 is suspended, and disengages the second mating members 76 from the first mating members 74 before starting the rotation of the main table 30. The meshing assembly 100 will be discussed below in detail.
The shaft bearings 80A, 80B for supporting a pair of the rod members 78 are fixed to a base plate 90. The base plate 90 has a pair of brackets 94 which are arranged so that the pair of shaft bearings 80A is located between them. Each bracket 94 has a pin 96, which is rotatably supported by a pin-support member 97. The pair of pins 96 is arranged on the same imaginary horizontal axis which is perpendicular to the rotational axes of the rod members 78. The pin-support member 97 is fixed to a longitudinal base plate 92 via a connecting part 93.
As in
The air cylinder 98 of a meshing assembly 100 is connected to an air source 104 via an air-direction regulator 102 (e.g., a solenoid valve) which communicates with the controlling unit 64. The controlling unit 64 controls the expansion and contraction of the air cylinder 98 by controlling the air-direction regulator 102 based on the information from the dividing assembly 42. In this embodiment, the meshing assembly 100 disengages the second mating member 76 from the first mating member 74 by actuating the air cylinder 98 so that the rod member 78, which has the second mating member 76, rotates about the pin 96 in a direction (a direction indicated by the arrow A as in
The operation and the effect of the shot peening apparatus 10 of the above embodiment is discussed below.
As illustrated in
As illustrated in
When the holding member 48 as in
The dividing assembly 42 rotates the main table 30 about the main shaft 31 in a stepwise manner by a specific angle (90 degrees in this embodiment) which is predetermined based on the arrangement of the satellite tables 32. When the rotation of the main table 30 is suspended, at least one satellite table 32 (two satellite tables, in this embodiment) is positioned within the projection area. Further, the controlling unit 64 suspends the projection of the shot from the projecting device 20 while the main table 30 is being rotated by the dividing assembly 42, and resumes the projection of the shot when the rotation of the main table 30 is suspended. By this, any leakage of the shot from the apparatus is reduced. Further, a uniform shot peening effect on workpieces 12 is achieved.
In this embodiment, the satellite table 32 has the first mating member 74, which is disposed on the driven shaft 33 extending downwardly from the satellite table 32. The second mating member 76, which is located below the main table 30 in the projection area, is capable of engaging with the first mating member 74. The second mating member 76 transmits a rotational driving force to the first mating member 74, when the second mating member 76 engages with the first mating member 74. The meshing assembly 100 engages the second mating member 76 with the first mating member 74 when the rotation of the main table 30 is suspended. Further, the meshing assembly 100 disengages the second mating member 76 from the first mating member 74 before starting the rotation of the main table 30. By this, when the rotation of the main table 30 is suspended, the workpiece 12 is constantly rotated. As a result, a uniform shot peening on the entire surface of the workpiece 12 is achieved. Further, the main table 30 is smoothly rotated when the rotation of the table is started again.
The second mating member 76 is disposed at one end of the rod member 78. The air cylinder 98 of the meshing assembly 100 drives the rod member 78 in the direction of disengaging the second mating member 76 from the first mating member 74. Namely, before starting the rotation of the main table 30 by the dividing assembly 42, the controlling unit 64 contracts the air cylinder 98 by controlling the air-direction regulator 102 based on the information from the dividing assembly 42. When the air cylinder 98 is contracted (in the direction indicated by the arrow B as in
When the rotation of the main table 30 is suspended, the controlling unit 64 expands the air cylinder 98 by controlling the air-direction regulator 102 based on the information from the dividing assembly 42. When the air cylinder 98 expands (the opposite direction to the arrow B), the rod member 78 is upwardly swung (the opposite direction to the arrow A) along with the arm 98D, the base plate 90, and the shaft bearings 80A. At the same time, the pair of brackets 94 fixed to the base plate 90 rotates about the axis of pins 96. As a result, the second mating member 76, which is fixed to the end of the rod member 78, is engaged with the first mating member 74 (see
By this, the engagement and disengagement of the first and second mating members 74, 76 are conducted with a simple mechanism. Further, since the rotation of the main table 30 and the satellite tables 32 are not interrupted, a uniform shot peening effect on the workpieces 12 is achieved.
As discussed above, the shot-treatment apparatus 10 of this embodiment allows a high throughput of the workpieces 12 with the least possible idle time while achieving a uniform shot peening effect on the workpieces 12.
