The present teachings relate to a prosthesis for replacing and reconstructing a portion of the humerus and more specifically to a modular humeral prosthesis, which allows for total shoulder joint replacement.
The shoulder joint is considered to be one of the most complex joints in the body. The scapula, the clavicle and the humerus all meet at the shoulder joint. The head of the humerus fits into a shallow socket of the scapula called the glenoid fossa to form a mobile joint. When the joint is articulated, the humeral head moves in the glenoid fossa to provide a wide range of motion. The shoulder joint may suffer from various maladies including rheumatoid arthritis, osteoarthritis, rotator cuff arthropathy, a vascular necrosis, bone fracture or failure of previous joint implants. If severe joint damage occurs and no other means of treatment is found to be effective, then a total shoulder reconstruction may be necessary.
A shoulder joint prosthesis generally includes the replacement of the ball of the humerus and, optionally, the socket of the shoulder blade with specially designed artificial components. The bio-kinematics, and thus the range of motion in the shoulder vary greatly among prospective patients for reconstruction shoulder surgery. The humeral component typically has a metal shaft or stem with a body portion that is embedded in the resected humerus and a generally hemispherical head portion supported on the stem. The head slidingly engages a glenoid implant on the glenoid fossa. During reconstructive surgery, the components of the prosthesis are matched with the bio-kinematics of the patient in an effort to maintain the natural range of motion of a healthy shoulder joint. Thus, a shoulder prosthesis design must be readily adaptable to a wide range of bio-kinematics for prospective patients.
In this regard, shoulder prostheses are generally available as either unitary structures or modular components. With unitary shoulder prosthesis, a large inventory of differently sized prostheses must be maintained to accommodate the different bone sizes and joint configurations of the prospective patients. With such unitary shoulder prosthesis, the patient is typically evaluated by x-ray to determine the approximate prostheses size needed for reconstruction. A number of differently sized prostheses are selected as possible candidates based upon this preliminary evaluation. Final selection of the appropriately sized prosthesis is made during the surgery. With unitary shoulder prosthesis, each design represents a compromise that is unable to achieve all of the natural range of motion of a healthy shoulder joint because of the fixed geometric configuration in their design.
Modular prostheses systems which reduce the need to maintain large inventories of various sized components are well known in the art. Conventionally, the humeral prosthesis includes two components—a humeral stem component and a spherical head releasably coupled to the stem. Alternately, a three component design is known in which the stem and shoulder are interconnected with an adapter. In either of the two-piece or three-piece designs, a radial offset or angular inclination of the head relative to the stem is provided in individual components. For example, in the three-piece design, an adapter may be configured with a fixed radial offset of 2 millimeters or an angular inclination of 5 degrees. Different radial offsets or angular inclinations are achieved through the use of different adapters or heads. In this regard, conventional modular shoulder prosthesis kits include multiple redundant components such as adapters and heads to achieve a range of prosthetic options. While providing an advantage over the unitary design in reducing the number of components needed, a rather large inventory of head components and/or adapter components must be maintained to provide the desired range of geometric configurations with the conventional modular shoulder prostheses. Therefore, there is a need for modular shoulder prostheses which are readily adaptable to provide a range of geometric configurations, i.e. radial offsets of angular inclination while minimizing the number of components required.
In accordance with the present teachings, a modular joint prosthesis system is provided. Specifically, a humeral component for a total shoulder prosthesis includes an adapter and a head component which cooperate to provide a range of radial offsets and/or angular inclinations and which are adapted to be used in conjunction with a stem.
In one form, the present disclosure provides a humeral component for a total shoulder prosthesis that is configured to adjust a radial offset of the head with respect to the stem. The shoulder prosthesis includes an adapter interposed between a stem and a head. The adapter is eccentrically coupled to the stem such that relative angular positioning of the adapter on the stem will effect a first adjustment in the radial offset. Likewise, the head component is eccentrically coupled to the adapter as such that relative angular position of the head on the adapter will effect a second radial offset adjustment. By selectively positioning the adapter and the head component with respect to the stem, an infinite adjustment of the radial offset within a given range may be achieved. In one example, indicia are provided at the interface between the adapter and the head to indicate the offset vector (i.e., offset amount and direction).
