Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 C.F.R. § 1.57.
The present disclosure relates generally to general surgery and orthopedic implants for replacing an articulation surface in a joint. More specifically, but not exclusively, the present invention relates to implants and methods for shoulder replacement surgery, including reverse shoulder replacement prostheses with offset components and coupling mechanisms.
Traditional total shoulder joint replacement involves a humeral implant and glenoid implant. The humeral implant generally includes a metal sphere to replace the head of the humerus and the glenoid implant generally includes a glenoid socket for receiving the sphere attached to a portion of the scapula. However, where the soft tissue has been severely damaged, a reverse shoulder replacement may be used. A reverse shoulder replacement involves reversing the original sphere and glenoid by attaching the glenoid implant to the proximal aspect of the humerus and the convex sphere being attached to the glenoid fossa.
However, currently available replacement prostheses include a sphere and a baseplate that are generally centrally aligned and that utilize locking components to couple the sphere and baseplate together. These are hard to manufacture due to the taper, and can be poorly aligned resulting in limited articulation (e.g., range of motion) of the sphere. Also due to the alignment, disassembly of the sphere component can be challenging, often requiring an extractor claw or like tool which can cause tissue and bone damage that may create complications with the fixation of the baseplate.
Therefore, reverse shoulder prostheses that allows for a greater range of articulation, which are easier to manufacture, and which can be more readily disassembled are needed.
Aspects of the present disclosure provide implants and methods for replacing a shoulder joint. More specifically, the present disclosure provides humeral replacement prostheses and implants that include an offset post and a locking screw. By offsetting the post and other features, a more versatile prosthesis can be developed allowing for large offsets and differing shoulder sizes to be replaced. Further, the offset allows for easier access to the locking screw in order to disassemble the prosthesis with an extraction device. In this way, lower manufacturing costs are achieved on prostheses which are more adaptable and easier to disassemble.
In one aspect, provided herein is an implant. The implant, including a base member, an articulating member, and a coupling portion for securing the base member to the articulating member.
In another aspect, provided herein is a method of assembling an implant. The method of assembly includes obtaining a base member and inserting a first end of an elastic member into a projection of the base member. The method also includes engaging a first end of a first fixation component with a second end of the elastic member and sliding a second fixation component over a second end of the first fixation component and coupling the second fixation component to the projection. Further, the method includes coupling an articulating member with the first second end of the first fixation component.
In yet another aspect, provided herein is a method of using an implant. The method includes positioning a base member of the implant within a scapula and attaching an articulating member of the implant to the base member with a coupling portion positioned at least partially within a projection of the base member and the projection and a portion of the coupling portion extending into a cavity within the articulating member to engage a threaded portion in the cavity of the articulating member.
In still another aspect, provided herein is an extraction device for use with humeral prostheses. The extraction device engages a screw via a through hole in a sphere of the humeral prosthesis for disassembly of the sphere from a baseplate of the prosthesis.
In a further aspect, provided herein is a method for using a humeral prosthesis.
These, and other objects, features and advantages of this disclosure will become apparent from the following detailed description of the various aspects of the disclosure taken in conjunction with the accompanying drawings.
For the purposes of illustrating the humeral prostheses and related methods described herein, there is shown herein illustrative embodiments. These illustrative embodiments are in no way limiting in terms of the precise arrangement and operation of the disclosed humeral replacement prostheses and related methods and other similar embodiments are envisioned within the spirit and scope of the present disclosure. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the disclosure and together with the detailed description herein, serve to explain the principles of the disclosure. The drawings are only for purposes of illustrating preferred embodiments and are not to be construed as limiting the disclosure. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion. The foregoing and other objects, features and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
Generally stated, disclosed herein are implants for replacing an articulation surface in a joint, for example, a shoulder. Further, surgical methods for replacing an articulation surface in the shoulder using the implants are discussed.
In this detailed description and the following claims, the words proximal, distal, anterior, posterior, medial, lateral, superior, and inferior are defined by their standard usage for indicating a particular part of a bone or implant according to the relative disposition of the natural bone or directional terms of reference. For example, “proximal” means the portion of a device or implant nearest the torso, while “distal” indicates the portion of the device or implant farthest from the torso. As for directional terms, “anterior” is a direction towards the front side of the body, “posterior” means a direction towards the back side of the body, “medial” means towards the midline of the body, “lateral” is a direction towards the sides or away from the midline of the body, “superior” means a direction above and “inferior” means a direction below another object or structure.
