Shower arm attachment assembly

Information

  • Patent Grant
  • 10215309
  • Patent Number
    10,215,309
  • Date Filed
    Friday, July 7, 2017
    7 years ago
  • Date Issued
    Tuesday, February 26, 2019
    5 years ago
Abstract
A shower arm attachment assembly including an arm coupling member, a shower pipe coupling member, and a locking member. The arm coupling member may fluidly connect to a shower arm for a showerhead and the shower pipe coupling member may fluidly connect to a shower pipe. The arm coupling member connects to the shower pipe coupling member and is selectively rotatably relative thereto. The locking member selectively controls rotation of the arm coupling member relative to the shower pipe coupling member.
Description
TECHNICAL FIELD

The disclosure generally relates to showerheads, and more particularly to showerhead connections.


BACKGROUND

To locate a showerhead overhead rather than at the side of a shower stall, the showerhead may be attached to the end of an arm, which in turn may be attached to a water outlet pipe of the shower stall. For positioning a standard overhead showerhead at a desired vertical location and the showerhead face at a desired orientation relative to arm's longitudinal axis, the arm may be fitted with one or more joints formed from an assembly of parts to pivot the arm relative to the water outlet and the showerhead relative to the arm. Undesired vertical movement of the standard overhead showerhead relative to the water outlet pipe is generally prevented using a friction mechanism such as winged nut to adjust the friction between pivoting parts in the joint.


Generally, standard overhead shower arm assemblies that utilize friction mechanisms for vertical adjustment of the showerhead via pivoting the arm relative to the water outlet may minimize undesired vertical movement of the showerhead relative to the water outlet pipe for light showerheads, thus maintaining such a light showerhead in the desired position. However, these standard shower arm assemblies often to fail to maintain the vertical position of a relatively large or heavy showerhead or a showerhead constructed of a denser material, such as a metal. Thus, standard shower arms using standard friction mechanisms to prevent vertical showerhead movement are unsuitable for many modern applications.


Adjusting the position of the showerhead under water pressure can also be problematic. Specifically, when the friction mechanisms are adjusted to permit positioning of the showerhead, water often leaks through the loosened joints. Additionally, a user can inadvertently disassemble the standard overhead showerhead arm assembly by unscrewing the typical winged nut friction mechanism too far, and thus possibly injure the user and/or have small components of the arm assembly fall into the shower's drain.


Yet another issue with a typical overhead shower arm assembly involves the coupling members or assemblies used to attach the shower arm to the shower pipe. Often, the coupling members or assemblies permit relatively little or limited rotational adjustment of the arm around the shower pipe's longitudinal axis before the water-tightness between the shower pipe and the coupling member is compromised.


SUMMARY

One embodiment of a shower arm attachment assembly may include a first member, a second member, and a locking member, such as a sleeve or locking nut. The first member may be in fluid communication with a showerhead. The second member may be attachable to a shower pipe. The second member may be selectively rotatably joined to the first member. The locking member may be selectively engageable with a joinder between the first and second member. When engaged, the sleeve may substantially prevent rotation of the first member relative to the second member.


Another embodiment of a shower arm attachment assembly may include a first member, a second member, and a third member. The first member may be in fluid communication with a showerhead and may include a first keying feature. The second member may be attachable to a shower pipe and may include a second keying feature for engagement with the first keying feature to substantially prevent rotation of the second member relative to the first member. The third member may be selectively engageable with the first member and the second member. When engaged, the third member may join the first member with the second member and may engage the first keying feature with the second keying feature.


Yet another embodiment of a shower arm attachment assembly may include a first member, a second member, a third member and a fourth member. The first member may be in fluid communication with a showerhead. The second member may be joined to the first member and may be rotatable relative to the first member. The third member may fluidly join the second member to a shower pipe water outlet. The fourth member may be selectively engageable with the second member. When engaged, the fourth member may substantially prevent rotation of the first member relative to the second member.


