Shoulder or hip prosthesis and process for fitting same

Information

  • Patent Grant
  • 7465319
  • Patent Number
    7,465,319
  • Date Filed
    Wednesday, December 15, 2004
    20 years ago
  • Date Issued
    Tuesday, December 16, 2008
    16 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Matthews; William H.
    • Schillinger; Ann
    Agents
    • Faegre & Benson LLP
Abstract
This prosthesis comprises a humeral or femoral component and an intermediate component. The concave surface of articulation of the humeral or femoral component is formed by a plate connected by a neck to a part of this component adapted to be anchored in the humeral or femoral medullary cavity. The intermediate component is provided with a member for retaining the humeral or femoral component in a position where the plate is in abutment against the first convex surface of the intermediate component. The retaining member defines a non-circular passage in which the neck is adapted to be displaced as a function of the movements of the humeral or femoral component with respect to the other components of the prosthesis. The retaining member defines with the first convex surface of articulation of the intermediate component a volume for receiving a part of the plate projecting radially with respect to the neck.
Description
FIELD OF THE INVENTION

The present invention relates to a complete or partial shoulder or hip prosthesis making it possible to reproduce, with an improved degree of precision, the characteristics of the natural joints. The invention also relates to a process for assembling such a prosthesis.


BACKGROUND OF THE INVENTION

In the domain of shoulder prostheses, it is known, for example from EP-A-0 299 889, to create a convex articular surface on a glenoid component, while a concave articular surface, of corresponding shape, is formed on a humeral component. The glenoid component of such a surface is very invasive and a subacromial conflict of the humeral component may occur at the end of the movement of abduction.


Furthermore, U.S. Pat. No. 4,846,840 discloses providing, on an intermediate element of a prosthesis, two substantially concentric convex surfaces with a view to their articulation on concave surfaces of corresponding shape, respectively provided on two bones which are to articulate on each other. Such a prosthesis is unstable insofar as no means is provided for avoiding that the two bones cooperating with the intermediate element, move apart from each other. In the event of failure of the articular ligaments, a dislocation cannot be excluded.


It is a more particular object of the invention to overcome these drawbacks by proposing a shoulder- or hip-joint prosthesis which reproduces the anatomical joint while facilitating the abduction of the arm or of the leg, in the absence of the rotator cuffs for the shoulder or of the stabilising structures of the hip.


SUMMARY OF THE INVENTION

In this spirit, the invention relates to a shoulder or hip prosthesis comprising a humeral or femoral component presenting a concave surface of articulation and an intermediate component presenting first and second convex surfaces of articulation intended to cooperate respectively with the concave surface of articulation of the humeral or femoral component and with a concave glenoid or acetabular surface of articulation which is natural or belongs to a glenoid or acetabular component. This prosthesis is characterized in that the concave surface of articulation of the humeral or femoral component is formed by a plate connected by a neck to a part of this component adapted to be anchored in the humeral or femoral medullary cavity, in that the intermediate component is provided with a member for retaining the humeral or femoral component in a position where the plate is in abutment against the first convex surface of the intermediate component, in that this retaining member defines a non-circular passage in which the aforementioned neck is adapted to be displaced, as a function of the movements of the humeral or femoral component with respect to the other components of the prosthesis, and in that this retaining member defines with the first convex surface of articulation of the intermediate component a volume for receiving a part of the plate which projects radially with respect to the neck.


Thanks to the invention, the retaining member contributes to the stability of the prosthesis, while the non-circular nature of the passage in which the neck is displaced makes it possible to envisage movements of abduction of great amplitude.


According to a first form of embodiment of the invention, the retaining member is substantially in the form of a U, with the result that the passage that it defines opens out on one side of this member.


According to other forms of embodiment of the invention, the retaining member may be in the form of a ring added on the intermediate component, with a central opening which constitutes the non-circular passage. This opening may be of substantially elliptical or substantially rectangular shape. The plate is in that case advantageously of non-circular cross section, particularly of substantially elliptical or rectangular shape.


The volume for reception defined between the retaining member and the first convex surface of articulation of the intermediate component may have a non-constant thickness about a median axis of the convex surface of the intermediate component which receives the plate in abutment. Similarly, it is possible that the thickness of that part of the plate which projects radially with respect to the neck is not constant about a central axis of this neck.


The retaining member may be removably mounted on a principal part of the intermediate component, particularly by means of an elastic blocking member, such as a circlip. In a variant, the retaining member may be in one piece with the intermediate component. According to another variant, it may be formed of a plurality of parts.


The humeral or femoral component may be in two parts, the part adapted to be anchored in the humeral or femoral medullary cavity defining a housing for receiving a stud fast with the neck and the plate. This stud may be centred on an axis offset with respect to a longitudinal axis of the neck. In that case, the housing may be provided to receive the stud in at least two positions in which the central axis of the stud is aligned with a central axis of the housing, the angular position of the longitudinal axis of the neck with respect to the central axis of the housing being, in that case, different in these positions.