Similarly, positions or directions may be used herein with reference to anatomical structures or surfaces. For example, as the current implants, devices, instrumentation and methods are described herein with reference to use with the bones of the shoulder, the bones of the shoulder, upper arm, and torso may be used to describe the surfaces, positions, directions or orientations of the implants, devices, instrumentation and methods. Further, the devices and methods, and the aspects, components, features and the like thereof, disclosed herein are described with respect to one side of the body for brevity purposes. However, as the human body is relatively symmetrical or mirrored about a line of symmetry (midline), it is hereby expressly contemplated that the devices and methods, and the aspects, components, features and the like thereof, described and/or illustrated herein may be changed, varied, modified, reconfigured or otherwise altered for use or association with another side of the body for a same or similar purpose without departing from the spirit and scope of the disclosure. For example, the devices and methods, and the aspects, components, features and the like thereof, described herein with respect to the right shoulder may be mirrored so that they likewise function with the left shoulder. Further, the devices and methods, and the aspects, components, features and the like thereof, disclosed herein are described with respect to the shoulder for brevity purposes, but it should be understood that the devices and methods may be used with other bones of the body having similar structures, for example the upper extremity, and more specifically, with the bones of the shoulder, upper arm, and torso.
Referring to the drawings, wherein like reference numerals are used to indicate like or analogous components throughout the several views, and with particular reference to
As shown in
As shown in
As shown in
As illustrated in
Also disclosed is an extraction device 152, illustrated in
Also disclosed is a method of using a prosthesis 100. For instance, baseplates according to the embodiments above may be positioned within a scapula. Although described as a reverse shoulder replacement, it should be understood that the baseplate can be positioned in the proximal humerus as well, providing an articulating convex surface in its correct anatomic placement. Next, an articulating component as in the above embodiments can be attached to the baseplate, using a hole extending from a first side of the articulating component to a second side of the articulating component, and threaded to receive a fixation component contained within the baseplate.
Referring now to
As shown in
With continued reference to
The base member or base portion 230 is shown in
The base member 230 may further include a stem 250, as shown in
Referring now to
The first fixation component 270 may include a threaded portion 272 at a first end and a stop member or end member 274 at a second end, as shown in
The second fixation component or base coupler 280 is shown in
A method of assembling the implant 200 is also disclosed. The method may include inserting the first fixation component 270 into the opening 290 of the second fixation component 280. The method may also include inserting the first end 264 of the spring 262 into the recess 278 of the first fixation component 270 to form the coupling member 260. The method may further include inserting the second end 266 of the spring 262 into the spring opening 244 in the base member 230 and coupling the threads 286 of the body 284 of the second fixation member 280 with the threads 246 in the cavity 242 of the base member 230. This arrangement of the coupling portion 260 creates a biasing force to push the first fixation component 270 out of the second fixation component 280 to be able to engage the articulating component 210. Therefore, after securing the coupling member 260 to the base member 230, at least a part of the threaded portion 272 will extend out of the first end of the second fixation component 280. Optionally, the base member 230 and secured coupling member 260 may be inserted into the patient and then the articulating member 210 may be coupled to the base member 230.
Next, the cavity 220 of the articulating member 210 may be aligned over the projection 240 of the base member 230. Once aligned, the articulating member 210 may be coupled to the base member 230 by applying a force to the articulating member 210 to engage the cavity 220 with the projection 240. If necessary, an instrument (not shown) may be used to force the articulating member 210 into place on the base member 230. As the articulating member 210 engages the base member 230, the spring 262 of the coupling member 260 may be compressed. Once the desired position of the articulating member 210 is achieved on the base member 230, the first fixation component 270 may be rotated to thread the threaded portion 272 of the first fixation component 270 into the threads 222 of the articulating member 210. If the base member 230 wasn't already inserted into a patient, once the articulating member 210 and base member 230 are each coupled to the coupling portion 260, the implant 200 may be inserted into a patient.
