Shotgun with sighting device

Information

  • Patent Grant
  • 9146077
  • Patent Number
    9,146,077
  • Date Filed
    Thursday, June 26, 2014
    10 years ago
  • Date Issued
    Tuesday, September 29, 2015
    9 years ago
Abstract
A sighting device replicates the spread pattern of pellets exiting the barrel of a shotgun. The sighting device includes a light source (preferably a laser) and a power source connectable to the light source. The device may also include a mount to attach the sighting device to a shotgun. The sighting device preferably projects a circular pattern of individual light beams wherein the circumference of the circular pattern increases as the light beams move farther from the sighting device to replicate the spread of shotgun pellets. The sighting device may also project a beam of light in the center of the pattern.
Description
FIELD OF THE INVENTION

The present invention relates to a light-emitting sighting device, particularly a laser, that can be mounted on a shotgun and that emits a pattern that replicates the spreading pattern of shotgun pellets after being fired. The disclosures of U.S. Pat. No. 8,127,485 to Moore et al. and U.S. application Ser. No. 12/160,213 to Moore et al. are incorporated herein by reference.


BACKGROUND OF THE INVENTION

It is known to utilize a light beam, such as a laser beam, as a sighting aid for guns. Lasers are the preferred means of generating light beams for weapon sighting because they have comparatively high intensity and can be focused into a narrow beam with a very small divergence angle so they produce a small, bright spot on a target. If mounted properly on a gun, the laser projects a beam of laser light in a direction generally parallel to the gun's bore. When the light beam and bore are properly aligned, the bullet (or other projectile) will strike, or strike very close to, the location of the light beam projected on a target. Such laser sighting devices can be used to target a weapon when using live ammunition or to simulate the actual firing of a weapon whereby the laser beam strikes a target to show where a live round would land.


It was known to use a laser connected to a gun to generate a pattern of light, such as a circular pattern formed by multiple laser light beams with a single laser light beam in the center. The problem with this device is that the light beams were projected outward its an exaggerated angle. Thus, the device may have been useful for centering and aiming a gun firing a bullet, but did not replicate the spread pattern of shotgun pellets after being fired. Thus, such a device did not accurately frame a target with respect to where shotgun pellets would land. This was especially true the farther the target was from the device, since the farther away the target, the greater the shotgun pellet spread.


SUMMARY OF THE INVENTION

The invention is a sighting device for a shotgun (hereafter, sometimes referred to as “sighting device” or “device”), or for a structure replicating a shotgun. A shotgun and device replicating a shotgun, which might be used for laser beam target practice are collectively referred to herein as “shotgun.” The sighting device includes a light source, which is most preferably a laser. The sighting device may be mounted on or included as part of a shotgun and can be used to aim the shotgun before firing a live round of ammunition, or to simulate the actual firing of a shotgun by the light emanating from the light source showing the area in which pellets from a live shotgun round would land. Once activated, light beams from the sighting device are projected outwardly, preferably in a circular pattern, that expands as the light beams travel farther from the sighting device, thereby replicating the spread pattern of pellets fired from a shotgun. The sighting device preferably includes a laser as the light source, a power source connectable to the laser, and a mount for mounting the sight to the shotgun. In one embodiment, the sighting device is attached to a picatinny rail of the shotgun, although it can be attached to or included as part of a shotgun in any suitable manner.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an exploded view of an embodiment of the present invention.



FIG. 1A is a front view of the assembled device shown in FIG. 1.



FIG. 1B is a top view of the device shown in FIGS. 1 and 1A.



FIG. 1C is a rear view of the device shown in FIGS. 1-1B but without the backing or the button yet attached.



FIG. 1D is a rear view of the device shown in FIGS. 1-1C when fully assembled.



FIG. 1E is a rear view of the device shown in FIGS. 1-1D without the backing or the integrated circuit board and showing the laser module biased to one side (the laser biasing spring also is not shown).



FIG. 1F is a partial, cross-sectional top view of a light source biased to one side of the biasing cone (or light source adjustment apparatus).



FIG. 2 is a side, perspective view showing the embodiment of FIG. 1.



FIG. 3 is an alternate side, perspective view of the embodiment shown in FIGS. 1 and 2.



FIG. 4 is a rear, top, perspective view of the embodiment shown in FIGS. 1-3.



FIG. 5 is a front, top, perspective view of the embodiment shown in FIGS. 1-4.



FIG. 6 is a rear, perspective view of a device according to the invention.



FIG. 7 shows an embodiment of a sighting device according to the invention that is mounted to the picatinny rail of a shotgun.



FIG. 8 shows an alternate embodiment of a sighting device of the present invention.



FIG. 9 shows a bottom, rear perspective view of the sighting device of FIG. 8.



FIG. 10 shows a bottom, front perspective view of the sighting device of FIG. 8.



FIG. 11 shows a rear view of the sighting device of FIG. 8.



FIG. 12 shows a front view of the sighting device of FIG. 8.



FIG. 13 shows an exploded view of the sighting device of FIG. 8.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Turning now to the drawings where the purpose is to describe a preferred embodiment of the invention and not to limit same, FIGS. 1-7 show a preferred embodiment of a sighting device 10 according to the invention. Device 10 as shown is a laser sight, but could be any structure that includes a light source and one or more power sources connectable to the light source and that can simulate the spread pattern of shotgun pellets exiting the barrel of a shotgun.


Preferably, device 10 is configured to be mounted on a shotgun 11, and most preferably on a picatinny rail of the shotgun 11. A picatinny rail 9 (best seen in FIG. 7) is known in the art and used to connect accessories to gun. As shown, picatinny rail 9 is on the top of the shotgun barrel.


Device 10 could also be mounted to or formed in the shotgun in any other suitable, fashion that allows the light source of device 10 to be accurately projected along the longitudinal axis of the shotgun barrel 13, and/or along the longitudinal axis of a light source 20.


Device 10 includes a light source 20, a power source 30 and a housing 200 that includes a mount 102, which as shown has a first leg and a second leg, which are not shown here, but preferably have the same structures as legs 1002A and 1002B discussed below, that fit onto picatinny rail 9.


Light source 20 has a first end 20A (through which light can be emitted), is preferably a visible-light laser module, but could be any light source, including a light emitting diode (“LED”) flashlight (as used herein “flashlight” means any source of visible light other than a laser) or an infra-red light source (such as an infra-red LED or infra-red laser). In the embodiment shown light source 20 is a red-light, 650 nanometer, 3.3 mm diode, visible laser, and the laser module has an overall length of about 14 mm and a diameter of about 4.5 mm. Any suitable laser/laser module may be used, however. A biasing spring 24 is attached to second end 20B to bias light source 20 towards first end 20A when device 10 is assembled. Light source 20 includes a diffraction lens (not shown) that converts the single laser beam generated by light source 20 into multiple, individual beams of light. Diffraction lenses are known to those skilled in the art. In embodiments of the present invention, the diffraction lens can be assembled as part of light source 20 or be positioned outside of light source 20.