The invention also relates to a process for mounting a prosthesis as described hereinabove and, more specifically, to a process which comprises steps consisting in:

    • introducing a stem belonging to the humeral or femoral component in a non-circular passage defined by a retaining member belonging to the intermediate component;
    • displacing an assembly, constituted by the stem, the aforementioned member and a plate which forms the concave surface of articulation of the humeral or femoral component, until this plate is in abutment against the first convex surface of articulation of the intermediate component, and
    • immobilizing the aforementioned member with respect to a principal part of the intermediate component by retaining a part of the plate in this first convex surface.


In particular in the case of the retaining member being in one piece with the intermediate component, the process of assembly of the prosthesis comprises a step consisting in introducing the plate of the humeral or femoral component by force in the non-circular passage defined by the retaining member, with the result that its neck is engaged in this passage and a part of the plate is retained in a volume for reception defined between the retaining member and the first convex surface of the intermediate component.


The invention also relates to a method for fitting a shoulder or hip prosthesis, which comprises a process as mentioned hereinabove.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be more readily understood and other advantages thereof will appear more clearly in the light of the following description of four forms of embodiment of a prosthesis in accordance with its principle, given solely by way of example and made with reference to the accompanying drawings, in which:



FIG. 1 is a sagittal section through a shoulder prosthesis according to the invention in place on a patient, while the patient's arm is in intermediate position.



FIG. 2 is a section similar to FIG. 1, but on a smaller scale, while the patient's arm is in raised position with respect to that of FIG. 1.



FIG. 3 is a section similar to FIG. 2, while the patient's arm is in lowered position.



FIG. 4 is a section along line IV-IV in FIG. 1, the blocking washer, the circlip, the glenoid component and the glenoid cavity having been omitted in order to render the drawing clearer.



FIG. 5 is an exploded view in perspective of a part of the humeral component of the prosthesis of FIGS. 1 to 4.



FIG. 6 is a partial sagittal section through a hip prosthesis in accordance with a second form of embodiment of the invention, while the patient's leg is in intermediate position.



FIG. 7 is a section along line VII-VII in FIG. 6, the fixed component and the hip bone having been omitted in order to render the drawing clearer.



FIG. 8 is a section along line VIII-VIII in FIG. 7.



FIG. 9 is a section similar to FIG. 7 for a shoulder prosthesis in accordance with a third form of embodiment of the invention.



FIG. 10 is an exploded view in perspective of a part of the humeral component of the prosthesis of FIG. 9.



FIG. 11 is an exploded view in perspective of the humeral component of a shoulder prosthesis in accordance with a fourth form of embodiment of the invention, and



FIG. 12 is a detailed view in the direction of arrow XII in FIG. 11.





DESCRIPTION OF PREFERRED EMBODIMENTS

Referring now to the drawings, the prosthesis P shown in FIGS. 1 to 5 comprises a humeral component 1 which includes a part 11 in the form of a stem intended to be anchored in the medullary cavity M of the humerus H of the joint to be fitted with the prosthesis P. A sub-assembly 12 is immobilized on part 11 by cooperation of shapes. This sub-assembly comprises a neck 13 in the form of a stem and a plate 14 which projects radially with respect to the neck about a central axis A-A′ of the neck. The neck presents a substantially rectangular section, as may be seen in FIG. 4. The sub-assembly 12 also comprises a flange 15 on which the neck may be immobilized and which is provided with a dove-tail 16 allowing it to be blocked on the part 11. Any other blocking means may be used here.


The neck 13 and the plate 14 are in one piece. They might equally well be formed by two distinct parts assembled together.


The plate 14 defines a concave surface S1 whose concavity is turned towards the glenoid cavity G of the shoulder.


The prosthesis also comprises a glenoid component 2 anchored in the glenoid cavity G and defining a concave surface S2 whose concavity is turned towards the outside of the glenoid cavity.


Between the components 1 and 2 there is interposed an intermediate component 3 comprising a hollow cup 31 inside which are immobilized a button or insert 32 and a substantially U-shaped member 33 as is visible in FIG. 4. 34 denotes the opening provided between the two branches of the member 33.


The elements 32 and 33 are maintained in position in the cup 31 by means of a washer 35 which comes into abutment against two annular surfaces 32a and 33a respectively provided on the insert 32 and on the member 33. This washer 35 is maintained in position with respect to the cup 31 by means of a circlip 36 engaged in an inner groove 31a of the cup 31.


S′1 denotes the convex surface of the insert 32 accessible from outside the cup 31. The surfaces S1 and S′1 are both portions of a sphere and present substantially the same radius R1, with the result that the plate 14 may slide over the surface S′1 of the insert 32.


The convex outer surface S′2 of the cup 31 is also in the form of a portion of a sphere, with a radius R2 similar to the radius of the surface S2, this allowing a relative sliding movement of the surfaces S2 and S′2.


In this way, the articulation of the humerus H with respect to the glenoid cavity G takes place by sliding of the surfaces S1 and S′1 on each other and of surfaces S2 and S′2 on each other.