Also disclosed is a method of using a prosthesis 200. For instance, base member 230 according to the embodiments above may be positioned within a scapula. Although described as a reverse shoulder replacement, it should be understood that the base members 230 can be positioned in the proximal humerus as well, providing an articulating convex surface in its correct anatomic placement. Next, an articulating member 210 as in the above embodiment can be attached to the base member 230, using the projection 240 of the base member 230, cavity 220 of the articulating member 210, and a coupling portion 260 engaging the articulating member 210 and the base member 230, as described in greater detail above with reference to
Referring now to
As shown in
The base member or base portion 310 is shown in
The projection 320 may also include a cavity or opening 322 extending into the projection 320 from a first or top end, as shown in
The base member 310 may further include a stem 330, as shown in
Referring now to
Referring now to
As shown in
A method of assembling the implant 300 is also disclosed. The method may include forming the coupling member 340. Forming the coupling member 340 may include inserting the second portion 348 of the securement member 342 into the through hole 366 of the spring 360 at the first end 362. Forming the coupling member 340 may also include aligning the slot 374 of the engagement member 370 with the recess 356 in the securement member 342 and inserting the engagement member 370 into the recess 356 of the securement member 342. The method may also include inserting the second portion 348 of the securement member 342 into the cavity 322 in the base member 310. As the second portion 348 is inserted into the cavity 322, the second end 364 of the spring 360 may be inserted into the recess 324 in the base member 310 and the engagement member 370 may be inserted into the cavity 322 past the retaining member 326. As the engagement member 370 is inserted into the cavity 322, the engagement member 370 may deflect to pass the retaining member 326. Once the engagement member 370 passes the retaining member 326, the engagement member 370 will expand to the original size and secure the securement member 342 to the base member 310, as shown in
Next, the method may include aligning and inserting the projection 320 of the base member 310 into the cavity 220 of the articulating member 210. A force may be applied to the articulating member 210 to engage the cavity 220 with the projection 320. If necessary, an instrument (not shown) may be used to force the articulating member 210 into place on the base member 310. As the articulating member 210 engages the base member 310, the spring 360 of the coupling member 340 may be compressed. Once the desired position of the articulating member 210 is achieved on the base member 310, the first portion 344 of the securement member 342 may be engaged and rotated to couple the threads 346 of the securement member 342 to the threaded portion 222 of the articulating member 210. Although not shown, the first portion 344 may include a driver opening, such as driver opening 276 of implant 200, which will not be described again here for brevity sake. If the base member 310 wasn't already inserted into a patient, once the articulating member 210 is attached to the coupling portion 340 and base member 310, the implant 300 may be inserted into a patient.