In another form, the present disclosure provides a humeral component for a total shoulder prosthesis for adjusting an angular inclination of the head component relative to the stem component. The shoulder prosthesis includes an adapter interposed between a stem and a head. The adapter is coupled to the stem in a first angled or non-orthogonal orientation such that relative rotational positioning of the adapter on the stem will effect a first adjustment in the direction of the angular inclination. Likewise, the adapter is coupled to the head in a second angled or non-orthogonal orientation as such that relative rotational position of the head on the adapter will effect a second adjustment in the direction of the angular inclination. By selectively positioning the adapter and the head component with respect to the stem, an infinite adjustment of the angular inclination within a given range may be achieved.
In yet another form, the present disclosure provides an adapter interposed between a stem and a head. The adapter includes a ball stud having a shank coupled to the stem and a ring coupled to the head. The ring has a spherical bearing surface which cooperates with a ball portion of the ball stud such that an angular adjusted between the ball stud and the ring may be effected. The ring is eccentrically coupled to the head such that relative angular positioning of the ring in the head will effect an adjustment in the radial offset.
The joint prosthesis systems of the present disclosure provide great flexibility in the adjustment of important bio-kinematic parameters for the prosthesis systems while minimizing the number of components required for the modular system.
Also provided according to the present teachings is a shoulder prosthesis comprising a stem having a first longitudinal axis. The shoulder prosthesis can also include an adaptor including a first taper. The first taper can have a first taper axis. The shoulder prosthesis can also include a plurality of indicia. The shoulder prosthesis can include a head rotatably supported by the adaptor. The head can have a semispherical articulating surface. The head can be coupled to the first taper and can be positionable relative to the stem through rotation of the adaptor about the first taper axis for adjusting a radial offset of the head relative to the longitudinal axis of the stem. The plurality of indicia can indicate an alignment of the radial offset.
Further provided is a shoulder prosthesis comprising a stem having a longitudinal axis and a proximal face. The proximal face can define a bore. The shoulder prosthesis can include an adaptor having a first portion coupled to a second portion. At least a portion of the first portion can be received within the bore of the stem to couple the adaptor to the stem. The first portion can also have a first diameter. The second portion can have a second diameter different than the first diameter, and can define a first taper. The adaptor can also include a plurality of indicia. The shoulder prosthesis can include a head having a bottom face opposite a semispherical articulating surface. The bottom face can have a second taper that mates with the first taper of the second portion to couple the head to the adaptor. The rotation of the adaptor relative to the stem can adjust the radial offset of the head relative to the longitudinal axis of the stem. The plurality of indicia on the adaptor can indicate an alignment of the radial offset.
In another form, the present disclosure provides a prosthesis that may include a stem, an adaptor and a head. The stem may include a longitudinal axis. The adaptor may include a first taper having a first taper axis of symmetry. The head may be rotatably supported by the adaptor and may include a semispherical articulating surface defined by a central axis of symmetry that is angled relative to the first taper axis of symmetry. The head may be coupled to the first taper and may be positionable relative to the stem through relative rotation between the head and the stem about the first taper axis of symmetry to adjust a radial offset of the head relative to the longitudinal axis of the stem.
In another form, the present disclosure provides a prosthesis that may include a stem, an adaptor and a head. The stem may include a longitudinal axis. The adaptor may include first and second portions. The first portion may include a first taper having a first taper axis of symmetry. The second portion may be positioned adjacent to the first portion and may include a second taper having a second taper axis of symmetry. The first taper axis of symmetry may be angled relative to the second taper axis of symmetry. The head may be rotatably supported by the adaptor and may include a semispherical articulating surface and a central axis of symmetry that is angled relative to the first and second taper axes of symmetry. The head may be coupled to the first taper and may be positionable relative to the stem through relative rotation between the stem and the head about at least one of the first and second taper axes of symmetry to adjust a radial offset of the head relative to the longitudinal axis of the stem.
In another form, the present disclosure provides a shoulder prosthesis that may include a stem, an adaptor, a head and a plurality of indicia. The stem may include a longitudinal axis. The adaptor may include first and second portions. The first portion may include a first taper having a first taper axis of symmetry and first and second ends. The second portion may be positioned adjacent to the first portion and may include a second taper having a second taper axis of symmetry and third and fourth ends. The first and second ends may include respective diameters that are greater than respective diameters of the third and fourth ends. The head may be rotatably supported by the adaptor and may include a semispherical articulating surface and a central axis of symmetry that is angled relative to the first and second taper axes of symmetry. The head may include a female taper receiving the first taper and may be positionable through relative rotation between the stem and the head about at least one of the first and second taper axes of symmetry to adjust a radial offset of the head relative to the longitudinal axis of the stem. The plurality of indicia may be formed on at least one of the stem, adaptor and head and may indicate an alignment of the radial offset.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present teachings.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present teachings in any way.