The centre of rotation C1 of the surfaces S1 and S′1 is located in the component 2, while the centre of rotation C2 of the surfaces S2 and S′2 is located outside the prosthesis opposite the glenoid cavity.


In order to avoid detachment of the plate 14, the member 33 is provided to form a means for retaining the plate 14 in contact with the surface S′1.


To that end, the branches 33b and 33c and the bottom 33d of the member 33 define with the surface S′1 a space E in which may be engaged the part 14a of the plate 14 which projects, with respect to the neck 13, radially about axis A-A′. The width 1 of the opening 34 is less than the diameter D of the plate 14 which is circular. In this way, as soon as the neck 13 is in place in the opening 34, part 14a is engaged in the space E and the components 1 and 2 can no longer be moved away from each other as long as the member 33 is immobilized on the cup 31.


In FIG. 4, the washer 35 and the circlip 36 are not shown, this corresponding to an intermediate step of assembly of the prosthesis P in accordance with a first process.


In FIG. 4, the opening 34 opens out upwardly. However, the orientation of the member 33 may be chosen so that the opening 34 opens out in any direction in this Figure, as a function of the orientation of the movement of which it is desired to favour the amplitude.


For mounting the prosthesis, the member 33 is engaged on the neck 13 before the plate 14 is applied on the surface S′1. This operation is easy, taking into account the U shape of the member 33, its branches 33b and 33c being, in that case, disposed on either side of the stem 13. The assembly formed by elements 13, 14 and 33 may then be displaced towards the insert 32 without being limited by the size of the opening 34 since the member 33 is in that case to the rear of the part 14a with respect to its direction of displacement. When the plate 14 is in contact with the insert 32, it then suffices to immobilize the member 33 on the cup 31 by means of the washer 35 and the circlip 36.


B-B′ denotes the median axis of the surface S′1 which merges with axis A-A′ in the representation of FIG. 4. The fact that the opening 34 is not symmetrical about axis B-B′ allows the plate 14, and consequently all the component 1, to be easily placed in position and efficiently retained with respect to the component 3.


In the second embodiment shown in FIGS. 6 and 7, elements similar to those of the first embodiment bear identical references increased by 100. The intermediate component 103 of this embodiment comprises a cup 131 and an insert 132 which defines a surface S′1 of articulation of a plate 114 belonging to a femoral component 101. The plate 114 is in one piece with a neck 113 with which it constitutes a sub-assembly 112 intended to be mounted on a part 111 anchored in the medullary cavity of the femur F. The fixed component 102 is anchored in the iliac bone I.


An annular ring 133 is mounted in the cup 131 as a member for retaining the plate 114. The central opening 134 of the ring 133 is substantially rectangular, with its major axis X134-X′134 substantially parallel to the sagittal plane.


The plate 114 is also substantially rectangular, with its major axis X114-X′114 oriented perpendicularly to the sagittal plane in the configuration of FIG. 7.


S1 denotes the surface of articulation formed by the plate 114.


As previously, a space E is defined between the ring 133 and the insert 132 for receiving a part 114a of the insert 114 which projects radially with respect to the stem 113.


As is more particularly visible in FIGS. 6 and 8, the thickness e1 of the space E in its upper part in FIG. 6 is greater than the corresponding thickness e2 in the lower part. Similarly, the thickness e3 of the space E to the left in FIG. 8 is greater than the corresponding thickness e4 to the right in this Figure. In other words, the space E presents a non-constant thickness about the central median axis B-B′ of the surface S′1.


In addition, the part 114a of the plate 114 which projects radially with respect to the neck 113 likewise presents a non-constant thickness about axis A-A′ of the neck 113, the thickness e′1 of that portion of this part 114a intended to be introduced in the part of the space E of thickness e1 being greater than that, e′2, of the portion of the part 114a intended to be introduced in the part of the space E of thickness e2. Similarly, that portion of the part 114a intended to be introduced in the part of the space E of thickness e3 presents a thickness e′3 greater than the thickness e′4 of that portion of the part 114a intended to be introduced in the part of the space E of thickness e4.


With this distribution of the respective thicknesses of the space E and of the part 114a of the plate 114, control of the angular position of the neck 113 and consequently of the whole of the component 1 about the central axis A-A′ of the neck 113, is obtained.


Such control avoids the plate 114 tending to return into a configuration where it might be torn through the opening 134 of the ring 133.


Mounting of the prosthesis P of this embodiment takes place by disconnecting the neck 113 from the flange 115 of the sub-assembly 112. This makes it possible to introduce the neck 113 in the opening 134 then to connect the neck 113 and the flange 115 again by any appropriate means. It is then possible to apply the plate 114 against the insert 132 by bringing the ring 133 into contact with the insert 132 and the cup 131. This ring may in that case be immobilized with respect to the elements 131 and 132 by placing a bearing washer 135 and a circlip 136 in position.