Also disclosed is a method of using a prosthesis 300. For instance, a base member 310 according to the embodiment above may be positioned within a scapula. Although described as a reverse shoulder replacement, it should be understood that the base member 310 can be positioned in the proximal humerus as well, providing an articulating convex surface in its correct anatomic placement. Next, an articulating member 210 as in the above embodiments can be attached to the base member 310, using the projection 320 of the base member 310, cavity 220 of the articulating member 210, and the coupling portion 340 engaging the articulating member 210 and the base member 310, as described in greater detail above with reference to
As may be recognized by those of ordinary skill in the art based on the teachings herein, numerous changes and modifications may be made to the above-described and other embodiments of the present invention without departing from the scope of the invention. The articulating member or spherical shaped articulating component, base member or base plate, coupling portion or fixation component, and other components of the device and/or system as disclosed in the specification, including the accompanying abstract and drawings, may be replaced by alternative component(s) or feature(s), such as those disclosed in another embodiment, which serve the same, equivalent or similar purpose as known by those skilled in the art to achieve the same, equivalent or similar results by such alternative component(s) or feature(s) to provide a similar function for the intended purpose. In addition, the devices and systems may include more or fewer components or features than the embodiments as described and illustrated herein. For example, the components and features of
It is to be understood that the above description is intended to be illustrative, and not restrictive. Numerous changes and modifications may be made herein by one of ordinary skill in the art without departing from the general spirit and scope of the invention as defined by the following claims and the equivalents thereof. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the various embodiments without departing from their scope. While the dimensions and types of materials described herein are intended to define the parameters of the various embodiments, they are by no means limiting and are merely exemplary. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the various embodiments should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Also, the term “operably connected” is used herein to refer to both connections resulting from separate, distinct components being directly or indirectly coupled and components being integrally formed (i.e., monolithic). Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. § 112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure. It is to be understood that not necessarily all such objects or advantages described above may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the systems and techniques described herein may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has”, and “having”), “include” (and any form of include, such as “includes” and “including”), and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a method or device that “comprises,” “has,” “includes,” or “contains” one or more steps or elements possesses those one or more steps or elements, but is not limited to possessing only those one or more steps or elements. Likewise, a step of a method or an element of a device that “comprises,” “has,” “includes,” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features. Furthermore, a device or structure that is configured in a certain way is configured in at least that way, but may also be configured in ways that are not listed.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the disclosure may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/055490 | 10/11/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/079104 | 4/25/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4725280 | Laure | Feb 1988 | A |