The multiple light beams generated by the diffraction lens are spread apart so as to define an area between them. The area can be of any suitable shape for replicating the area in which pellets exiting a shotgun would occupy. It is most preferable that the area defined by the multiple light beams is circular, but it could also be triangular, oval, rectangular, hexagonal, octagonal or of any suitable shape. In one preferred embodiment there are at least three light beams defining the area, and most preferably eight beams of light defining the area, even though any number of light beams of three or more can be utilized. Additionally, a complete, uninterrupted pattern of light could be created to form an area between the pattern.


The diffraction lens directs each of the multiple beams of light outward with respect to the longitudinal axis of the light source 20, as shown in FIG. 7. In one embodiment each of the multiple beams is directed outward at 1.7 degrees as measured from the longitudinal axis of the laser 20. Any suitable outward direction may be used, however, and is based on the size and type of shotgun, so that the pattern of pellet spread for that shotgun is accurately replicated.


The diffraction lens may also create one or more other light beams inside the area, and preferably creates a single light beam in the center of the area formed by the multiple beams.


Power source 30 can be any suitable power source for light source 20, and is preferably an electric power source and most preferably a portable, electrical power source such as a battery or multiple batteries. The embodiment shown uses four 1.5V silver oxide LR626 batteries 32, although any suitable batteries or other power source may be used.


Device 10 as shown further includes a housing 200, a light source adjustment apparatus 300, an integrated circuit board 400, a backing 500, and a battery cap 600. The purpose of housing 200 is to retain light source 20 and power source 30 and mount them to a gun, and to selectively connect power source 30 to light source 20. Any suitable structure or structures may be used for this purpose.


Housing 200 is preferably made of metal injection molded stainless steel (MIM), but could be made of any suitable material, such as another metal (for example, MIM carbon steel or extruded aluminum) or plastic. Housing 200 has a first end 200A, a second end 200B and includes a first canister 202 and a second canister 230. First canister 202 is configured to receive and retain the light source 20 (which is preferably a laser module), which as shown is first positioned in light source adjustment apparatus 300. Once so positioned, apparatus 300, with light source 20 inside, is positioned in and retained in canister 202.


As shown, canister 202 has an outer surface 204, a first rib 206, a second rib 208, an inner cavity 210 in which apparatus 300 and light source 20 are retained, and an opening 212 through which the light source 20 can emit light. Canister 202 also includes an aperture 206A that extends through rib 206 to inner cavity 210 and an aperture 208A that extends through rib 208 to inner cavity 210. Each of apertures 206A and 208A are configured to receive a moveable screw or screw 225 (hereafter referred to as “set screw” or “set screws,” which are preferably socket-head set screws). The purpose of rib 206 and rib 208 (each of which project outward about 0.075″) are to provide additional area to support set screws 225. Alternatively, a raised portion (described, for example with respect to device 10′, device 1000 and device 2000) may be used in place of rib 206 and/or 208. Other structures may be used for this purpose or no such structure may be used.


Second canister 230 as shown is spaced apart from first canister 202 and is configured to receive and retain the power source 30. Canister 230 as shown has an outer surface 234, an inner cavity 240, a first end 242 and a second end 244. Second end 244 is configured to open in order to add or change power source 30. In the embodiment shown second end 244 includes internal threads (not shown) that mate with threads on power source retention cap 600 to allow cap 600 to be screwed onto end 244 and screwed off of end 244 in order to add or remove power source 30 from canister 230.


Housing 200 also includes a connective portion 270 that connects first canister 202 and second canister 230. Connective portion 270 has a bottom surface 272 and a mount 102 attached to or integrally formed with bottom surface 272. Mount 102 includes the previously described first leg and second leg (not shown here) for connecting to picatinny rail 9, although any suitable structure or structures may be used for this purpose.


A light source adjustment apparatus (or “LSAA”) 300 is for retaining the light source 20 when it is positioned in housing 200 and for assisting in positioning light source 20. LSAA 300 serves two purposes: (1) it absorbs the recoil of a gun to which device 10 is mounted thereby enabling light source 20 to remain in a relatively stable position, and (2) it enables a user to adjust the position of light source 20. As shown in FIG. 1, LSAA 300 is generally conical with a first, smaller diameter end 302 and a second, large diameter end 304. It is preferably comprised of an elastomeric material, such as neoprene rubber, of about a 60 Shore A to absorb shock, but can be made of any suitable material. It has an opening 308 configured to receive light source 20. As previously described, LSAA 300 fits into inner cavity 210 of first canister 202. Instead of LSAA 300, the light source 20 may be biased towards set screws 225 (described below) by springs (not shown).


When device 10 is assembled, the position of light source 20 can be adjusted utilizing set screws 225. LSAA 300 is shaped to be biased towards apertures 206A and 208A and, as one or both set screws 225 are tightened, the set screw(s) pushes against LSAA 300 and moves it (in this embodiment) either sideways and/or vertically thereby adjusting the position of light source 20. Alternatively, springs inside cavity 210 bias the light source 20 towards each of the set screws 225, and as the set screws are tightened, they push against the light source 20 and overcome the force of the springs to move light source 20.


Integrated circuit board 400 is configured to be received and mounted on second end 200B of housing 200. The basic purpose of board 400 is to connect the power source 30 to the light source 20 and any suitable structure or device can be used for this purpose. Board 400 is preferably plastic and includes a push button switch 402, an integrated circuit 404 and two through screw holes 406. Current is transferred via board 400 to laser module 20. Board 400 is designed for negative switching wherein power is generated from the negative side of power source 30 (which are batteries in this embodiment) and through spring 24 of light source 20 in this embodiment. Integrated circuit 404 allows for the pulsed delivery of power to light source 20 (preferably about 1,000 cycles per second, and preferably pulsing at a 50% on duty rate) in order to save power and power source life, although the delivery of power need not be pulsed, or can be pulsed in any suitable manner. In this embodiment, the light source has between a 8 and 15 milliamp draw, and most preferably less than a 10 milliamp draw, of current when in use and utilizing the 1,000 pulses per minute delivery of current to light source 20.


A button 450 is of any suitable shape to fit with push button switch 402 and backing 500, described below. Button 450 is for enabling a user to selectively activate switch 402 thus turning the light source 20 off and on, and any suitable device or structure can be used for this purpose.


Backing 500 is preferably plastic and its purpose is to hold integrated circuit board 400 to housing 200 and to protect integrated circuit board 400 and the other components inside of housing 200. Backing 500 has a first side 500A configured to fit over canister 202 at end 200B and a second side 500B configured to fit over end 242 of canister 230. It further includes an opening 502 through which button 450 projects so it can be pressed by a user to turn light source 20 on and off, and openings 506 that align with screw holes 406 and screw retainers 250. Screws 510 are then received through openings 506 and screw holes 406, and are threaded into retainers 250 to hold device 10 together.