When the ring 133 is brought into contact with the insert 132, the plate 114 is oriented such that its largest dimension is substantially perpendicular to the largest dimensions of the opening 134, care being taken that the zones of thickness e′1, e′2, e′3 and e′4 be respectively caused to merge with the parts of the member 133 intended to define the zones of the space E of thicknesses e1, e2, e3 and e4. In this way, once the ring 133 is applied on the component 103, the plate 114 is necessarily oriented in the configuration of FIGS. 6 to 8 and does not risk accidentally returning towards a configuration where it might be extracted through the opening 134, particularly in the case of its dimensions being smaller than those of the opening.


As in the first embodiment, the plate 114 is retained in abutment on the surface S′1 during the whole movement of abduction, including in central position corresponding to that of FIG. 1.


In the third embodiment of the invention shown in FIGS. 9 and 10, elements similar to those of the first embodiment bear identical references increased by 200. This embodiment concerns a shoulder prosthesis whose intermediate component 203 comprises a cup 231 and a ring 233 whose central opening 234 is of substantially elliptical shape, with its longitudinal axis X234-X′234 substantially parallel to the sagittal plane.


The sub-assembly 212 of the humeral component 201, which forms a surface of articulation S1 adapted to cooperate with the surface of articular S′1, defined by the insert 232 of the component 203, is more particularly visible in FIG. 9. Its plate 214 is of substantially elliptical shape, its neck 213 being circular. The neck 213 is adapted to be immobilized on a flange 215 from which it may be separated, as will appear from the following explanations.



214
a denotes that part of the plate 214 which projects radially with respect to the neck 213. As previously, the part 214a of the plate 214 presents a non-constant thickness about axis A-A′ of the neck 213, while the space E defined between the elements 233 and 232 to receive this part likewise presents a non-constant thickness. For example, that part of the space E shown to the left in FIG. 10 may have a relatively small thickness, like the corresponding section of the part 214a, while the space E presents a greater thickness to the right in FIG. 10, like the corresponding section of the part 214a. This difference in thickness contributes to maintaining the plate 214 in position with respect to the component 203 in rotation about axis B-B′.


Assembly of the prosthesis in accordance with this embodiment takes place similarly to the assembly of the second embodiment. The neck 213 is disconnected from the flange 215 and this neck 213 is introduced in the opening 234 of the washer 233. The plate 214 is then applied against the surface S′1 of the intermediate component by respecting an orientation compatible with the different thicknesses of the part 214a and of the space E, this making it possible to bring the washer 233 into contact with the cup 231 and to immobilize it by any appropriate means, particularly a washer of the type of washer 135 of the second embodiment.


The neck 213 and the flange 215 may be connected before or after the plate 214 is applied against the surface S′1. This also applies to the second embodiment.


According to a variant of the invention (not shown), the flange 215 and the part 211 intended to be anchored in the medullary cavity are in one piece. According to another variant, the neck 213 is introduced directly in a housing formed by the part 211.


In the fourth embodiment of the invention shown in FIG. 11, elements similar to those of the first embodiment bear identical references. The medullary stem 11 defines a truncated housing 11a centred on an axis X11 and bordered by a substantially annular bearing surface 11b. The plate 14 and the neck 13 are in one piece with the flange 15 and with a stud 17 intended to be introduced in the housing 11a and immobilized therein by cooperation of shapes. The assembly formed by elements 13, 14, 15 and 17 is visible in the plan view in FIG. 12. The outer surface of the stud 17 is truncated with the same angle of conicity as the surface defining the housing 11a.


X17 denotes the central axis of the stud 17. Axes X11 and X17 merge when the stud 17 is received in the housing 11a. X13 denotes the central axis of the neck 13. Axis X13 is offset radially with respect to axis X17 by a non-zero distance d, this making it possible to adjust the position of the plate 14 with respect to the intermediate component (not shown) of this embodiment.


The flange 15 is intended to come into abutment on the surface 11b and is provided with two notches 15a and 15b intended to be disposed at the level of a projection 11c formed above the annular surface 11b with the result that the assembly formed by elements 13, 14, 15 and 17 may be mounted on part 11 in two positions, depending on whether the projection 11c is received in the notch 15a or in the notch 15b. Two possible positions are thus obtained for the plate 14 with respect to the part 11, by reason of the two angular positions obtained for axis X13 with respect to axes X11 and X17.


According to a variant of the invention (not shown), axes X17 and X13 may be aligned.


The foregoing description has mentioned the positioning of the plate with respect to the intermediate component; this is a relative positioning and the assembling may be effected by maintaining the humeral or femoral plate immobile and by displacing the intermediate component.


The invention has been represented with retaining members 33, 133 or 233 added on the intermediate component 3, 103 or 203. However, it is applicable with a retaining member in one piece with the intermediate component. In that case, the plate is introduced by force through the passage of the retaining member while the prosthesis is being mounted, this making it possible to engage the corresponding neck in this passage. Such a force-fit may also be envisaged with the prostheses of the embodiments shown.