Still yet another embodiment of a shower arm assembly may include an arm, a shower arm attachment assembly, and an arm rotation assembly. The shower arm attachment assembly may include an arm coupling member. The arm rotation assembly may include a connector rod, a nut, and a retaining clip. The nut may be joined to the connector rod and may be operative with the connector rod to press together the arm coupling member and the arm. The retaining clip may be attached to the connector rod and may operative with the connector rod to prevent disassembly of the arm from the arm coupling member.


Yet another embodiment of a shower arm assembly may include an arm, a shower arm attachment assembly, and an arm rotation assembly. The arm may include a first keying feature. The shower arm attachment assembly may include an arm coupling member with a second keying feature for engagement with the first keying feature to substantially prevent rotation of the arm relative to the arm coupling member. The arm rotation assembly may include a connector rod, a nut, and a connector rod. The nut may be joined to the connector rod and may be operative with the connector rod to press together the arm coupling member and the arm to engage the first keying feature with the second keying feature.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A depicts a top perspective view of a shower arm assembly connected to a shower pipe.



FIG. 1B depicts a cross-sectional view of the shower arm assembly of FIG. 1A viewed along line 1B-1B in FIG. 1A, showing an arm rotation nut configured in its tightened position.



FIG. 1C depicts a cross-sectional view of the shower arm assembly of FIG. 1a viewed along line 1B-1B in FIG. 1A, showing the arm rotation nut configured in its loosened position.



FIG. 1D depicts a partially exploded, cross-sectional perspective view of the shower arm assembly of FIG. 1A.



FIG. 2A depicts a top perspective view of a first embodiment of a shower arm attachment assembly showing a locking sleeve in a first position.



FIG. 2B depicts another top perspective view of the shower arm attachment assembly of FIG. 2A, showing the locking sleeve in a second position.



FIG. 2C depicts a cross-sectional view of the shower arm attachment assembly of FIG. 2A, viewed along line 2C-2C in FIG. 2A.



FIG. 2D depicts a cross-sectional view of the shower arm attachment assembly of FIG. 2A, viewed along line 2D-2D in FIG. 2B.



FIG. 2E depicts a cross-sectional view of the shower arm attachment assembly of FIG. 2A, viewed along line 2E-2E in FIG. 2D.



FIG. 2F depicts a cross-sectional view of the shower arm attachment assembly of 2A, viewed along line 2F-2F in FIG. 2D.



FIG. 2G depicts an exploded perspective view of the shower arm attachment assembly of FIG. 2A.



FIG. 3A depicts a top perspective view of a second embodiment of a shower arm attachment assembly showing a locking nut in a first position.



FIG. 3B depicts another top perspective view of the shower arm attachment assembly of FIG. 3A, showing the locking nut in a second position.



FIG. 3C depicts a cross-sectional view of the shower arm attachment assembly of FIG. 3A, viewed along line 3C-3C in FIG. 3A.



FIG. 3D depicts a cross-sectional view of the shower arm attachment assembly of FIG. 3A, viewed along line 3D-3D in FIG. 3B.



FIG. 3E depicts a cross-sectional view of the shower arm attachment assembly of FIG. 3A, viewed along line 3E-3E in FIG. 3C.



FIG. 3F depicts a cross-sectional view of the shower arm attachment assembly of FIG. 3A, viewed along line 3F-3F in FIG. 3D.



FIG. 3G depicts an exploded perspective view of the shower arm attachment assembly of FIG. 3A.



FIG. 4A depicts a top perspective view of a shower arm attachment assembly, showing a locking nut in a first position.



FIG. 4B depicts another top perspective view of the shower arm attachment assembly of FIG. 4A, showing the locking nut in a second position.



FIG. 4C depicts a cross-sectional view of the shower arm attachment assembly of FIG. 4A, viewed along line 4C-4C in FIG. 4A.