Further, as illustrated in
In place of the pressure tank 22 and associated facilities thereof as in
As illustrated in
For projecting shot against a workpiece, the lower pressure tank 20P is pressurized by closing the lower poppet valve 20R, and then the cut-gate 20H below the lower pressure tank 20P and a flow regulator 20G are opened to transfer the shot to a mixing valve 20E (see
When the upper pressure tank 20N is filled up with the shot, the constant feeder 20J is closed to pressurize the upper pressure tank 20N. Then, the upper poppet valve 20Q is closed by the pressure from the upper pressure tank 20N. Then, the lower poppet valve 20R is opened by the pressure difference between the upper pressure tank 20N and the lower pressure tank 20P, which is slightly depressurized owing to the projection of the shot. As a result, the shot is transferred to the lower pressure tank 20P from the upper pressure tank 20N. After the transferring operation is completed, the pressurization of the upper pressure tank 20N is terminated, to close the lower poppet valve 20R.
By this, continuous projection of the shot is allowed.
The shot peening apparatus 110 according to the second embodiment of the invention is described below with reference to
As in
The invention of the second embodiment has the same effect as that of the first embodiment. Further, any leakage of the shot from the apparatus is effectively prevented.
With regard to the embodiments disclosed herein, various changes and modifications can be made. For example, the holding member 48 has the rotation-sensing means 66. Such a configuration is preferable to detect whether a uniform shot peening effect on the workpieces 12 is achieved. However, the rotation-sensing means can be omitted.
The dividing assembly 42 in
The meshing assembly 100 as in
In the above embodiments, the meshing assembly 100 includes the air cylinder 98, which drives the rod member 78 in the direction of disengaging the second mating member 76 from the first mating member 74. Alternatively, the meshing assembly can be configured using a solenoid in place of the air cylinder 98, so that the solenoid drives the rod member in the direction of disengaging the second mating member from the first mating member. In another embodiment, the air cylinder 98 can be replaced by a hydraulic cylinder.
The first mating member 74, which is fixed to the lower end of the driven shaft 33 in the above embodiments, can be integrally formed at the lower end of the driven shaft. Further, the second mating member 76, which is fixed to one end of the rod member 78 in the above embodiments, can be integrally formed at one end of the rod member.
In the above embodiments, the driving motor 84 for rotating the second mating member 76 is located below the pair of the rod members 78. Such a configuration is preferable for reducing the size of the apparatus. However, the driving motor for rotating the second mating member can be located in another place, such as on the imaginary extension of the rod member. Alternatively, the driving motor can be a motor equipped with a reducer having a hollow shaft, wherein the hollow shaft of the motor equipped with the reducer is connected to the chain wheel 82.
In the above embodiments, the air cylinder 98 is disposed below the driving motor 84, wherein the axis of the air cylinder 98 is in parallel with the rotational axis of the motor 84. Such a configuration is preferable for reducing the size of the apparatus. However, the cylinder mechanism can be located in another place, such as on the imaginary extension of the rotational axis of the motor 84.
Although the shot-treatment apparatus discussed in the above embodiments is the shot peening apparatus 10, 110 having the projecting device 20, the shot-treatment apparatus can be a shot blasting apparatus having the projecting device 20. Alternatively, the shot peening apparatus 10, 110 can be used as a shot peening-curn-shot blasting apparatus.
The embodiments and the modifications thereof discussed above can be combined, if desired.
Number | Date | Country | Kind |
---|---|---|---|
2010-250784 | Nov 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/004168 | 7/25/2011 | WO | 00 | 3/13/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/063383 | 5/18/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2276345 | Rosenberger | Mar 1942 | A |
3146550 | Millhiser et al. | Sep 1964 | A |
5029419 | Nakayama et al. | Jul 1991 | A |
5272897 | Wern | Dec 1993 | A |
20130327105 | Yamamoto | Dec 2013 | A1 |
20140360241 | Yamamoto | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
38 24 949 | Jan 1990 | DE |
01271175 | Oct 1989 | JP |
2002-096264 | Apr 2002 | JP |
Entry |
---|
English-language International Search Report from the European Patent Office for International Application No. PCT/JP2011/004168, mailing date Nov. 30, 2011. |
Number | Date | Country | |
---|---|---|---|
20130213104 A1 | Aug 2013 | US |