Power source retention cap 600 has a threaded end 602 and an end 604 that can be tightened or loosened by a user. The purpose of cap 600 is to selectively open and close second canister 230 to allow power source 30 to be removed or inserted and any structure capable of performing this function can be used. Cap 600 has a cavity 606 that receives a spring 608 to bias batteries 32 away from spring 608. Spring 608 contacts the positive side of the power source 30 and grounds it to the housing 200 through cap 600. As explained below, a rubber biasing collar 620 may also be utilized with cap 600.


Turning now to FIGS. 8-12, a device 1000 according to an aspect of the invention is shown. The materials, internal structure and function, except for differences in size and shape, and those described herein, are the same as those described for device 10. Device 1000 includes a housing 1002 that retains a light source 1020 (which is preferably a laser), which is the same as light source 20, and preferably a diffraction lens, which is the same as the previously described diffraction lens for device 10. The diffraction lens may be formed as part of light source 1020 or positioned outside of it so that a beam of light exiting light source 1020 is diffracted into multiple beams in the manner previously described and/or subsequently claimed herein. Alternatively, the multiple beams can be created in other ways.


An opening 1022 retains a set screw (not shown) that can be used to adjust the position of sighting device 1020 in the sideways direction. Another opening (not shown) is on the top surface 1081 of housing 1002 and retains another set screw (not shown), which can also be used to adjust the position of sighting device 1020 vertically.


A power source 1090 is retained within housing 1002 and is preferably three silver oxide 1.5V coin batteries connectable to light source 1020 in the same manner as previously described with respect to sighting device 10. Housing 1002 includes a removable cap 1004 that covers a cavity that retains the power source. Cap 1004 is held in place by two fasteners 1006.


Housing 1002 includes a first leg 1002A and a second leg 1002B, that are used to grip a picatinny rail, such as rail 9 shown in FIG. 7. First leg 1002A has a mating portion 1030A and an opening 1035A, and second leg 1002B has a mating portion 1030B and an opening 1035B. A fastener 1050 is positioned between first leg 1002A and second leg 1002B. First end 1056 of fastener 1050 is adapted for receiving the fastener 1050 and is retained in opening 1035A. Fastener 1050 has a threaded body 1054 that is threadingly received in opening 1035B, preferably by being threadingly received in a nut 1038 that is retained in opening 1035B. As fastener 1050 is tightened, it draws together mating portions 1030A and 1030B to tighten them against a picatinny rail. Fastener 1050 can then be loosened to remove device 1000 from the picatinny rail.


Turning now to FIGS. 9-13, the back surface 1040 of device 1000 includes two fasteners, 1078 and 1080, which as shown are hex head nuts with washers that are received in opening 1090 of circuit board 4000.


Light source 1020 has a first end 1020A (through which light can be emitted), is preferably a visible-light laser module, but could be any light source, including a light emitting diode (“LED”) flashlight (as used herein “flashlight” means any source of visible light other than a laser) or an infra-red light source (such as an infra-red LED or infra-red laser). In the embodiment shown light source 1020 is a red-light, 650 nanometer or 635 nanometer, 3.3 mm diode, visible laser, and the laser module has an overall length of about 14 mm and a diameter of about 4.5 mm. Any suitable laser/laser module may be used, however. A biasing spring 24 is attached to second end 1020B to bias light source 1020 towards first end 1020A when device 1000 is assembled. Light source 1020 preferably includes a diffraction lens (not shown) that converts the single laser beam generated by light source 1020 into multiple, individual beams of light. In embodiments of the present invention, the diffraction lens can be assembled as part of light source 1020 or be positioned outside of light source 1020.


As with device 10, the multiple light beams generated by device 1000 are spread apart so as to define an area between the light beams. The area can be of any suitable shape for replicating the area in which pellets exiting a shotgun would occupy. It is most preferable that the area defined by the multiple light beams is circular, but it could also be triangular, oval, rectangular, hexagonal, octagonal or of any suitable shape. In one preferred embodiment there are at least three light beams defining the area, and most preferably eight beams of light defining the area, even though any number of light beams of three or more can be utilized.


The diffraction lens, or other method of generating multiple light beams, s directs each of the multiple beams of light outward with respect to the longitudinal axis of the light source 1020. In one embodiment each of the multiple beams is directed outward at 1.7 degrees as measured from the longitudinal axis of the laser 20. Any suitable outward direction may be used, however, and is based on the size and type of shotgun, so that the pattern of pellet spread for that shotgun is accurately replicated.


The light source may also create one or more other light beams inside the area, and preferably creates a single light beam in the center of the area formed by the multiple beams.


Power source 1090 can be any suitable power source for light source 1020, and is preferably an electric power source and most preferably a portable, electrical power source such as a battery or multiple batteries. The embodiment shown uses 3 silver oxide 1.5V silver oxide coin batteries, although any suitable batteries or power source may be used.


Device 1000 as shown further includes a housing 2000, a light source adjustment apparatus 3000, an integrated circuit board 4000, a canister 5000 having a first cavity 5002, a second opening 5004, a first end 5006, a second end 5008, and a dividing wall 5010. First cavity 5002 retains light source 1020 and light source adjustment apparatus (“LSAA”) 3000, wherein light source adjustment apparatus 3000 is first positioned over light source 1020 prior to being positioned in first canister 5002. Second cavity 5004 retains power source 1090. The ultimate purpose of housing 2000 is to retain light source 1020 and power source 1090 and mount them to a gun, and to selectively connect power source 1090 to light source 1020. Any suitable structure or structures may be used for this purpose.


Housing 2000 is preferably made of injection molded plastic, but could be made of any suitable material, such as another metal (for example, MIM carbon steel or extruded aluminum). Housing 2000 has a first end 2000A, a second end 2000B and includes a cavity 2001 that retains canister 5000. Canister 5000 is preferably made of aluminum or other conductive material so as to complete the connectivity required for the proper functioning of the circuit board 4000, when circuit board 4000 is pressed against end 5008 of canister 5000 when device 1000 is fully assembled.


Housing 2000 has a first end 2000A with an opening 1020C to permit light to be emitted from light source 1020 (preferably through a diffraction lens), and an opening 2001A that retains cap 1004 and permits access to the power source 1090 to permit replacement of the power source.


As discussed above, housing 2000 also includes an aperture 1022 that extends to either LSAA 3000 or light source 1020. A second aperture (not shown) on surface 1081 also extends to either LSAA 3000 or light source 1020. Each of these apertures are configured to receive a moveable screw (hereafter referred to as “set screw” or “set screws,” which are preferably socket-head set screws), which are not shown for this embodiment.