FIG. 4D depicts a cross-sectional view of the shower arm attachment assembly of FIG. 4A, viewed along line 4D-4D in FIG. 4B.



FIG. 4E depicts a cross-sectional view of the shower arm attachment assembly of FIG. 4A, viewed along line 4E-4E in FIG. 4D.



FIG. 4F depicts a cross-sectional view of the shower arm attachment assembly of FIG. 4A, viewed along line 4F-4F in FIG. 4D.



FIG. 4G depicts an exploded perspective view of the shower arm attachment assembly of FIG. 4A.



FIG. 4H depicts a perspective view of a arm coupling member for the shower arm attachment assembly of FIG. 4A.



FIG. 5A depicts a top perspective view of a fourth embodiment of a shower arm attachment assembly.



FIG. 5B depicts a cross-sectional view of the shower arm attachment assembly of FIG. 5A, viewed along line 5B-5B in FIG. 5A.





DETAILED DESCRIPTION

One embodiment of a shower arm attachment assembly may include an arm coupling member in fluid communication with a shower pipe coupling member. The arm coupling member may also be in fluid communication with a showerhead, and the shower pipe coupling member may also be in fluid communication with a shower pipe as well as, in some embodiments, attached directly to the shower pipe. In some embodiments, the arm coupling member and the shower pipe coupling member may be joined together using a snap ring, collar, or other suitable device to allow selective rotation of the arm coupling member relative to the shower pipe coupling member. In such embodiments, a sleeve, nut, or the like may be selectively engageable with the arm coupling member and the shower pipe coupling member to selectively prevent rotation of the arm coupling member relative to the shower pipe coupling member.


In another embodiment of the shower arm attachment assembly, the arm coupling member and the shower pipe coupling member may be joined together in select relative rotational positions to each other using a keying feature. The keying feature may also substantially prevent rotation of the arm coupling member relative to the shower pipe coupling member when the coupling members are joined together. In some embodiments, the keying feature may have a first portion on one of the arm and shower pipe coupling members, and a second, complementary portion on the other coupling member. In some of these embodiments, the first portion may take the form of a shaft with projections that engage grooves formed on the second complementary portion of the other member, which may receive the shaft. In other of these embodiments, the first and second portions may take the form of engaging projections on abutting surfaces of each member. A threaded sleeve, a nut or the like may join the arm coupling member with the shower pipe coupling member.


In yet another embodiment of a shower arm attachment assembly and as shown in FIGS. 5A and 5B, a shower arm cross member may be joined to a threaded stud, which in turn is joined to a threaded tee. The threaded stud may be selectively rotatable relative to the threaded stud. The threaded tee may be joined to the shower pipe with a shower pipe nut. A jam nut may be threadedly received on the threaded tee to substantially prevent selective rotation of the threaded stud relative to the threaded tee. The various embodiments of showerhead attachment assemblies may be used to fluidly join showerheads to shower pipes.



FIG. 1A depicts a showerhead 100 joined to a shower pipe 105 by an arm assembly 110. The arm assembly 110 may include a showerhead attachment member 115, an arm 120, an arm rotation assembly 125, a shower arm attachment assembly 130, and a showerhead rotation assembly 135. As described in more detail below in connection with various embodiments of the shower arm attachment assembly 130, the shower arm attachment assembly mechanically 130 and fluidly joins the arm 120 to the shower pipe 105. In some embodiments, such as those depicted in FIGS. 1A and 3A, the shower arm attachment assembly 130 may include an arm coupling member 305 joined to a shower pipe coupling member 310 using a locking nut 315.


The showerhead rotation assembly 135 may be used to adjust of the angle of the showerhead's face relative to the arm's longitudinal axis. The showerhead rotation assembly 135 may include a showerhead rotation nut 140, which may be selectively tightened or loosened to increase or decrease the friction between the showerhead attachment member 115 and the arm 120. The showerhead rotation nut 140 may be winged to provide a gripping feature for a user to grasp when tightening or loosening the nut 140. As the friction is increased or decreased, the ability to rotate the showerhead attachment member 115 relative to the arm 120 around the showerhead rotation assembly's longitudinal axis decreases or increases, respectively.