4986833 | Worland | Jan 1991 | A |
5032132 | Matsen, III et al. | Jul 1991 | A |
5033036 | Ohmori et al. | Jul 1991 | A |
5080673 | Burkhead et al. | Jan 1992 | A |
5108446 | Wagner et al. | Apr 1992 | A |
5458637 | Hayes | Oct 1995 | A |
5489309 | Lackey et al. | Feb 1996 | A |
5489311 | Cipolletti | Feb 1996 | A |
5531973 | Sarv | Jul 1996 | A |
5662657 | Carn | Sep 1997 | A |
5702447 | Walch et al. | Dec 1997 | A |
5800551 | Williamson et al. | Sep 1998 | A |
5954722 | Bono | Sep 1999 | A |
6102954 | Albrektsson et al. | Aug 2000 | A |
6139550 | Michelson | Oct 2000 | A |
6171342 | O'Neil et al. | Jan 2001 | B1 |
6228119 | Ondrla et al. | May 2001 | B1 |
6228120 | Leonard et al. | May 2001 | B1 |
6379386 | Resch | Apr 2002 | B1 |
6406495 | Schoch | Jun 2002 | B1 |
6508841 | Martin et al. | Jan 2003 | B2 |
6514287 | Ondrla et al. | Feb 2003 | B2 |
6673115 | Resch et al. | Jan 2004 | B2 |
6679916 | Frankle et al. | Jan 2004 | B1 |
6699289 | Iannotti et al. | Mar 2004 | B2 |
6761740 | Tornier | Jul 2004 | B2 |
6783549 | Stone et al. | Aug 2004 | B1 |
6790234 | Frankle | Sep 2004 | B1 |
6860903 | Mears et al. | Mar 2005 | B2 |
6911047 | Rockwood, Jr. et al. | Jun 2005 | B2 |
6942699 | Stone | Sep 2005 | B2 |
6953478 | Bouttens et al. | Oct 2005 | B2 |
6969406 | Tornier | Nov 2005 | B2 |
7160328 | Rockwood, Jr. et al. | Jan 2007 | B2 |
7169184 | Pria | Jan 2007 | B2 |
7175663 | Stone | Feb 2007 | B1 |
7175665 | German et al. | Feb 2007 | B2 |
7204854 | Guederian et al. | Apr 2007 | B2 |
7316715 | Plaskon | Jan 2008 | B2 |
7431736 | Maroney | Oct 2008 | B2 |
7462197 | Tornier | Dec 2008 | B2 |
7462199 | Justin et al. | Dec 2008 | B2 |
7527631 | Maroney | May 2009 | B2 |
7604665 | Iannotti et al. | Oct 2009 | B2 |
7608109 | Dalla Pria | Oct 2009 | B2 |
7611539 | Bouttens et al. | Nov 2009 | B2 |
7621961 | Stone | Nov 2009 | B2 |
7637928 | Fernandez | Dec 2009 | B2 |
7648530 | Habermeyer et al. | Jan 2010 | B2 |
7666522 | Justin et al. | Feb 2010 | B2 |
7753959 | Berelsman et al. | Jul 2010 | B2 |
7766969 | Justin et al. | Aug 2010 | B2 |
7854768 | Wiley et al. | Dec 2010 | B2 |
7883653 | Smith et al. | Feb 2011 | B2 |
7892287 | Deffenbaugh | Feb 2011 | B2 |
7922769 | Deffenbaugh et al. | Apr 2011 | B2 |
7927335 | Deffenbaugh et al. | Apr 2011 | B2 |
7993408 | Meridew et al. | Aug 2011 | B2 |
8007523 | Wagner et al. | Aug 2011 | B2 |
8048161 | Guederian et al. | Nov 2011 | B2 |
8062376 | Shultz et al. | Nov 2011 | B2 |
8070820 | Winslow et al. | Dec 2011 | B2 |
8092545 | Coon et al. | Jan 2012 | B2 |
8206453 | Cooney, III et al. | Jun 2012 | B2 |
8231683 | Lappin et al. | Jul 2012 | B2 |
8241365 | Williams, Jr. et al. | Aug 2012 | B2 |
8287600 | Angibaud | Oct 2012 | B2 |
8308807 | Seebeck et al. | Nov 2012 | B2 |
8357201 | Mayer et al. | Jan 2013 | B2 |
8361157 | Bouttens et al. | Jan 2013 | B2 |
8425614 | Winslow et al. | Apr 2013 | B2 |
8444680 | Dooney, Jr. et al. | May 2013 | B2 |
8449617 | McDaniel et al. | May 2013 | B1 |
8454702 | Smits et al. | Jun 2013 | B2 |
8454705 | Pressacco et al. | Jun 2013 | B2 |
8465548 | Long | Jun 2013 | B2 |
8480750 | Long | Jul 2013 | B2 |
8532806 | Masson | Sep 2013 | B1 |
8556902 | Ek et al. | Oct 2013 | B2 |
8556980 | Deffenbaugh | Oct 2013 | B2 |
8556981 | Jones et al. | Oct 2013 | B2 |
8591591 | Winslow et al. | Nov 2013 | B2 |
8597334 | Mocanu | Dec 2013 | B2 |
8632597 | Lappin | Jan 2014 | B2 |
8690951 | Baum et al. | Apr 2014 | B2 |
8690952 | Dallmann | Apr 2014 | B2 |
8753402 | Winslow et al. | Jun 2014 | B2 |