According to another variant of the invention (not shown), the retaining member may be in two or even more parts.


Independently of the embodiment considered, the intermediate component may be made entirely of synthetic material, particularly of polyethylene, or entirely of ceramics. However, this is not obligatory, as may be seen from the Figures.


It will be understood that the processes of mounting mentioned hereinabove may form part of a method for fitting a prosthesis in accordance with the invention, the stem 11, 111 or equivalent of the humeral or femoral component being firstly anchored in the corresponding medullary cavity, assembling with the intermediate component being effected thereafter.


The invention has been shown when implemented with complete shoulder and hip prostheses. However, it is applicable with a shoulder prosthesis without glenoid component, the concave surface of the glenoid cavity being used instead of the surface S2 shown in the Figures. The same applies in the case of a hip prosthesis where the natural acetabular cavity may be used.


The characteristics of the different embodiments shown may be combined together within the framework of the present invention. In particular, the prosthesis of the second embodiment may be adapted to the shoulder, while the prostheses of the first and third embodiments may be adapted to the hip.

Claims
  • 1. A shoulder or hip prosthesis comprising: a first component having a concave surface of articulation formed by a plate, wherein the plate is connected to a first end of the first component by a neck, wherein the first end of the first component is adapted to be anchored in a medullary cavity;a second component having a concave surface of articulation; andan intermediate component having a first convex surface of articulation and a second convex surface of articulation, wherein the first and second convex surfaces of articulation cooperate respectively with the concave surface of articulation of the first component and with the concave surface of articulation of the second component, and wherein the second convex surface of articulation of the intermediate component is unconstrained relative to the concave surface of articulation of the second component;wherein the intermediate component has a retaining member for retaining the concave surface of articulation of the first component in abutment against the first convex surface of the intermediate component;wherein the retaining member has a non-circular passage in which the neck of the first component is adapted to be displaced as a function of movements of the first component with respect to the second and intermediate components; andwherein the retaining member and the first convex surface of articulation of the intermediate component define a volume for receiving a second end of the plate which projects radially with respect to the neck.
  • 2. The prosthesis of claim 1, wherein the retaining member is substantially in the form of a U.
  • 3. The prosthesis of claim 1, wherein the retaining member is in the form of a ring having a central opening, wherein the ring is connectable to the intermediate component, and wherein the central opening of the ring forms the non-circular passage.
  • 4. The prosthesis of claim 3, wherein the central opening is of substantially rectangular shape.
  • 5. The prosthesis of claim 3, wherein the central opening is of substantially elliptical shape.
  • 6. The prosthesis of claim 1, wherein the plate has a non-circular cross section, particularly of substantially elliptical or rectangular shape.
  • 7. The prosthesis of claim 1, wherein the volume for receiving the second end of the first component has variable thickness about a central median axis of the first convex surface of articulation.
  • 8. The prosthesis of claim 1, wherein the second end of the plate has variable thickness about a central axis of the neck.
  • 9. The prosthesis of claim 1, wherein the retaining member is removably mounted on the intermediate component by means of an elastic blocking member.
  • 10. The prosthesis of claim 1, wherein the retaining member is integral with the intermediate component.