The arm rotation assembly 125 adjusts and maintains the vertical position of the showerhead 100 relative to the shower pipe 105. More particularly, the arm rotation assembly 125 may include an arm rotation nut 145, which may be selectively tightened or loosened to prevent or allow the arm 120 to pivot relative to the shower arm attachment assembly 130 by rotating the arm 120 around the arm rotation assembly's longitudinal axis as described in more detail below. As the arm 120 is pivoted relative to the shower arm attachment assembly 130, the vertical position of the showerhead 100 relative to the shower pipe 105 changes. Like the showerhead rotation nut 140, the arm rotation nut 145 may be winged to facilitate tightening or loosening of the nut 140 by a user.



FIG. 1B depicts a cross-sectional view of the arm assembly 100 depicted in FIG. 1A viewed along line 1B-1B with the arm rotation nut 145 in a tightened configuration to substantially prevent rotation of the arm 120 relative to the shower arm attachment assembly 130. FIG. 10 is a cross-sectional view similar to the one shown in FIG. 1B except the arm rotation nut 145 is positioned in a loosened configuration to allow rotation of the arm 120 relative to the arm attachment assembly 130.


The arm rotation assembly 125 may include the arm rotation nut 145, a sleeve 150, a sleeve washer 155, an E-ring 160, and a connector rod 165. Together, the sleeve 150 and the connector rod 165 press together the arm 120 and an arm coupling member 305 as the rotation nut 145 is tightened. More particularly, the connector rod 165 includes a rod shaft 170. The rod shaft 170 extends through a hollow arm connection portion 175 of the 305, a tube section 180 of the arm 120, a hole in the sleeve washer 155, and a hole in the sleeve 150. A threaded hole 182 formed in the arm rotation nut 145 receives a threaded end portion of the rod shaft 165. An opposite end of the rod shaft 165 includes a circular rod end flange 184. A collar segment 186 of the arm coupling member 305 receives the rod end flange 184.


As the rotation nut 145 is tightened by threading the connector rod 165 into the threaded hole 182, the rotation nut 145 bears against the sleeve 150, which in turn bears against the arm 120. The rotation nut 145 also pulls the connector rod 165 towards the rotation nut 145 as it is tightened, which causes the rod end flange 184 of the connector rod 165 to bear against the arm coupling member 305. The sleeve 150 bearing against the arm 120 combined with the connector rod 165 bearing against the arm coupling member 305 presses together the arm 120 and the arm coupling member 305.


When pressed together, rotation of the arm 120 relative to the arm coupling member 305 around the longitudinal axis of the connector rod 165 is prevented by a keying feature associated with either or both of the arm coupling member 305 and the arm 120. More particularly, the arm's tube section 180 receives a splined segment 186 of the arm coupling member 305. As shown in FIG. 1D, an end of the splined segment 186 includes multiple splines 188. When the arm coupling member 305 and the arm 120 are pressed together, these splines 188 engage matching grooves defined by multiple splines 190 (see FIG. 1D) formed on the interior surface of the tube section 180 abutting the splined end of the arm coupling member 305. When engaged, rotation of the arm coupling member 305 relative to the arm 120 is prevented by this interconnection of the splines 188, 190.


In some embodiments, matching splines are formed along the longitudinal abutting surfaces of the arm coupling member's splined segment 186 and the arm tube section 180 in lieu of, or in combination with, the splines 188, 190. In yet other embodiments, the end of the splined segment 186 and the interior surface of the tube section 180 proximate this end may define square, hexagonal, oval or other suitable shapes that restrict or otherwise limit rotation of the arm coupling member 305 relative to the arm 120 when pressed together.