An opening 5004A in the first end of canister 5004 is preferably threaded (not shown) so that it can receive cap 1004, which is threaded. A depression 1005 is formed in cap 1004 in order to screw cap 1004 onto end 5004A. Cap 1004 can be removed to access and replace power source 1090.


A light source adjustment apparatus (or “LSAA”) 3000 is for retaining the light source 1020 when it is positioned in canister 5000 and for assisting in positioning light source 1020. LSAA 3000 absorbs the recoil of a gun to which device 1000 is mounted thereby enabling light source 1020 to remain in a relatively stable position. As shown in FIG. 13, LSAA 3000 may be generally conical and slides over light source 1020. It is preferably comprised of an elastomeric material, such as neoprene rubber, of about a 60 Shore A to absorb shock, but can be made of any suitable material. As previously described, LSAA 3000 fits into cavity 5002 of canister 5000. Instead of LSAA 3000, or in addition to LSAA 3000, the light source 20 may be biased towards the set screws (not shown in this embodiment) by springs (not shown).


When device 1000 is assembled, the position of light source 1020 can be adjusted utilizing the set screws (not shown). LSAA 3000 and/or the springs (not shown) can bias the light source 1020 towards the set screws. As one or both of the set screws are tightened, the set screw(s) pushes against the LSAA 3000 or the light source 1020 and moves the light source 1020 either sideways and/or vertically thereby adjusting the position of light source 1020.


Integrated circuit board 4000 is configured to be received and mounted on plate 1070 of housing 2000. The basic purpose of board 4000 is to connect the power source 1090 to the light source 1020 and any suitable structure or device can be used for this purpose. Board 4000 is preferably plastic and interacts with two push button switches 1072 and 1074. Board 4000 includes an integrated circuit (not shown) and two through screw holes 1090. Current is transferred via board 4000 to laser module 1020. Board 4000 is designed for negative switching wherein power is generated from the negative side of power source 1090 (which are batteries in this embodiment) and through spring 1024 of light source 1020 in this embodiment. In the preferred embodiment of device 1000, the integrated circuit allows for continuous delivery of power to light source 1020.


In this embodiment, spring 1024 is connected to the back of laser module 1020 in any suitable manner, and is then connected to board 4000, preferably by soldering. Spring 1024 acts as the negative contact for module 1020 to board 4000 and also allows module 1020 to move freely back and forth axially and in all directions. In this manner, module 1020 can freely be adjusted by the previously described set screws.


Buttons 1072 and 1074 are preferably identical and of any suitable shape to fit in the openings in plate 1070 and switch power off or on to light source 1020. Each button 1072 and 1074 operates independently and is for enabling a user to selectively activate a switch to turn the light source 1020 off or on, and any suitable device or structure can be used for this purpose.


Device 1000 also preferably includes a backing, such as backing 5000, which is preferably plastic. Although not shown here, the backing is of a suitable size, shape and material to function the same as previously described backing 500.


A sighting device according to the invention may be mounted to a shotgun in any suitable manner utilizing any suitable structure.


Having thus described some embodiments of the invention, other variations and embodiments that do not depart from the spirit of the invention will become apparent to those skilled in the art. The scope of the present invention is thus not limited to any particular embodiment, but is instead set forth in the appended claims and the legal equivalents thereof. Unless expressly stated in the written description or claims, the steps of any method recited in the claims may be performed in any order capable of yielding the desired result.

Claims
  • 1. A gun including: (a) a muzzle,(b) a bore,(c) a trigger, and(d) a sighting device for framing a target to be fired at with the gun, the sighting device including a first light source that is a single laser module and a power source connectable to the first light source, the first light source having a first mode in which it emits light and a second mode in which it does not emit light, the first light source emanating a single beam of light that passes through a diffraction lens which splits the single beam into a pattern of three or more light beams defining an area inside the pattern and a separate beam of light inside the pattern, wherein the area of the pattern increases as the beams of light move farther from the first light source.
  • 2. The gun of claim 1 that is a shotgun.
  • 3. The gun of claim 2 wherein the sighting device includes a mount for attaching to a picatinny rail of the shotgun.
  • 4. The gun of claim 3 wherein the mount includes a first leg configured to fit into a first side of the picatinny rail and a second leg opposite the first leg, the second leg configured to fit into a second side of the picatinny rail.
  • 5. The gun of claim 4 that further includes a tightener to draw the first leg and second leg closer together in order to tighten the mount onto the picatinny rail.
  • 6. The gun of claim 5 wherein the tightener comprises a threaded fastener that extends from the first leg to the second leg, the fastener having a head at the first leg for receiving a tool, and being threadingly received in the second leg, so as the tool turns the fastener head in a first direction, the fastener is tightened in the second leg, which forces the first leg and second leg closer together, and as the tool turns the fastener in a second direction, the fastener is loosened in the second leg and the first leg and second leg move farther apart.
  • 7. The gun of claim 2 wherein the muzzle has a longitudinal axis, and the sighting device is aligned with the longitudinal axis so the light emanating from the sighting device projects a pattern that replicates the pattern of shotgun pellets exiting the muzzle of the shotgun.
  • 8. The gun of claim 1 wherein the single beam of light passes through the diffraction lens which splits the single beam into eight beams of light and the area is in the center of the eight beams of light, wherein the area of the pattern increases as the beams of light move farther from the first light source.
  • 9. The gun of claim 8 wherein the diffraction lens splits the single beam into a pattern of eight or more light beams defining an area inside the pattern and a separate beam of light in the center of the area, wherein the area of the pattern increases as the beams of light move farther from the first light source.
  • 10. The gun of claim 1 wherein the light beams exit the diffraction lens at an outward angle of 1.7 degrees as measured from a longitudinal axis of the first light source.
  • 11. The gun of claim 1 wherein the first light source is a visible laser module.
  • 12. The gun of claim 1 wherein the first light source is an infra-red laser module.
  • 13. The gun of claim 1 that further includes a light source adjustment apparatus for mechanically adjusting the position of the first light source, wherein the light source adjustment apparatus comprises one or more set screws and springs that bias the first light source towards each set screw.
  • 14. The gun of claim 13 wherein the first light source further includes a housing with a plurality of apertures and a set screw threadingly received in each aperture, the set screws for adjusting the position of the first light source.
  • 15. The gun of claim 1 wherein the first light source is a LED infra-red light module.
  • 16. The gun of claim 1 wherein the power source is one or more batteries.
  • 17. The gun of claim 1 wherein the power source is spaced apart from the first light source.
  • 18. The gun of claim 1 wherein the power source is positioned under the first light source.
  • 19. The gun of claim 1 wherein the sighting device includes a mount that may be pressure fit into a slot on the gun.
  • 20. The gun of claim 1 wherein the sighting device includes a mount for attaching to a picatinny rail of the gun.
  • 21. The gun of claim 1 wherein the sighting device includes a first canister and a second canister, wherein the first canister includes the first light source, and the second canister includes the power source.
  • 22. The gun of claim 1 wherein the first light source pulses when it emits light.
  • 23. The gun of claim 1 wherein the area is selected from one of the group consisting of: circular, oval, triangular, rectangular, hexagonal and octagonal.
  • 24. The gun of claim 1 wherein the sighting device is mounted on the gun.
  • 25. The gun of claim 1 wherein the sighting device is integrally formed with the gun.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims priority to U.S. patent application Ser. No. 13/707,312, now U.S. Pat. No. 8,844,189 entitled SIGHTING DEVICE REPLICATING SHOTGUN PATTERN SPREAD, filed on Dec. 6, 2012, the disclosure of which is incorporated herein by reference.