8790402 | Monaghan et al. | Jul 2014 | B2 |
8840676 | Belew | Sep 2014 | B2 |
8864834 | Boileau et al. | Oct 2014 | B2 |
8870886 | Burgi | Oct 2014 | B2 |
8961611 | Long | Feb 2015 | B2 |
9114017 | Lappin | Aug 2015 | B2 |
9233003 | Roche et al. | Jun 2016 | B2 |
9498345 | Burkhead et al. | Nov 2016 | B2 |
9512445 | Iannotti | Dec 2016 | B2 |
9629725 | Gargac et al. | Apr 2017 | B2 |
10034757 | Kovacs et al. | Jul 2018 | B2 |
10064734 | Burkhead et al. | Sep 2018 | B2 |
10251755 | Boileau et al. | Apr 2019 | B2 |
10357373 | Gargac et al. | Jul 2019 | B2 |
10779952 | Gunther et al. | Sep 2020 | B2 |
20010011192 | Ondrla et al. | Aug 2001 | A1 |
20010037153 | Rockwood et al. | Nov 2001 | A1 |
20020095214 | Hyde, Jr. | Jul 2002 | A1 |
20030055507 | McDevitt et al. | Mar 2003 | A1 |
20030149485 | Tornier | Aug 2003 | A1 |
20040030394 | Horber | Feb 2004 | A1 |
20040059424 | Guederian et al. | Mar 2004 | A1 |
20040106928 | Ek | Jun 2004 | A1 |
20040220673 | Dalla Pria | Nov 2004 | A1 |
20040220674 | Dalla Pria | Nov 2004 | A1 |
20050049709 | Tornier | Mar 2005 | A1 |
20050060039 | Cyprien | Mar 2005 | A1 |
20050143831 | Justin et al. | Jun 2005 | A1 |
20050149044 | Justin et al. | Jul 2005 | A1 |
20050192673 | Saltzman et al. | Sep 2005 | A1 |
20050261775 | Baum et al. | Nov 2005 | A1 |
20050278030 | Tornier | Dec 2005 | A1 |
20060074353 | Deffenbaugh et al. | Apr 2006 | A1 |
20060100714 | Ensign | May 2006 | A1 |
20060122705 | Morgan | Jun 2006 | A1 |
20060142865 | Hyde, Jr. | Jun 2006 | A1 |
20060200248 | Beguin et al. | Sep 2006 | A1 |
20060200249 | Beguin et al. | Sep 2006 | A1 |
20070016304 | Chudik | Jan 2007 | A1 |
20070055380 | Berelsman et al. | Mar 2007 | A1 |
20070100458 | Dalla Pria | May 2007 | A1 |
20070142921 | Lewis et al. | Jun 2007 | A1 |
20070156246 | Meswania et al. | Jul 2007 | A1 |
20070179624 | Stone et al. | Aug 2007 | A1 |
20070219638 | Jones et al. | Sep 2007 | A1 |
20070244563 | Roche et al. | Oct 2007 | A1 |
20070244564 | Ferrand et al. | Oct 2007 | A1 |
20080140130 | Chan et al. | Jun 2008 | A1 |
20080183297 | Boileau et al. | Jul 2008 | A1 |
20080269906 | Iannotti et al. | Oct 2008 | A1 |
20080294268 | Baum et al. | Nov 2008 | A1 |
20080306601 | Dreyfuss | Dec 2008 | A1 |
20090125113 | Guederian et al. | May 2009 | A1 |
20090149961 | Dallmann | Jun 2009 | A1 |
20090204225 | Meridew et al. | Aug 2009 | A1 |
20090216332 | Splieth et al. | Aug 2009 | A1 |
20090281630 | Delince | Nov 2009 | A1 |
20090292364 | Linares | Nov 2009 | A1 |
20100016975 | Iannotti et al. | Jan 2010 | A1 |
20100023068 | Bouttens et al. | Jan 2010 | A1 |
20100049327 | Isch et al. | Feb 2010 | A1 |
20100087927 | Roche et al. | Apr 2010 | A1 |
20100161066 | Iannotti et al. | Jun 2010 | A1 |
20100217399 | Groh | Aug 2010 | A1 |
20100234959 | Roche et al. | Sep 2010 | A1 |
20100249938 | Gunther et al. | Sep 2010 | A1 |
20100274359 | Brunnarius et al. | Oct 2010 | A1 |
20100291401 | Medina et al. | Nov 2010 | A1 |
20100331990 | Mroczkowski | Dec 2010 | A1 |
20110035013 | Winslow et al. | Feb 2011 | A1 |
20110118846 | Katrana et al. | May 2011 | A1 |
20110144760 | Wong et al. | Jun 2011 | A1 |
20110190899 | Pierce et al. | Aug 2011 | A1 |
20110282393 | Garlach et al. | Nov 2011 | A1 |
20120004733 | Hodorek et al. | Jan 2012 | A1 |
20120029647 | Winslow et al. | Feb 2012 | A1 |
20120059383 | Murphy et al. | Mar 2012 | A1 |
20120165954 | Nimal | Jun 2012 | A1 |
20120191201 | Smits et al. | Jul 2012 | A1 |
20120209392 | Angibaud et al. | Aug 2012 | A1 |
20120221112 | Lappin | Aug 2012 | A1 |
20120232670 | Bojarski et al. | Sep 2012 | A1 |
20120239156 | De Wilde et al. | Sep 2012 | A1 |
20120253467 | Frankle | Oct 2012 | A1 |