To disengage the splines 188, 190, a user loosens the rotation nut 145 by unthreading it from the connector rod 165. When sufficiently loosened, the user may pull apart the arm 120 and the arm coupling member 305 sufficiently to disengage each components' respective splines 188, 190. Once disengaged, the user may rotate the arm 120 relative to the arm coupling member 305 around the connector rod 165 to adjust the vertical position of the showerhead 100 relative to the shower pipe 105.


As shown in FIGS. 1B and 10, an E-ring 160 or other suitable retaining element, such as a C-ring, is joined to the connector rod 165 between an arm end wall 195 and the threads on the connector rod 165 to limit the amount of separation between the arm 120 and the arm coupling member 305. Specifically, as the arm 120 and the arm coupling member 305 are separated, the arm end wall 195 pushes the E-ring 160 against the threads on the connector rod 165, which prevents further movement of the arm 120 away from the arm coupling member 305. The amount of permitted separation is a function of the distance between the circular rod flange 184 and the connector rod threads compared to the length of the joined arm tube section 180 and the arm coupling member connection portion 175 along the longitudinal axis of the connector rod 165. This permitted separation distance is selected to allow a user to at least sufficiently separate the arm 120 and the arm coupling member 305 to disengage their respective splines 188, 190.


Positioning the E-ring 160 on the connector rod 165 as described above also prevents a user from inadvertently disassembling of the connector rod 165, the arm 120, and the arm coupling member 305 when unthreading the arm rotation nut 145 from the connector rod 165. More particularly, if a user unthreads the arm rotation nut 145 too much, only the arm rotation nut 145, the sleeve 150 and the sleeve washer 155 may become disconnected from the arm assembly 110. The arm 120, the connector rod 165, and the arm coupling member 305 will remain joined together, even under water pressure, by the E-ring 160 because the E-ring limits the amount of separation between the arm 120 and the arm coupling member 305 and keeps the connector rod 165 joined to these two components. This, in turn, limits the potential for a user to be injured by an inadvertent disassembly of these components.


The E-ring 160 also allows for a user to vertically position the showerhead 100 relative to the shower pipe 105 under water pressure without water leaking out of the arm assembly 110. More particularly, the maximum amount of separation between the arm 120 and the arm coupling member 305 permitted by the E-ring 160 is selected so that various O-rings 192, 194, 196 strategically positioned between the connector rod 165, the arm 120, and the arm coupling member 305 as shown for example in FIGS. 1B and 10 maintain water-tight seals between these various components at the joints formed by them. Thus under water pressure, the rotation nut 145 may be loosened to permit the arm 120 and arm coupling member 305 to be separated for vertical positioning of the showerhead 100 without water leaking through the various joints formed by the arm 120, the rod connector 165 and the arm coupling member 305 because the O-rings 192, 194, 196 continue to maintain the water seals between these components at the maximum amount of separation between the arm 120 and the arm coupling member 305.


The connector rod 165 may include a generally cylindrical intermediate rod flange 198 located between the connector rod threads and the rod end flange 184. A generally circular hole in the arm end wall 195 receives the intermediate rod flange 198. At least a portion of the cross-sections of the intermediate wall flange 198 and the end wall hole may be shaped to substantially prevent rotation of the connector rod 165 relative to the arm 120 around the connecter rod's longitudinal axis. For example, at least a portion of the cross-sections of the intermediate rod flange 198 and the end wall hole may be oval shaped as shown in FIG. 1D. In other embodiments, cross-sectional portions of the intermediate wall flange 198 and the end wall hole may be square, hexagonal or any other suitable shape to substantially prevent rotation of the connector rod 165 relative to the arm 120.