  • 11. The prosthesis of claim 1, wherein the retaining member is formed by at least two parts.
  • 12. The prosthesis of claim 1, wherein the first component has a first part and a second part, wherein the first part is adapted to be anchored in the medullary cavity and wherein the first part defines a housing for receiving a stud connected to the neck and the plate.
  • 13. The prosthesis of claim 12, wherein a central axis of the stud is offset with respect to a longitudinal axis of the neck.
  • 14. The prosthesis of claim 13, wherein the housing is adapted to receive the stud in at least two positions in which the central axis of the stud is aligned with a central axis of the housing, and wherein an angular position of the longitudinal axis of the neck is different in the two positions with respect to the central axis of the housing.
  • 15. A shoulder or hip prosthesis comprising: a first component comprising: a neck; anda plate connected to the neck, wherein the plate forms a concave surface of articulation;a second, intermediate component comprising: a first convex surface of articulation;a second convex surface of articulation; anda retaining member for retaining the first component in abutment against the first convex surface of the second component, wherein the retaining member and the first convex surface of the second component define a volume for receiving a projection extending radially from the plate with respect to the neck; anda third component comprising a concave surface of articulation;wherein the first and second convex surfaces of articulation cooperate respectively with the concave surface of articulation of the first component and the concave surface of articulation of the second component, wherein the second convex surface of articulation of the second component is unconstrained relative to the concave surface of articulation of the third component, and wherein the retaining member defines a non-circular passage in which the neck is adapted to be displaced as a function of movement of the first component with respect to the second and third components.
  • 16. A shoulder or hip prosthesis comprising: a first component comprising: a plate forming a concave surface of articulation;a stem anchored in a medullary cavity; anda neck connecting the plate to the stem;a second component comprising: a retaining member having a non-circular passage for maintaining the first component against the second component;a first convex surface of articulation; anda second convex surface of articulation;wherein the neck of the first component is displaced within the non-circular passage of the retaining member; andwherein the retaining member and the first convex surface of articulation define a volume for receiving a radially extending part of the plate with respect to the neck; anda third component having a concave surface of articulation;wherein the first convex surface of articulation engages the concave surface of articulation of the first component and the second convex surface of articulation engages the concave surface of articulation of the third component; andwherein the second convex surface of articulation of the second component is unconstrained relative to the concave surface of articulation of the third component.
Priority Claims (1)
Number Date Country Kind
03 15069 Dec 2003 FR national
US Referenced Citations (246)
Number Name Date Kind
3694820 Scales et al. Oct 1972 A
3815157 Skorecki et al. Jun 1974 A
3842442 Kolbel Oct 1974 A
3864758 Yakich Feb 1975 A
3869730 Skobel Mar 1975 A
3916451 Buechel et al. Nov 1975 A
3978528 Crep Sep 1976 A
3979778 Stroot Sep 1976 A
3992726 Freeman et al. Nov 1976 A
4003095 Gristina Jan 1977 A
4030143 Elloy et al. Jun 1977 A
4040131 Gristina Aug 1977 A
4054955 Seppo Oct 1977 A
4135517 Reale Jan 1979 A
4179758 Gristina Dec 1979 A
4206517 Pappas et al. Jun 1980 A
4261062 Amstutz et al. Apr 1981 A
4550450 Kinnett Nov 1985 A
4693723 Gabard Sep 1987 A
4822370 Schelhas Apr 1989 A
4846840 Leclercq et al. Jul 1989 A
4865605 Dines et al. Sep 1989 A
4865609 Roche Sep 1989 A
4892549 Figgie, III et al. Jan 1990 A
4919670 Dale et al. Apr 1990 A
4957510 Cremascoli Sep 1990 A
4963155 Lazerri et al. Oct 1990 A
5032132 Matsen, III et al. Jul 1991 A