20120277880 | Winslow et al. | Nov 2012 | A1 |
20130018483 | Li et al. | Jan 2013 | A1 |
20130053968 | Nardini et al. | Feb 2013 | A1 |
20130066433 | Veronesi et al. | Mar 2013 | A1 |
20130096631 | Leung et al. | Apr 2013 | A1 |
20130110470 | Vanasse et al. | May 2013 | A1 |
20130144393 | Mutchler et al. | Jun 2013 | A1 |
20130150972 | Iannotti et al. | Jun 2013 | A1 |
20130150973 | Splieth et al. | Jun 2013 | A1 |
20130150975 | Iannotti et al. | Jun 2013 | A1 |
20130226309 | Daigo et al. | Aug 2013 | A1 |
20130231754 | Daigo et al. | Sep 2013 | A1 |
20130253656 | Long | Sep 2013 | A1 |
20130261751 | Lappin | Oct 2013 | A1 |
20130261752 | Lappin et al. | Oct 2013 | A1 |
20130264749 | Jones et al. | Oct 2013 | A1 |
20130282135 | Sun et al. | Oct 2013 | A1 |
20140025173 | Cardon et al. | Jan 2014 | A1 |
20140142711 | Maroney et al. | May 2014 | A1 |
20140194995 | Koka | Jul 2014 | A1 |
20140257499 | Winslow et al. | Sep 2014 | A1 |
20140277180 | Paolino et al. | Sep 2014 | A1 |
20140371863 | Vanasse et al. | Dec 2014 | A1 |
20150073424 | Couture et al. | Mar 2015 | A1 |
20150094819 | Iannotti et al. | Apr 2015 | A1 |
20150142122 | Bickley et al. | May 2015 | A1 |
20150150688 | Vanasse et al. | Jun 2015 | A1 |
20150272741 | Taylor et al. | Oct 2015 | A1 |
20150305877 | Gargac et al. | Oct 2015 | A1 |
20160166392 | Vanasse et al. | Jun 2016 | A1 |
20160228262 | Bailey et al. | Aug 2016 | A1 |
20160270922 | Pressacco et al. | Sep 2016 | A1 |
20160287401 | Muir et al. | Oct 2016 | A1 |
20160310285 | Kovacs et al. | Oct 2016 | A1 |
20160324649 | Hodorek et al. | Nov 2016 | A1 |
20170027709 | Winslow et al. | Feb 2017 | A1 |
20170042687 | Boileau et al. | Feb 2017 | A1 |
20170049574 | Hopkins | Feb 2017 | A1 |
20170172764 | Muir et al. | Jun 2017 | A1 |
20170273795 | Neichel et al. | Sep 2017 | A1 |
20170273801 | Hodorek et al. | Sep 2017 | A1 |
20180078377 | Gargac et al. | Mar 2018 | A1 |
20180243102 | Burkhead, Jr. et al. | Aug 2018 | A1 |
20180368982 | Ball | Dec 2018 | A1 |
20190029833 | Briscoe et al. | Jan 2019 | A1 |
20190076261 | Mutchler et al. | Mar 2019 | A1 |
20190336293 | Kehres | Nov 2019 | A1 |
20200188121 | Boux De Casson et al. | Jun 2020 | A1 |
20220175543 | Ball | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
10123517 | Nov 2002 | DE |
0581667 | Feb 1994 | EP |
0776636 | Jun 1997 | EP |
1013246 | Nov 1999 | EP |
1064890 | Jan 2001 | EP |
1323395 | Jul 2003 | EP |
1488764 | Dec 2006 | EP |
1762201 | Mar 2007 | EP |
1515758 | Mar 2009 | EP |
2057970 | May 2009 | EP |
1639966 | Sep 2009 | EP |
1927328 | Jan 2011 | EP |
1902689 | Nov 2011 | EP |
1996125 | May 2013 | EP |
2335655 | Jul 2013 | EP |
1951161 | Apr 2014 | EP |
1973498 | Apr 2014 | EP |
2481376 | Apr 2014 | EP |
2601912 | Jul 2016 | EP |
2567019 | Jan 1986 | FR |
2739151 | Mar 1997 | FR |
2776506 | Aug 2000 | FR |
2971144 | Aug 2012 | FR |
2977791 | Jul 2014 | FR |
WO 2011073169 | Jun 2011 | WO |
WO 2011150180 | Dec 2011 | WO |
WO 2015068035 | May 2015 | WO |
WO 2015103090 | Jul 2015 | WO |
WO 2017007565 | Jan 2017 | WO |
2020154611 | Jul 2020 | WO |
Entry |
---|
International Preliminary Report on Patentability from International Application No. PCT/US2018/055490, dated Apr. 30, 2020, 11 pp. |
International Search Report and Written Opinion issued in PCT Application No. PCT/US2018/055490, dated Jun. 11, 2019, in 21 pages. |
Anatomical Shoulder™ Inverse/Reverse System Surgical Technique, Product Brochure, Zimmer, Inc., published 2006, in 32 pages. |
Arthrex, “Arthrex Releases Univers Revers™ Shoulder Arthroplasty System in the United States—First Surgery Successfully Performed in Chillicothe, OH”, Jun. 18, 2013. |
Biomet, “Comprehensive® Reverse Shoulder System”, 2013. |