US Referenced Citations (385)
Number Name Date Kind
1898566 Noel Feb 1933 A
2268056 Nelson et al. Dec 1941 A
2357951 Hale Sep 1944 A
2430469 Karnes Nov 1947 A
2597565 Chandler et al. May 1952 A
2773309 Elliot Dec 1956 A
2780882 Temple Feb 1957 A
2826848 Davies Mar 1958 A
2844710 Rudolf Jul 1958 A
2904888 Niesp Sep 1959 A
3112567 Flanagan Dec 1963 A
3192915 Norris et al. Jul 1965 A
3284905 Simmons Nov 1966 A
3510965 Rhea May 1970 A
3526972 Sumpf Sep 1970 A
3573868 Giannetti Apr 1971 A
3641676 Knutsen et al. Feb 1972 A
3645635 Steck Feb 1972 A
3801205 Eggenschwyler Apr 1974 A
3914873 Elliott, Jr. et al. Oct 1975 A
3992783 Dunlap et al. Nov 1976 A
3995376 Kimble et al. Dec 1976 A
4026054 Snyder May 1977 A
4079534 Snyder Mar 1978 A
4102059 Kimble et al. Jul 1978 A
4144505 Angelbeck et al. Mar 1979 A
4146329 King et al. Mar 1979 A
4148245 Steffanus et al. Apr 1979 A
4156981 Lusk Jun 1979 A
4168588 Snyder Sep 1979 A
4220983 Schroeder Sep 1980 A
4222564 Allen Sep 1980 A
4229103 Hipp Oct 1980 A
4232867 Tate Nov 1980 A
4233770 de Filippis et al. Nov 1980 A
4234911 Faith Nov 1980 A
4295289 Snyder Oct 1981 A
4305091 Cooper Dec 1981 A
4348828 Snyder Sep 1982 A
4352665 Kimble et al. Oct 1982 A
4481561 Lanning Nov 1984 A
4488369 Van Note Dec 1984 A
4541191 Morris et al. Sep 1985 A
4567810 Preston Feb 1986 A
4713889 Santiago Dec 1987 A
4763431 Allan et al. Aug 1988 A
4825258 Whitson Apr 1989 A
4830617 Hancox et al. May 1989 A
4876816 Triplett Oct 1989 A
4878307 Singletary Nov 1989 A
4891476 Nation et al. Jan 1990 A
4934086 Houde-Walter Jun 1990 A
4939320 Graulty Jul 1990 A
4939863 Alexander et al. Jul 1990 A
4945667 Rogalski et al. Aug 1990 A
4953316 Litton et al. Sep 1990 A
4967642 Mihaita Nov 1990 A
5001836 Cameron et al. Mar 1991 A
5033219 Johnson et al. Jul 1991 A
5048211 Hepp Sep 1991 A
5048215 Davis Sep 1991 A
5052138 Crain Oct 1991 A
5090805 Stawarz Feb 1992 A
5177309 Willoughby et al. Jan 1993 A
5178265 Sepke Jan 1993 A
5179124 Schoenwald et al. Jan 1993 A
5179235 Toole Jan 1993 A
5228427 Gardner Jul 1993 A
5237773 Claridge Aug 1993 A
5241146 Priesemuth Aug 1993 A
5272514 Dor Dec 1993 A
5299375 Thummel et al. Apr 1994 A
5343376 Huang Aug 1994 A
5355608 Teetzel Oct 1994 A
5355609 Schenke Oct 1994 A
5365669 Rustick et al. Nov 1994 A
5367779 Lee Nov 1994 A
5373644 De Paoli Dec 1994 A
5375362 McGarry et al. Dec 1994 A
5388335 Jung Feb 1995 A
5392550 Moore et al. Feb 1995 A
5400540 Solinsky et al. Mar 1995 A
5419072 Moore et al. May 1995 A
5432598 Szatkowski Jul 1995 A
5435091 Toole et al. Jul 1995 A
5446535 Williams Aug 1995 A
5448834 Huang Sep 1995 A
5454168 Langner Oct 1995 A
5455397 Havenhill et al. Oct 1995 A
5467552 Cupp et al. Nov 1995 A
5481819 Teetzel Jan 1996 A
5488795 Sweat Feb 1996 A
D368121 Lam Mar 1996 S
5499455 Palmer Mar 1996 A
5509226 Houde-Walter Apr 1996 A
5515636 McGarry et al. May 1996 A
5531040 Moore Jul 1996 A
5555662 Teetzel Sep 1996 A
5557872 Langner Sep 1996 A
5566459 Breda Oct 1996 A
5581898 Thummel Dec 1996 A
5584137 Teetzel Dec 1996 A
5590486 Moore Jan 1997 A
5598958 Ryan, III et al. Feb 1997 A
5618099 Brubacher Apr 1997 A
5621999 Moore Apr 1997 A
5622000 Marlowe Apr 1997 A
5669174 Teetzel Sep 1997 A
5671561 Johnson et al. Sep 1997 A
5685106 Shoham Nov 1997 A
5685636 German Nov 1997 A
5694202 Mladjan et al. Dec 1997 A
5694713 Paldino Dec 1997 A
5704153 Kaminski et al. Jan 1998 A
5706600 Toole et al. Jan 1998 A
5735070 Vasquez et al. Apr 1998 A
5787631 Kendall Aug 1998 A
5788500 Gerber Aug 1998 A
5822905 Teetzel Oct 1998 A
5842300 Cheshelski et al. Dec 1998 A
5847345 Harrison Dec 1998 A
5867930 Kaminski et al. Feb 1999 A
5881707 Gardner Mar 1999 A
5892221 Lev Apr 1999 A
5896691 Kaminski et al. Apr 1999 A
5905238 Hung May 1999 A
5909951 Johnsen et al. Jun 1999 A
5967133 Gardner Oct 1999 A
5983774 Mihaita Nov 1999 A
5992030 Mann Nov 1999 A
6003504 Rice et al. Dec 1999 A
6023875 Fell et al. Feb 2000 A
6035843 Smith et al. Mar 2000 A
6146141 Schumann Nov 2000 A
6151788 Cox et al. Nov 2000 A
6219952 Mossberg et al. Apr 2001 B1
6230431 Bear May 2001 B1
6237271 Kaminski May 2001 B1
6289624 Hughes et al. Sep 2001 B1
6293869 Kwan Sep 2001 B1
6295753 Thummel Oct 2001 B1
6301046 Tai et al. Oct 2001 B1
6318228 Thompson Nov 2001 B1
6327806 Paige Dec 2001 B1
6345464 Kim et al. Feb 2002 B1
6363648 Kranich et al. Apr 2002 B1
6366349 Houde-Walter Apr 2002 B1
6371004 Peterson Apr 2002 B1
6385893 Cheng May 2002 B1
6389729 Rauch et al. May 2002 B2
6389730 Millard May 2002 B1
6397509 Langner Jun 2002 B1