The following description is merely exemplary in nature and is not intended to limit the present teachings, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features. Although the following description is related generally to a modular joint prosthesis system which provides adjustment of the radial offset and/or angular inclination of the head relative to the stem, it will be understood that the system as described and claimed herein can be used in any appropriate surgical procedure. Thus, it will be understood that the following discussions are not intended to limit the scope of the present teachings and claims herein.
With reference now to
Adapter 24 is a generally cylindrical disc having a female taper 36 formed therein for receiving male taper 32 of stem 22. The outer surface 38 of adapter 24 defines a male taper. Female taper 36 is eccentrically located in adapter 24 such that central axis 34 of female taper 36 is not collinear with central axis 40 of adapter 24. Instead, central axis 40 is radially offset from central axis 34 by an amount indicated as ra.
Head 26 includes a semispherical surface 42 defined about central axis 44. Bottom face 46 is formed opposite semispherical surface 42 and has a female taper 48 formed therein which is configured to receive adapter 24 along central axis 40. In this regard, female taper 48 is formed eccentrically within head 26 such that a radial offset rb exists between central axis 40 and central axis 44.
As previously described, the eccentric relationship of central axes 34, 40 and 44 provide an arrangement whereby a relative rotational positioning of adapter 24 with respect to head 26 adjusts the radial offset within a given range. As best seen in
With continuing reference to
For example, as shown in
With reference now to
With reference now to
Based on the foregoing detailed description, one skilled in the art will readily recognize that one aspect of the present teachings is directed to an adapter and head having eccentric configurations such that a relative rotation therebetween provides an adjustable range of offset configuration.
With reference now to
With specific reference to
Adapter 124 is a generally cylindrical disc having a female taper 136 formed therein. The outer surface of adapter 124 defines a male taper 138. The central axis 140 of adapter 124 is configured at a first angular orientation with respect to central axis 134. Specifically, central axis 140 is defined by the angle at which female taper 130 is oriented relative to the bottom surface 125 of adapter 124. In one example, central axis 140 is disposed at a +5 degree angular inclination with respect to central axis 134.
Head 126 includes a semispherical surface 142 and a flat bottom face 146 having a female taper 148 formed therein. Female taper 148 defines central axis 144 which is disposed at an angular inclination relative to a central axis 140. Specifically, central axis 144 is defined by the angle at which female taper 144 is oriented relative to bottom face 146. In one example, central axis 144 is disposed at a −5 degree angular inclination with respect to central axis 140.
The relative rotational position of adapter 124 with respect to the head 126 defines the adjustment to the prosthesis inclination relative to central axis 34. For example, as illustrated in
With continuing reference to
With reference now to
With reference now to
From the foregoing description of various embodiments, one skilled in the art will readily recognize that the present teachings are directed to a modular shoulder prosthesis in which the radial offset and/or the angular inclination (i.e. inversion and retroversion) of the head relative to the stem may be adjusted by relative rotational positioning of an adapter interdisposed between the stem and head components of the shoulder prosthesis. In this way, a range of radial offsets and/or angular inclinations may be provided without requiring numerous additional components. The various embodiments have discussed a radial offset adjustment or an angular inclination adjustment independently; however, one skilled in the art will readily recognize that a shoulder prosthesis system may incorporate both aspects of a radial and angular adjustment. Where a single adapter utilized to interconnect the stem and the head, an interrelationship exists between the radially offset adjustment and the angular inclination adjustment. In combination, a system could be employed which utilized two intermediate adapters such that the radial offset and angular inclination adjustment are isolated and thus independent. For example, the interface between a first adapter and a second adapter would provide the desired radial adjustment as described in particular reference to the first embodiment and the interface between the second adapter and the head would provide the angular inclination as described with reference to the second alternative embodiment. In such a system, each of the radial offset and angular inclination adjustments would be provided by a single interface, thereby minimizing the interrelation between both adjustments resulting from a single intermediate adapter.
With reference now to
The adaptor 214 is a generally cylindrical member including an outer ring 228 having a central axis 230 and a ball stud 232 rotatably connected to the ring 228. The ring 228 includes an attachment aperture 234 having a central axis 236 formed therethrough for rotatable engagement with the ball stud 232. The ring 228 further includes an outer surface having a male taper 238 for engagement with the head 216.