5080673 Burkhead et al. Jan 1992 A
5080685 Bolesky et al. Jan 1992 A
5127920 MacArthur Jul 1992 A
5135529 Paxson et al. Aug 1992 A
5163961 Harwin Nov 1992 A
5171289 Tornier Dec 1992 A
5181928 Bolesky et al. Jan 1993 A
5192329 Christie et al. Mar 1993 A
5201882 Paxson Apr 1993 A
5206925 Nakazawa et al. Apr 1993 A
5222984 Forte Jun 1993 A
5261914 Warren Nov 1993 A
5314479 Rockwood, Jr. et al. May 1994 A
5314485 Judet May 1994 A
5314487 Schryver et al. May 1994 A
5326359 Oudard Jul 1994 A
5330531 Cappana Jul 1994 A
5358526 Tornier Oct 1994 A
5383936 Kubein-Meesenburg et al. Jan 1995 A
5405399 Tornier Apr 1995 A
5425779 Schlosser Jun 1995 A
5429639 Judet Jul 1995 A
5443519 Averill et al. Aug 1995 A
5458650 Carrett et al. Oct 1995 A
5462563 Shearer et al. Oct 1995 A
5505731 Tornier Apr 1996 A
5507817 Craig et al. Apr 1996 A
5507818 McLaughlin Apr 1996 A
5507824 Lennox Apr 1996 A
5549682 Roy Aug 1996 A
5580352 Sekel Dec 1996 A
5591168 Judet et al. Jan 1997 A
5662651 Tornier et al. Sep 1997 A
5676702 Ratron Oct 1997 A
5702447 Walch et al. Dec 1997 A
5702457 Walch et al. Dec 1997 A
5702478 Tornier Dec 1997 A
5702486 Craig et al. Dec 1997 A
5723018 Cyprien et al. Mar 1998 A
5728161 Camino et al. Mar 1998 A
5741335 Gerber et al. Apr 1998 A
5755807 Anstaett et al. May 1998 A
5766256 Oudard et al. Jun 1998 A
5800551 Williamson et al. Sep 1998 A
5824106 Fournol Oct 1998 A
5879395 Tornier et al. Mar 1999 A
5879405 Ries et al. Mar 1999 A
5902340 White et al. May 1999 A
5910171 Kummer et al. Jun 1999 A
5928285 Bigliani Jul 1999 A
5944758 Mansat et al. Aug 1999 A
5961555 Huebner Oct 1999 A
5984927 Wenstrom, Jr. et al. Nov 1999 A
6015437 Stossel Jan 2000 A
6033439 Camino et al. Mar 2000 A
6045582 Prybyla Apr 2000 A
6045583 Gross et al. Apr 2000 A
6102953 Huebner Aug 2000 A
6129764 Servfidio Oct 2000 A
6162254 Timoteo Dec 2000 A
6165224 Tornier Dec 2000 A
6168629 Timoteo Jan 2001 B1
6171341 Boileau et al. Jan 2001 B1
6183519 Bonnin et al. Feb 2001 B1
6197062 Fenlin Mar 2001 B1
6197063 Dews Mar 2001 B1
6203575 Farey Mar 2001 B1
6206925 Tornier Mar 2001 B1
6228120 Leonard et al. May 2001 B1
6267767 Stroble et al. Jul 2001 B1
6283999 Rockwood, Jr. Sep 2001 B1
6299646 Chambat et al. Oct 2001 B1
6312467 McGee Nov 2001 B1
6328758 Tornier et al. Dec 2001 B1
6334874 Tornier et al. Jan 2002 B1
6364910 Shultz et al. Apr 2002 B1
6368352 Camino et al. Apr 2002 B1
6368353 Arcand Apr 2002 B1
6379387 Tornier Apr 2002 B1
6398812 Masini Jun 2002 B1
6406495 Schoch Jun 2002 B1
6406496 Rüter Jun 2002 B1
6436144 Ahrens Aug 2002 B1
6436147 Zweymuller Aug 2002 B1
6454809 Tornier Sep 2002 B1
6458136 Allard et al. Oct 2002 B1
6475243 Sheldon et al. Nov 2002 B1
6488712 Tornier et al. Dec 2002 B1
6494913 Huebner Dec 2002 B1
6506214 Gross Jan 2003 B1
6508840 Rockwood, Jr. et al. Jan 2003 B1
6514287 Ondrla et al. Feb 2003 B2
6520994 Nogarin Feb 2003 B2
6530957 Jack Mar 2003 B1
6540770 Tornier et al. Apr 2003 B1
6558425 Rockwood May 2003 B2
6569202 Whiteside May 2003 B2
6582469 Tornier Jun 2003 B1
6589281 Hyde, Jr. Jul 2003 B2
6599295 Tornier et al. Jul 2003 B1
6620197 Maroney et al. Sep 2003 B2
6626946 Walch et al. Sep 2003 B1
6673114 Hartdegen et al. Jan 2004 B2
6673115 Resch et al. Jan 2004 B2
6679916 Frankle et al. Jan 2004 B1
6736851 Maroney et al. May 2004 B2
6746487 Scifert et al. Jun 2004 B2
6749637 Bahler Jun 2004 B1
6755866 Southworth Jun 2004 B2
6761740 Tornier Jul 2004 B2
6767368 Tornier Jul 2004 B2
6780190 Maroney Aug 2004 B2
6783549 Stone et al. Aug 2004 B1
6790234 Frankle Sep 2004 B1
6802864 Tornier Oct 2004 B2
6824567 Tornier et al. Nov 2004 B2
6863690 Ball et al. Mar 2005 B2
6875234 Lipman et al. Apr 2005 B2
6887277 Rauscher et al. May 2005 B2
6890357 Tornier May 2005 B2
6890358 Ball et al. May 2005 B2
6942699 Stone et al. Sep 2005 B2
6953478 Bouttens et al. Oct 2005 B2
6969406 Tornier Nov 2005 B2
7011686 Ball et al. Mar 2006 B2
7033396 Tornier Apr 2006 B2
7066959 Errico Jun 2006 B2
7108719 Horber Sep 2006 B2
7166132 Callaway et al. Jan 2007 B2
7169184 Dalla Pria Jan 2007 B2
7175663 Stone Feb 2007 B1
7195645 Disilvestro et al. Mar 2007 B2
7238207 Blatter et al. Jul 2007 B2
7238208 Camino et al. Jul 2007 B2
7297163 Huebner Nov 2007 B2
7309360 Tornier et al. Dec 2007 B2