With continued references to FIGS. 1B-1D, a groove formed in the intermediate rod flange 198 receives an O-ring 192 to seal the joint formed between the arm 120 and the connector rod 165. A groove formed in the arm coupling member's splined segment 186 receives an O-ring 194 to seal the joint formed between the arm 120 and the arm coupling member 305. A groove formed in the rod end flange 184 receives an O-ring 196 to seal the joint formed between the arm coupling member 305 and the rod connector 165. These seals each prevent leakage of water through the associated joints formed by the arm 120, the connector rod 165, and the arm coupling member 305. Any of the grooves for receiving the O-rings 192, 194, 196 may be formed in the other component forming the joint sealed by these O-rings 192, 194, 196 rather the component depicted in FIGS. 1B and 10, or may be formed in both components.


Returning to FIG. 1A, the showerhead rotational assembly 135 may be similar to the arm rotational assembly 125 and may operate in a similar manner. More particularly, the arm rotational assembly 125 may include a showerhead rotation nut 140, a sleeve 142, a connector rod (not shown), a sleeve washer (not shown), and an E-ring (not shown). In a manner similar to the arm rotational assembly 125, the showerhead rotation nut 140, the sleeve 142 and the connector rod (not shown) may press together the showerhead attachment member 115 and a second arm tube section 144 to substantially prevent rotation of the showerhead attachment member 115 relative to the arm 120 when the showerhead rotation nut 140 is tightened. Likewise, loosening the showerhead rotation nut 140 allows a user to rotate the showerhead attachment member 115 relative to the arm 120. Also similar to the arm rotation assembly 125, the E-ring or other suitable retaining device (not shown) may be joined to the connector rod (not shown) to limit the maximum distance that the showerhead attachment 115 and the arm 120 can be pulled apart.


A first embodiment of a shower arm attachment assembly 200 is depicted in FIGS. 2A-2G. This shower arm attachment assembly 200 may be used with the arm assembly 110 shown in FIG. 1A. With reference to FIGS. 2A and 2B, the shower arm attachment assembly 200 may include an arm coupling member 205 joined to a shower pipe coupling member 210. The shower pipe coupling member 210, in turn, may be joined to a shower pipe 105. The shower pipe 105 delivers water to the shower arm coupling assembly 200, and ultimately to an attached showerhead 100 (see FIG. 1), from a water heater, a water reservoir, or other suitable water source (not shown).


The arm coupling member 205 may include a shower pipe connection portion 215 for joining the arm coupling member 205 to the shower pipe coupling member 210. When joined, the arm coupling member 205 may be rotated relative to the shower pipe coupling member 210 as described in more detail below. The arm coupling member 205 may also have an arm connection portion 220 for joining the arm coupling member 205 to a showerhead arm (not shown) fluidly joined to a showerhead (not shown). The arm connection portion 220 may be joined to its shower pipe connection portion 215 by an intermediate portion 225. The shower pipe connection portion 215, arm connection portion 220, and the intermediate portion 225 may be integrally formed, or may be separate elements joined together by adhesives, heat or sonic welds, mechanical fasteners, any other suitable means for joining elements together, or any combination thereof.


An outer surface of the arm coupling member's shower pipe connection portion 215 may define multiple flat surfaces. The shower pipe connection portion 215 may be, for example, square or hexagonal in cross-section. These surfaces may generally correspond to matching substantially flat surfaces defined by an outer surface of the shower pipe coupling member 210, which may have a cross-section matching that of the shower pipe connection portion 215. When these surfaces for the shower pipe coupling member 210 and the arm coupling member 205 are generally aligned as shown in FIG. 2A, a locking sleeve 230 or other suitable device may be moved over the arm and shower pipe coupling members 205, 210 as shown in FIG. 2B. As described in more detail below, because the cross-section of the locking sleeve's interior generally correlates to the outer surfaces of the arm and shower pipe coupling members 205, 210 (see, e.g., FIGS. 2E and 2F), positioning the locking sleeve 230 over the arm and shower pipe coupling members 205, 210 typically prevents rotation of the shower pipe coupling member 210 relative to the arm coupling member 205 around the longitudinal axis marked as A-A on FIG. 2C.