The ball stud 232 includes a shank segment 233 for engagement with the bore 224 of the stem 212 and a divided ball segment 240 for attachment to attachment aperture 234 of the ring 228. The ball stud 232 further includes a second bore 242 formed therein for interaction with a fastener 244 for selectively securing the ring 228 to the ball stud 232 in a fixed orientation. Fastener 244 includes a wedge portion 254 and a set screw 256 as best shown in
The head 216 is rotatably supported by the adaptor 214 and includes a semispherical surface 246 defined about a central axis 248 adapted for mating engagement with the glenoid cavity of a scapula. The head 216 further includes a bottom surface 250 formed opposite the semispherical surface 246 having a female taper 252 for mating engagement with the male taper 238 of the ring 228. In this regard, the female taper 252 is received eccentrically within the head 216 such that a radial offset rb exists between the central axis 230 of the ring 228 and the central axis 248 of the head 216. While the present teachings disclose a head 216 for mating engagement with the glenoid cavity of a scapula, it is anticipated that the head 216 could also be received by a prosthetic device replacing a severely damaged glenoid cavity and should be considered within the scope of the present teachings.
As previously described, the eccentric relationship of the central axes 230, 236 and 248 provides an arrangement whereby a relative rotational positioning of the adaptor 214 with respect to the head 216 or a relative rotational positioning of the adaptor 214 with respect to the ball stud 232 or a combination thereof adjusts the radial offset of the head 216 relative to the longitudinal axis A of the stem 212.
With particular reference to
With particular reference to
In addition to providing a radial offset, the shoulder prosthesis 210 further provides an angular adjustment of the head 216 relative to the longitudinal axis A of the stem 212 for both inversion and retroversion adjustments. As best shown in
With continuing reference to
In reference to all of the above-described embodiments, various tapered surfaces have been referenced at interfaces between the stem, adapter and head. In one example, these tapered surfaces are configured as morse-type tapers which provide a self locking interface. While morse-type tapers are described herein, one skilled in the art will readily recognize that other means may be incorporated for providing a locking interface between the various components of the shoulder prosthesis system. In this regard, one or more interfaces may be interlocked with the use of an additional fastener to insure locking engagement therebetween.
While specific examples have been described in the specification and illustrated in the drawings, it will be understood by those of ordinary skill in the art that various changes can be made and equivalents can be substituted for elements thereof without departing from the scope of the present teachings. Furthermore, the mixing and matching of features, elements and/or functions between various examples is expressly contemplated herein so that one of ordinary skill in the art would appreciate from the present teachings that features, elements and/or functions of one example can be incorporated into another example as appropriate, unless described otherwise, above. Moreover, many modifications can be made to adapt a particular situation or material to the present teachings without departing from the essential scope thereof. Therefore, it is intended that the present teachings not be limited to the particular examples illustrated by the drawings and described in the specification, but that the scope of the present teachings will include any embodiments falling within the foregoing description.