6430861 Ayers et al. Aug 2002 B1
6434874 Hines Aug 2002 B1
6442880 Allan Sep 2002 B1
6487807 Kopman et al. Dec 2002 B1
6499247 Peterson Dec 2002 B1
6526688 Danielson et al. Mar 2003 B1
6568118 Teetzel May 2003 B1
6572375 Shechter et al. Jun 2003 B2
6575753 Rosa et al. Jun 2003 B2
6578311 Danielson et al. Jun 2003 B2
6579098 Shechter Jun 2003 B2
6591536 Houde-Walter et al. Jul 2003 B2
6606797 Gandy Aug 2003 B1
6616452 Clark et al. Sep 2003 B2
6622414 Oliver et al. Sep 2003 B1
6631580 Iafrate Oct 2003 B2
6631668 Wilson et al. Oct 2003 B1
6650669 Adkins Nov 2003 B1
6671991 Danielson Jan 2004 B1
D487791 Freed Mar 2004 S
6742299 Strand Jun 2004 B2
6782789 McNulty Aug 2004 B2
6854205 Wikle et al. Feb 2005 B2
6931775 Burnett Aug 2005 B2
6935864 Shechter et al. Aug 2005 B2
6966775 Kendir et al. Nov 2005 B1
7032342 Pikielny Apr 2006 B2
7049575 Hotelling May 2006 B2
7111424 Moody et al. Sep 2006 B1
7121034 Keng Oct 2006 B2
7134234 Makarounis Nov 2006 B1
7191557 Gablowski et al. Mar 2007 B2
D542446 DiCarlo et al. May 2007 S
7218501 Keely May 2007 B2
7237352 Keely et al. Jul 2007 B2
7243454 Cahill Jul 2007 B1
7260910 Danielson Aug 2007 B2
7264369 Howe Sep 2007 B1
7303306 Ross et al. Dec 2007 B2
7305790 Kay Dec 2007 B2
7329127 Kendir et al. Feb 2008 B2
7331137 Hsu Feb 2008 B2
D567894 Sterling et al. Apr 2008 S
7360333 Kim Apr 2008 B2
D570948 Cerovic et al. Jun 2008 S
RE40429 Oliver et al. Jul 2008 E
D578599 Cheng Oct 2008 S
7441364 Rogers et al. Oct 2008 B2
7453918 Laughman et al. Nov 2008 B2
7454858 Griffin Nov 2008 B2
7464495 Cahill Dec 2008 B2
7472830 Danielson Jan 2009 B2
D586874 Moody et al. Feb 2009 S
7490429 Moody et al. Feb 2009 B2
7578089 Griffin Aug 2009 B1
7584569 Kallio et al. Sep 2009 B2
7591098 Matthews et al. Sep 2009 B2
D602109 Cerovic et al. Oct 2009 S
7603997 Hensel et al. Oct 2009 B2
D603478 Hughes Nov 2009 S
7624528 Bell et al. Dec 2009 B1
7627976 Olson Dec 2009 B1
7644530 Scherpf Jan 2010 B2
7652216 Sharrah et al. Jan 2010 B2
D612756 D'Amelio et al. Mar 2010 S
D612757 D'Amelio et al. Mar 2010 S
7674003 Sharrah et al. Mar 2010 B2
7676975 Phillips et al. Mar 2010 B2
7685756 Moody et al. Mar 2010 B2
7698847 Griffin Apr 2010 B2
7703719 Bell et al. Apr 2010 B1
7712241 Teetzel et al. May 2010 B2
D616957 Rievley et al. Jun 2010 S
7726059 Pikielny Jun 2010 B2
7726061 Thummel Jun 2010 B1
7730820 Vice et al. Jun 2010 B2
7743546 Keng Jun 2010 B2
7743547 Houde-Walter Jun 2010 B2
7753549 Solinsky et al. Jul 2010 B2
7771077 Miller Aug 2010 B2
7797843 Scott et al. Sep 2010 B1
7805876 Danielson et al. Oct 2010 B1
7818910 Young Oct 2010 B2
7841120 Teetzel et al. Nov 2010 B2
7880100 Sharrah et al. Feb 2011 B2
7900390 Moody et al. Mar 2011 B2
7913439 Whaley Mar 2011 B2
D636049 Hughes et al. Apr 2011 S
D636837 Hughes et al. Apr 2011 S
7921591 Adcock Apr 2011 B1
7926218 Matthews et al. Apr 2011 B2
7997023 Moore et al. Aug 2011 B2
8006427 Blevins et al. Aug 2011 B2
8006428 Moore et al. Aug 2011 B2
8028460 Williams Oct 2011 B2
8028461 NuDyke Oct 2011 B2
8050307 Day et al. Nov 2011 B2
8056277 Griffin Nov 2011 B2
8093992 Jancie et al. Jan 2012 B2
8104220 Cobb Jan 2012 B2
D653798 Janice et al. Feb 2012 S
8109024 Abst Feb 2012 B2
8110760 Sharrah et al. Feb 2012 B2
8132354 Sellers et al. Mar 2012 B1
8136284 Moody et al. Mar 2012 B2
8141288 Dodd et al. Mar 2012 B2
8146282 Cabahug et al. Apr 2012 B2
8151504 Aiston Apr 2012 B1
8151505 Thompson Apr 2012 B2
8166694 Swan May 2012 B2
8172139 McDonald et al. May 2012 B1
D661366 Zusman Jun 2012 S
8196328 Simpkins Jun 2012 B2
8215047 Ash et al. Jul 2012 B2
8225542 Houde-Walter Jul 2012 B2
8225543 Moody et al. Jul 2012 B2
8245428 Griffin Aug 2012 B2
8245434 Hogg et al. Aug 2012 B2
8256154 Danielson et al. Sep 2012 B2
8258416 Sharrah et al. Sep 2012 B2
D669552 Essig et al. Oct 2012 S
D669553 Hughes et al. Oct 2012 S
D669957 Hughes et al. Oct 2012 S
D669958 Essig et al. Oct 2012 S
D669959 Johnston et al. Oct 2012 S
D670785 Fitzpatrick et al. Nov 2012 S
8312666 Moore et al. Nov 2012 B2
D672005 Hedeen et al. Dec 2012 S
8322064 Cabahug et al. Dec 2012 B2
8335413 Dromaretsky et al. Dec 2012 B2
D674861 Johnston et al. Jan 2013 S
D674862 Johnston et al. Jan 2013 S
D675281 Speroni Jan 2013 S
8341868 Zusman Jan 2013 B2
8347541 Thompson Jan 2013 B1
8356818 Mraz Jan 2013 B2
8360598 Sharrah et al. Jan 2013 B2
D676097 Izumi Feb 2013 S
8365456 Shepard Feb 2013 B1
D677433 Swan et al. Mar 2013 S
D678976 Pittman Mar 2013 S
8387294 Bolden Mar 2013 B2
8393104 Moody et al. Mar 2013 B1