Boileau et al., “Cemented polyethylene versus uncemented metal-backed glenoid components in total shoulder arthroplasty: A prospective, double-blind, randomized study,” Journal of Shoulder and Elbow Surgery, Jul./Aug. 2002, vol. 11, Issue 4, pp. 351-359. |
Boileau et al., “Metal-backed glenoid implant with polyethylene insert is not a viable long-term therapeutic option,” Journal of Shoulder and Elbow Surgery, Feb. 2015, pp. 1-10. |
Cementless Fixation Using a Polyethyene Oseo-Integration Peg as Used on the Freeman-Samuelson Knee brochure, produced by Finsbury Instruments Limited London in conjunction with Adrian Tuke Limited, 1982. |
Castagna et al., “Mid-term results of a metal-backed glenoid component in total shoulder replacement,” The Journal of Bone and Joint Surgery, Oct. 2010, vol. 92-B, No. 10, pp. 1410-1415. |
Clement et al., “An uncemented metal-backed glenoid component in total shoulder arthroplasty for osteoarthritis: factors affecting survival and outcome,” The Japanese Orthopaedic Association, published online Sep. 26, 2012, vol. 18, pp. 22-28. |
DJO Surgical, Reverse® shoulder prosthesis Surgical Technique, Feb. 2008. |
Eclipse™ Stemless Shoulder Prosthesis, Surgical Technique Guide, Anthrex GmbH, 2014, in 12 pages. |
Epoca Shoulder Arthroplasty System, Synthes, Inc., Apr. 2008, in 4 pages. |
Epoca Shoulder Arthroplasty System—Stem and Glenoid Technique Guide, Synthes, Inc., Apr. 2008, in 56 pages. |
Innovative Design Orthopaedics, “Verso® Shoulder Surgical Technique”, 2013. |
Kany et al., “A convertible shoulder system: is it useful in total shoulder arthroplasty revisions?” International Orthopaedics, published online Oct. 16, 2014, vol. 39, pp. 299-304. |
Katz et al., “New design of a cementless glenoid component in unconstrained shoulder arthroplasty: a prospective medium-term analysis of 143 cases,” published online Oct. 27, 2012, vol. 23, pp. 27-34. |
Montoya et al., “Midterm results of a total shoulder prosthesis fixed with a cementless glenoid component,” Journal of Shoulder and Elbow Surgery, May 2013, vol. 22, Issue 5, pp. 628-635. |
SMR Axioma® TT Metal Back Surgical Technique, Product Brochure, Lima Corporate, dated Sep. 2013, in 48 pages. |
Taunton et al., “Total Shoulder Arthroplasty with a Metal-Backed, Bone-Ingrowth Glenoid Component,” The Journal of Bone and Joint Surgery, Oct. 2008, vol. 90-A, Issue 10, pp. 2180-2188. |
Teissier et al., “The TESS reverse shoulder arthroplasty without a stem in the treatment of cuff-deficient shoulder conditions: clinical and radiographic results,” Journal of Shoulder and Elbow Surgery, Jan. 2015, vol. 24, Issue 1, pp. 45-51. |
The Anatomical Shoulder™: A true system approach, Product Brochure, Zimmer UK Ltd, printed 2006, in 6 pages. |
Univers Revers™ Total Shoulder System, Surgical Technique Guide, Anthrex Inc., Version D, revised Jul. 2, 2015, in 28 pages. |
International Search Report and Written Opinion issued in connection with International Patent Application No. PCT/US2022/06106, dated May 11, 2022, 12 pages. |
International Search Report and Written Opinion issued in connection with International Patent Application No. PCT/US2022/011217, dated May 4, 2022, 15 pages. |
International Search Report and Written Opinion issued in connection with International Patent Application No. PCT/US2022/034245, dated Sep. 23, 2022, 16 pages. |
International Search Report and Written Opinion issued in connection with International Patent Application No. PCT/US2022/035217, dated Nov. 1, 2022, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20200237519 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
62572920 | Oct 2017 | US |