This application is a divisional of U.S. patent application Ser. No. 13/490,812, filed Jun. 7, 2012, which is a divisional of U.S. patent application Ser. No. 12/911,238, filed on Oct. 25, 2010, now U.S. Pat. No. 8,236,059, which is a divisional of U.S. patent application Ser. No. 11/120,111, filed on May 2, 2005, now U.S. Pat. No. 7,819,923, issued Oct. 26, 2010, which is a divisional of U.S. patent application Ser. No. 10/192,787, filed on Jul. 10, 2002, now U.S. Pat. No. 6,942,699, issued Sep. 13, 2005. U.S. patent application Ser. No. 10/192,787 claims the benefit of U.S. Provisional Application No. 60/304,651, filed Jul. 11, 2001. The disclosures of the above referenced applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3815157 | Skorecki et al. | Jun 1974 | A |
3842442 | Kolbel et al. | Oct 1974 | A |
3916451 | Buechel et al. | Nov 1975 | A |
3978528 | Crep | Sep 1976 | A |
3979778 | Stroot | Sep 1976 | A |
4003095 | Gristina | Jan 1977 | A |
4030143 | Elloy et al. | Jun 1977 | A |
4040131 | Gristina | Aug 1977 | A |
4135517 | Reale | Jan 1979 | A |
4179758 | Gristina | Dec 1979 | A |
4206517 | Pappas et al. | Jun 1980 | A |
4693723 | Gabard et al. | Sep 1987 | A |
4822370 | Schelhas | Apr 1989 | A |
4865605 | Dines et al. | Sep 1989 | A |
4865609 | Roche | Sep 1989 | A |
4919670 | Dale et al. | Apr 1990 | A |
4957510 | Cremascoli | Sep 1990 | A |
4963155 | Lazzeri et al. | Oct 1990 | A |
5080673 | Burkhead et al. | Jan 1992 | A |
5080685 | Bolesky et al. | Jan 1992 | A |
5135529 | Paxson et al. | Aug 1992 | A |
5181928 | Bolesky et al. | Jan 1993 | A |
5201882 | Paxson | Apr 1993 | A |
5222984 | Forte | Jun 1993 | A |
5314479 | Rockwood, Jr. et al. | May 1994 | A |
5358526 | Tornier | Oct 1994 | A |
5462563 | Shearer et al. | Oct 1995 | A |
5507817 | Craig et al. | Apr 1996 | A |
5507818 | McLaughlin | Apr 1996 | A |
5507824 | Lennox | Apr 1996 | A |
5549682 | Roy | Aug 1996 | A |
5580352 | Sekel | Dec 1996 | A |
5702457 | Walch et al. | Dec 1997 | A |
5702486 | Craig et al. | Dec 1997 | A |
5723018 | Cyprien et al. | Mar 1998 | A |
5728161 | Camino et al. | Mar 1998 | A |
5776194 | Mikol et al. | Jul 1998 | A |
5902340 | White et al. | May 1999 | A |
5910171 | Kummer et al. | Jun 1999 | A |
5961555 | Huebner | Oct 1999 | A |
6033439 | Camino et al. | Mar 2000 | A |
6045582 | Prybyla | Apr 2000 | A |
6102953 | Huebner | Aug 2000 | A |
6129764 | Servidio | Oct 2000 | A |
6171341 | Boileau et al. | Jan 2001 | B1 |
6197062 | Fenlin | Mar 2001 | B1 |
6197063 | Dews | Mar 2001 | B1 |
6206925 | Tornier | Mar 2001 | B1 |
6228120 | Leonard et al. | May 2001 | B1 |
6364910 | Shultz et al. | Apr 2002 | B1 |
6368352 | Camino et al. | Apr 2002 | B1 |
6530957 | Jack | Mar 2003 | B1 |
6620197 | Maroney et al. | Sep 2003 | B2 |
6626946 | Walch et al. | Sep 2003 | B1 |
6719799 | Kropf et al. | Apr 2004 | B1 |
6736852 | Callaway et al. | May 2004 | B2 |
6749637 | Bahler | Jun 2004 | B1 |
6761740 | Tornier et al. | Jul 2004 | B2 |
6790234 | Frankle | Sep 2004 | B1 |
6890358 | Ball et al. | May 2005 | B2 |
6942699 | Stone et al. | Sep 2005 | B2 |
6974483 | Murray | Dec 2005 | B2 |
6986790 | Ball et al. | Jan 2006 | B2 |
7022141 | Dwyer et al. | Apr 2006 | B2 |
7097663 | Nicol et al. | Aug 2006 | B1 |
7108719 | Horber | Sep 2006 | B2 |
7135044 | Bassik et al. | Nov 2006 | B2 |
7175663 | Stone | Feb 2007 | B1 |
7189261 | Dews et al. | Mar 2007 | B2 |
7238207 | Blatter et al. | Jul 2007 | B2 |
7303585 | Horber | Dec 2007 | B2 |
7819923 | Stone et al. | Oct 2010 | B2 |
7998217 | Brown | Aug 2011 | B1 |
8052758 | Winslow | Nov 2011 | B1 |
8142512 | Brooks et al. | Mar 2012 | B2 |
8157866 | Winslow et al. | Apr 2012 | B2 |
RE43482 | Mikol et al. | Jun 2012 | E |
8236059 | Stone et al. | Aug 2012 | B2 |
8303665 | Tornier et al. | Nov 2012 | B2 |