8393105 Thummel Mar 2013 B1
8397418 Cabahug et al. Mar 2013 B2
8402683 Cabahug et al. Mar 2013 B2
8413362 Houde-Walter Apr 2013 B2
D682977 Thummel et al. May 2013 S
8443539 Cabahug et al. May 2013 B2
8444291 Swan et al. May 2013 B2
8448368 Cabahug et al. May 2013 B2
8458944 Houde-Walter Jun 2013 B2
8467430 Caffey et al. Jun 2013 B2
8468734 Meller et al. Jun 2013 B2
8468930 Bell Jun 2013 B1
D687120 Hughes et al. Jul 2013 S
8480329 Fluhr et al. Jul 2013 B2
8484880 Sellers et al. Jul 2013 B1
8484882 Haley et al. Jul 2013 B2
8485686 Swan et al. Jul 2013 B2
8510981 Ganther et al. Aug 2013 B1
8516731 Cabahug et al. Aug 2013 B2
8567981 Finnegan et al. Oct 2013 B2
8584587 Uhr Nov 2013 B2
D697162 Faifer Jan 2014 S
8661725 Ganther et al. Mar 2014 B1
8734156 Uhr May 2014 B2
8739447 Merritt et al. Jun 2014 B2
8844189 Moore et al. Sep 2014 B2
8919023 Merritt et al. Dec 2014 B2
8938904 Sellers et al. Jan 2015 B1
8944838 Mulfinger Feb 2015 B2
20010042335 Strand Nov 2001 A1
20020009694 Rosa Jan 2002 A1
20020051953 Clark et al. May 2002 A1
20020057719 Shechter May 2002 A1
20020073561 Liao Jun 2002 A1
20020129536 Iafrate et al. Sep 2002 A1
20020134000 Varshneya et al. Sep 2002 A1
20020194767 Houde Walter et al. Dec 2002 A1
20030003424 Shechter et al. Jan 2003 A1
20030029072 Danielson et al. Feb 2003 A1
20030175661 Shechter et al. Sep 2003 A1
20030180692 Skala et al. Sep 2003 A1
20030196366 Beretta Oct 2003 A1
20040003529 Danielson Jan 2004 A1
20040010956 Bubits Jan 2004 A1
20040014010 Swensen et al. Jan 2004 A1
20050044736 Liao Mar 2005 A1
20050153262 Kendir Jul 2005 A1
20050185403 Diehl Aug 2005 A1
20050188588 Keng Sep 2005 A1
20050241209 Staley Nov 2005 A1
20050257415 Solinsky et al. Nov 2005 A1
20050268519 Pikielny Dec 2005 A1
20060162225 Danielson Jul 2006 A1
20060191183 Griffin Aug 2006 A1
20070039226 Stokes Feb 2007 A1
20070041418 Laughman et al. Feb 2007 A1
20070056203 Gering et al. Mar 2007 A1
20070113460 Potterfield et al. May 2007 A1
20070190495 Kendir et al. Aug 2007 A1
20070258236 Miller Nov 2007 A1
20070271832 Griffin Nov 2007 A1
20080000133 Solinsky et al. Jan 2008 A1
20080060248 Pine et al. Mar 2008 A1
20080134562 Teetzel Jun 2008 A1
20090013580 Houde-Walter Jan 2009 A1
20090013581 LoRocco Jan 2009 A1
20090178325 Veilleux Jul 2009 A1
20090183416 Danielson Jul 2009 A1
20090293335 Danielson Dec 2009 A1
20090293855 Danielson Dec 2009 A1
20100058640 Moore et al. Mar 2010 A1
20100162610 Moore et al. Jul 2010 A1
20100175297 Speroni Jul 2010 A1
20100229448 Houde-Walter Sep 2010 A1
20100275496 Solinsky et al. Nov 2010 A1
20110047850 Rievley et al. Mar 2011 A1
20110061283 Cavallo Mar 2011 A1
20110162249 Woodmansee et al. Jul 2011 A1
20110185619 Finnegan et al. Aug 2011 A1
20120047787 Curry Mar 2012 A1
20120055061 Hartley et al. Mar 2012 A1
20120110886 Moore et al. May 2012 A1
20120124885 Caulk et al. May 2012 A1
20120180366 Jaroh et al. Jul 2012 A1
20120180367 Singh Jul 2012 A1
20120180370 McKinley Jul 2012 A1
20120224357 Moore Sep 2012 A1
20130185982 Hilbourne et al. Jul 2013 A1
20130263492 Erdle Oct 2013 A1
20140109457 Speroni Apr 2014 A1
Foreign Referenced Citations (2)
Number Date Country
1009564 May 1997 BE
1046877 Oct 2000 EP
Non-Patent Literature Citations (72)
Entry
EPO; Office Action dated Oct. 5. 2011 in Serial No. 09169459.
EPO; Office Action dated Oct. 5, 2011 in Serial No. 09169469.
EPO; Office Action dated Dec. 20, 2011 in Application No. 09169476.
EPO; Office Action dated Sep. 3, 2012 in Application No. 09169469.
EPO; Office Action dated Sep. 3, 2012 in Application No. 09169476.
EPO; Office Action dated Sep. 3, 2012 in Application No. 09169459.
EPO; Search Opinion and Report dated Aug. 6, 2010 in Serial No. 09169459.
EPO; Search Opinion and Report dated Aug. 6, 2010 in Serial No. 0969469.
EPO; Search Opinion and Report dated Aug. 23, 2010 in Serial No. 09169476.
EPO; Search Report and Opinion dated Aug. 6, 2012 in Serial No. 11151504.
USPTO; Advisory Action dated Aug. 22, 2011 in U.S. Appl. No. 12/249,781.
USPTO; Advisory Action dated Jul. 13, 2012 in U.S. Appl. No. 12/249,781.
USPTO; Final Office Action dated Feb. 24, 2010 in U.S. Appl. No. 11/317,647.
USPTO; Final Office Action dated Mar. 6, 2012 in U.S. Appl. No. 12/610,213.
USPTO; Final Office Action dated May 2, 2012 in U.S. Appl. No. 12/249,781.
USPTO; Final Office Action dated Jun. 19, 2009 in U.S. Appl. No. 11/317,647.
USPTO; Final Office Action dated May 18, 2011 in U.S. Appl. No. 12/249,781.