7329284 Maroney et al. Feb 2008 B2
7338498 Long et al. Mar 2008 B2
7338528 Stone et al. Mar 2008 B2
20010032021 McKinnon Oct 2001 A1
20010047210 Wolf Nov 2001 A1
20010049561 Dews et al. Dec 2001 A1
20020032484 Hyde, Jr. Mar 2002 A1
20020099381 Maroney Jul 2002 A1
20020138148 Hyde, Jr. Sep 2002 A1
20020143402 Steinberg Oct 2002 A1
20020151982 Masini Oct 2002 A1
20030009170 Tornier Jan 2003 A1
20030009171 Tornier Jan 2003 A1
20030028198 Tornier et al. Feb 2003 A1
20030074072 Errico et al. Apr 2003 A1
20030097183 Rauscher et al. May 2003 A1
20030114933 Bouttens et al. Jun 2003 A1
20030149485 Tornier Aug 2003 A1
20030158605 Tornier Aug 2003 A1
20040002765 Maroney et al. Jan 2004 A1
20040006392 Grusin et al. Jan 2004 A1
20040030394 Horber Feb 2004 A1
20040034431 Maroney et al. Feb 2004 A1
20040039449 Tornier Feb 2004 A1
20040064189 Maroney et al. Apr 2004 A1
20040064190 Ball et al. Apr 2004 A1
20040133276 Lang et al. Jul 2004 A1
20040134821 Tornier Jul 2004 A1
20040138754 Lang et al. Jul 2004 A1
20040148033 Schroeder Jul 2004 A1
20040193276 Maroney et al. Sep 2004 A1
20040193277 Long et al. Sep 2004 A1
20040193278 Maroney et al. Sep 2004 A1
20040210220 Tornier Oct 2004 A1
20040210317 Maroney et al. Oct 2004 A1
20040215200 Tornier et al. Oct 2004 A1
20040220673 Pria Nov 2004 A1
20040220674 Pria Nov 2004 A1
20040225367 Glien et al. Nov 2004 A1
20040230197 Tornier et al. Nov 2004 A1
20040267370 Ondria Dec 2004 A1
20050008672 Winterbottom et al. Jan 2005 A1
20050015154 Lindsey et al. Jan 2005 A1
20050043805 Chudik Feb 2005 A1
20050049709 Tornier Mar 2005 A1
20050055102 Tornier et al. Mar 2005 A1
20050065612 Winslow Mar 2005 A1
20050085919 Durand-Allen et al. Apr 2005 A1
20050085921 Gupta et al. Apr 2005 A1
20050090902 Masini Apr 2005 A1
20050107882 Stone et al. May 2005 A1
20050113931 Horber May 2005 A1
20050119531 Sharratt Jun 2005 A1
20050143829 Ondria et al. Jun 2005 A1
20050165490 Tornier Jul 2005 A1
20050177241 Angibaud et al. Aug 2005 A1
20050197708 Stone et al. Sep 2005 A1
20050203536 Laffargue et al. Sep 2005 A1
20050209700 Rockwood et al. Sep 2005 A1
20050216092 Marik et al. Sep 2005 A1
20050251263 Forrer et al. Nov 2005 A1
20050256584 Farrar Nov 2005 A1
20050267590 Lee Dec 2005 A1
20050278030 Tornier et al. Dec 2005 A1
20050278031 Tornier et al. Dec 2005 A1
20050278032 Tornier et al. Dec 2005 A1
20050278033 Tornier et al. Dec 2005 A1
20050288681 Klotz et al. Dec 2005 A1
20050288791 Tornier et al. Dec 2005 A1
20060004462 Gupta Jan 2006 A1
20060009852 Winslow et al. Jan 2006 A1
20060015185 Chambat et al. Jan 2006 A1
20060020344 Schultz et al. Jan 2006 A1
20060030946 Ball et al. Feb 2006 A1
20060173457 Tornier Aug 2006 A1
20060235538 Rochetin et al. Oct 2006 A1
20060241775 Buss Oct 2006 A1
20070225817 Reubelt et al. Sep 2007 A1
20070225818 Reubelt et al. Sep 2007 A1
20070225821 Reubelt et al. Sep 2007 A1
20070244564 Ferrand et al. Oct 2007 A1
20070250174 Tornier et al. Oct 2007 A1
Foreign Referenced Citations (55)
Number Date Country
426096 Dec 1966 CH
507704 May 1971 CH
19509037 Sep 1996 DE
19630298 Jan 1998 DE
0257359 Aug 1987 EP
0 299 889 Jul 1988 EP
0524857 Jan 1993 EP
0549480 Jun 1993 EP
0599429 Jun 1994 EP
0617934 Oct 1994 EP
0664108 Jul 1995 EP
0679375 Nov 1995 EP
0712617 May 1996 EP
0715836 Jun 1996 EP
0797694 Oct 1997 EP
0807426 Nov 1997 EP
0809986 Dec 1997 EP
0864306 Sep 1998 EP
0903127 Mar 1999 EP
0903128 Mar 1999 EP
0927548 Jul 1999 EP
1062923 Dec 2000 EP
1064890 Jan 2001 EP
1195149 Oct 2002 EP
1 380 274 Jan 2004 EP
1402854 Mar 2004 EP
2248820 Oct 1973 FR
2545352 Nov 1984 FR
2574283 Jun 1986 FR
2652498 Apr 1991 FR
2664809 Jan 1992 FR
2699400 Jun 1994 FR
2721200 Dec 1995 FR
2726994 May 1996 FR
2737107 Jan 1997 FR
2835425 Aug 2003 FR
2836039 Aug 2003 FR
749392 Jul 1980 SU
WO 9107932 Jun 1991 WO
WO 9309733 May 1993 WO
WO 9617553 Jun 1996 WO
WO 9846172 Oct 1998 WO
WO 9949792 Oct 1999 WO
WO 9965413 Dec 1999 WO
WO 0015154 Mar 2000 WO
WO 0041653 Jul 2000 WO
WO 0147442 Jul 2001 WO
WO 0239931 May 2002 WO
WO 0239933 May 2002 WO
WO 02067821 Sep 2002 WO
WO 03005933 Jan 2003 WO
WO 03094806 Nov 2003 WO
WO 2007109291 Sep 2007 WO
WO 2007109319 Sep 2007 WO
WO 2007109340 Sep 2007 WO
Related Publications (1)
Number Date Country
20050165490 A1 Jul 2005 US