8317871 | Stone et al. | Nov 2012 | B2 |
8795379 | Smith et al. | Aug 2014 | B2 |
20010049561 | Dews et al. | Dec 2001 | A1 |
20010053935 | Hartdegen et al. | Dec 2001 | A1 |
20020120339 | Callaway et al. | Aug 2002 | A1 |
20020138148 | Hyde | Sep 2002 | A1 |
20020156534 | Grusin et al. | Oct 2002 | A1 |
20030028253 | Stone et al. | Feb 2003 | A1 |
20030097183 | Rauscher et al. | May 2003 | A1 |
20030114933 | Bouttens et al. | Jun 2003 | A1 |
20030158605 | Tornier | Aug 2003 | A1 |
20040064189 | Maroney et al. | Apr 2004 | A1 |
20040064190 | Ball et al. | Apr 2004 | A1 |
20040220673 | Pria | Nov 2004 | A1 |
20040220674 | Pria | Nov 2004 | A1 |
20050096745 | Andre et al. | May 2005 | A1 |
20050197708 | Stone et al. | Sep 2005 | A1 |
20060020344 | Shultz et al. | Jan 2006 | A1 |
20070142918 | Stone | Jun 2007 | A1 |
20070198094 | Berelsman et al. | Aug 2007 | A1 |
20090192621 | Winslow et al. | Jul 2009 | A1 |
20090210065 | Nerot et al. | Aug 2009 | A1 |
20090270993 | Maisonneuve et al. | Oct 2009 | A1 |
20100100193 | White | Apr 2010 | A1 |
20100152860 | Brooks et al. | Jun 2010 | A1 |
20100168865 | Birkbeck et al. | Jul 2010 | A1 |
20100179664 | Brooks et al. | Jul 2010 | A1 |
20110035013 | Winslow et al. | Feb 2011 | A1 |
20110035015 | Stone et al. | Feb 2011 | A1 |
20110054624 | Iannotti | Mar 2011 | A1 |
20110118846 | Katrana et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
19509037 | Sep 1996 | DE |
0257359 | Mar 1988 | EP |
0599429 | Jun 1994 | EP |
0664108 | Jul 1995 | EP |
0679375 | Nov 1995 | EP |
0712617 | May 1996 | EP |
0797964 | Oct 1997 | EP |
1472999 | Nov 2004 | EP |
1520560 | Apr 2005 | EP |
1639965 | Mar 2006 | EP |
2574283 | Jun 1986 | FR |
2652498 | Apr 1991 | FR |
2664809 | Jan 1992 | FR |
2704747 | Nov 1994 | FR |
2721200 | Dec 1995 | FR |
2848099 | Jun 2004 | FR |
2852229 | Sep 2004 | FR |
2405346 | Mar 2005 | GB |
9522302 | Aug 1995 | WO |
9617553 | Jun 1996 | WO |
9846172 | Oct 1998 | WO |
0015154 | Mar 2000 | WO |
Entry |
---|
Office Action regarding U.S. Appl. No. 13/490,812 mailed Oct. 3, 2013. |
“Buechel-Pappas.TM. Total Shoulder System”, Endotec, Jul. 1991. |
“Delta Prothese Totale D'epaule Inversee”, Depuy 2005 (8 sheets). cited by other. |
“Reverse Shoulder Prosthesis”, Encore Surgical, 2004 (2 sheets). cited by other. |
European Search Report for EP06254735 mailed Apr. 5, 2007. |
Final Office Action for U.S. Appl. No. 11/234,743 Mailed Jun. 15, 2010. |
Final Office Action for U.S. Appl. No. 12/911,238 Mailed Dec. 1, 2011. |
International Search Report for PCT/US02/22040 mailed Apr. 4, 2003. |
Non-Final Office Action for U.S. Appl. No. 11/234,743 Mailed Dec. 2, 2009. |
Non-Final Office Action for U.S. Appl. No. 11/234,743 Mailed Dec. 21, 2010. |
Non-Final Office Action for U.S. Appl. No. 12/911,238 Mailed Jul. 1, 2011. |
Non-Final Office Action for U.S. Appl. No. 12/390,652 Mailed Feb. 28, 2011. |
Surgery Eases Rotator Cuff Pain by Ruth Campbell Odessa American, online article, (2 sheets) dated Feb. 9, 2005. |
Thabe et al., “Die endoprothetische Versorgung des rheumatischen Schultergelenkes”, Aktuelle Rheumatologie, vol. 19 (1994), pp. 155-160 (with English abstract). |
Thabe et al., “Modulares—Vario—Schulter”, 1999, 6 sheets of pictures. |
The Delta CTA™ Reverse Shoulder System, copyright Johnson & Johnson Gateway LLC 2000-2005 online article (2 sheets) dated Feb. 9, 2005. |
Number | Date | Country | |
---|---|---|---|
20150025643 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
60304651 | Jul 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13490812 | Jun 2012 | US |
Child | 14507165 | US | |
Parent | 12911238 | Oct 2010 | US |
Child | 13490812 | US | |
Parent | 11120111 | May 2005 | US |
Child | 12911238 | US | |
Parent | 10192787 | Jul 2002 | US |
Child | 11120111 | US |