USPTO; Final Office Action dated Aug. 7, 2012 in U.S. Appl. No. 12/249,781.
USPTO; Notice of Allowance dated Feb. 2, 2011 in U.S. Appl. No. 12/249,794.
USPTO; Notice of Allowance dated Feb. 26, 2002 in U.S. Appl. No. 09/624,124.
USPTO; Notice of Allowance dated Mar. 3, 2011 in U.S. Appl. No. 12/249,785.
USPTO; Notice of Allowance dated May 13, 2011 in U.S. Appl. No. 12/249,785.
USPTO; Notice of Allowance dated May 17, 2011 in U.S. Appl. No. 13/077,861.
USPTO; Notice of Allowance dated Jul. 8, 2011 in U.S. Appl. No. 12/249,794.
USPTO; Notice of Allowance dated Sep. 1, 2011 in U.S. Appl. No. 13/077,861.
USPTO; Notice of Allowance dated Nov. 1, 2011 in U.S. Appl. No. 13/077,875.
USPTO; Notice of Allowance dated Nov. 18, 2011 in U.S. Appl. No. 13/077,861.
USPTO; Notice of Allowance dated Jul. 25, 2012 in U.S. Appl. No. 12/610,213.
USPTO; Notice of Allowance dated Aug. 16, 2012 in U.S. Appl. No. 13/346,621.
USPTO; Office Action dated Jan. 26, 2012 in U.S. Appl. No. 12/249,781.
USPTO; Office Action dated Sep. 28, 2009 in U.S. Appl. No. 11/317,647.
USPTO; Office Action dated Oct. 6, 2010 in U.S. Appl. No. 12/249,794.
USPTO; Office Action dated Oct. 18, 2011 in U.S. Appl. No. 12/610,213.
USPTO; Office Action dated Nov. 8, 2010 in U.S. Appl. No. 12/249,781.
USPTO; Office Action dated Dec. 26, 2008 in U.S. Appl. No. 11/317,647.
USPTO; Office Action dated Jun. 11, 2001 in U.S. Appl. No. 09/624,124.
USPTO; Office Action dated Jun. 22, 2011 in U.S. Appl. No. 13/077,875.
USPTO; Office Action dated Nov. 15, 2012 in U.S. Appl. No. 13/412,385.
USPTO; Office Action dated Feb. 1, 2013 in U.S. Appl. No. 12/249,781.
USPTO; Office Action dated Feb. 20, 2013 in U.S. Appl. No. 13/670,278.
USPTO; Office Action dated Mar. 26, 2013 in U.S. Appl. No. 13/353,241.
USPTO; Final Office Action dated Sep. 24, 2013 in U.S. Appl. No. 13/353,241.
USPTO; Office Action dated Jan. 31, 2014 in U.S. Appl. No. 13/353,241.
USPTO; Final Office Action dated Sep. 10, 2014 in U.S. Appl. No. 13/353,241.
USPTO; Office Action dated Oct. 23, 2012 in U.S. Appl. No. 13/010,649.
USPTO; Final Office Action dated Apr. 11, 2013 in U.S. Appl. No. 13/010,649.
USPTO; Final Office Action dated May 16, 2013 in U.S. Appl. No. 13/412,385.
USPTO; Office Action dated Jun. 17, 2013 in U.S. Appl. No. 13/353,301.
USPTO; Notice of Allowance dated Jan. 18, 2012 in U.S. Appl. No. 13/353,301.
USPTO; Office Action dated Jun. 19, 2013 in U.S. Appl. No. 13/353,165.
USPTO; Final Office Action dated Jul. 29, 2014 in U.S. Appl. No. 13/353,165.
USPTO; Office Action dated Nov. 20, 2014 in U.S. Appl. No. 13/353,165.
USPTO; Final Office Action dated Jun. 24, 2013 in U.S. Appl. No. 13/670,278.
USPTO; Office Action dated Dec. 11, 2013 in U.S. Appl. No. 13/670,278.
USPTO; Notice of Allowance dated Apr. 25, 2014 in U.S. Appl. No. 13/670,278.
USPTO; Notice of Allowance dated Jul. 15, 2013 in U.S. Appl. No. 13/412,385.
USPTO; Office Action dated Nov. 4, 2013 in U.S. Appl. No. 13/412,385.
USPTO; Final Office Action dated Mar. 27, 2014 in U.S. Appl. No. 13/412,385.
USPTO; Office Action dated Sep. 30, 2014 in U.S. Appl. No. 13/412,385.
USPTO; Notice of Allowance dated Aug. 6, 2013 in U.S. Appl. No. 13/010,649.
USPTO; Notice of Allowance dated Jul. 22, 2013 in U.S. Appl. No. 12/249,781.
USPTO; Decision on Appeal dated Aug. 20, 2013 in U.S. Appl. No. 11/317,647.
USPTO; Office Action dated Jan. 27, 2014 in U.S. Appl. No. 13/707,312.
USPTO; Notice of Allowance dated Jun. 11, 2014 in U.S. Appl. No. 13/707,312.
USPTO; Office Action dated Mar. 3, 2015 in U.S. Appl. No. 14/278,315.
Webpage print out from http://secure.armorholdings.com/b-square/smarthtml/about.html referencing background on B-Square and their firearm accessories.
Webpage print out from http://secure.armorholdings.com/b-square/tools—scope.html referencing scope and site tools offered by B-Square.
Webpage print out from www.battenfeldtechnologies.com/113088.html referencing a level device.
Webpage print out from www.battenfeldtechnologies.com/wheeler referencing products from Wheeler Engineering.
Webpage print out from www.blackanddecker.com/laserline/lasers.aspx referencing Black & Decker's Auto-Leveling Lasers.
Webpage print out from www.laserlevel.co.uk/newsite.index.asp referencing the laser devices available on the Laserlevel Online Store.
Shooting Illustrated “Update on the .25 SAUM” Jul. 2005 pp. 14-15.
Related Publications (1)
Number Date Country
20140305023 A1 Oct 2014 US
Continuations (1)
Number Date Country
Parent 13707312 Dec 2012 US
Child 14316688 US