Turning to the cross-section views of FIGS. 2C (which shows the locking sleeve 230 in its unlocked position) and 2D (which shows the locking sleeve 230 in its locked position), the shower pipe coupling member 210 may be threadedly joined to the shower pipe 105, or joined by any other suitable method including by press fitting, clamping, welds, and so on. When the shower pipe coupling member 210 and the shower pipe 105 are threadedly joined, the shower pipe coupling member 210 may have threads formed on an inner surface to mate with threads formed on an outer surface to the shower pipe 105 as shown in FIGS. 2C and 2D, or vice versa.


In some embodiments, the shower pipe coupling member's threads are national pipe taper (“NPT”) threads. NPT threads provide locking resistance to substantially prevent rotation of the entire showerhead assembly relative to the shower pipe 105. More particularly, when the showerhead pivot assembly 115 (shown in FIG. 1) is positioned at an elevation above the arm pivot assembly 125, a sufficient torque around the longitudinal axis of the shower pipe 105 may be generated to unscrew the shower pipe coupling member 210 from the shower pipe 105 when using straight pipe threads such as NPSM and NPSH threads. NPT threads, in contrast, effectively resist this torque, and thus prevent the unscrewing of the shower pipe coupling member 210, which then prevents rotation of the showerhead assembly relative to the shower pipe 105. However, threads other than NPT, including NPSM and NPSH, may be used if desired.


Proximate the threads, the interior surface of the shower pipe coupling member 210 may form a groove or step for receiving a shower pipe O-ring 235 or other suitable seal element. The shower pipe O-ring 235 forms a water-tight seal between the shower pipe coupling member 210 and the shower pipe 105 to substantially prevent water from leaking through the joint formed between them.


A coupling member O-ring groove 240 may be defined in the exterior surface of the shower pipe coupling member 210 for receiving a coupling member O-ring 245 or other suitable seal element. If desired, the coupling member O-ring groove 240 may be formed in the interior surface of the arm coupling member 205 rather than formed in the exterior surface of the shower pipe coupling member 210, or may be formed in the surfaces of both members 205, 210. The coupling member O-ring 245 forms a water-tight seal at the joint between the arm coupling member 205 and the shower pipe coupling member 210 to substantially prevent water from leaking out of the shower arm attachment assembly 200 through this joint.


Still with reference to FIGS. 2C and 2D, proximate the arm coupling member 205, a snap ring groove 250 may be formed in an exterior surface of the shower pipe coupling member 210. When the arm coupling member 205 and the shower pipe coupling member 210 are joined as shown in FIGS. 2C and 2D, the snap ring groove 250 may align with a snap ring groove 255 defined in an interior surface of the arm coupling member 205. Together, these aligned snap ring grooves 250, 255 define an annular snap ring pocket for receiving a snap ring 260 or other suitable joining element. The snap ring 260 joins the arm coupling member 205 to the shower pipe 210 coupling member while allowing the arm coupling member 205 to be selectively rotated relative to the shower pipe coupling member 210 around the longitudinal axis marked A-A on FIG. 2C. By rotating the arm coupling member 205 relative to the shower pipe coupling member 210, an arm (such as the arm 120 shown in FIG. 1a) attached to the arm coupling member 205 may be rotated relative to a shower pipe 105 attached to the shower pipe coupling member 210 about longitudinal axis A-A.


Rotation of the arm coupling member 205 relative to the shower pipe coupling member 210 may be prevented by engaging the locking sleeve 230 with each member 205, 210. More particularly, the locking sleeve 230 may be positioned over the arm coupling member 205 and the shower pipe coupling member 210, as shown in FIG. 2D. When moved to such a position, an interior surface of the locking sleeve 230 engages the outer surfaces of the arm coupling member 205 and the shower pipe coupling member 210 as shown in FIGS. 2E and 2F, thereby preventing rotation of the arm coupling member 205 relative to the shower pipe coupling member 210.


To position the locking sleeve 230 over the arm and shower pipe coupling members 205, 210, the generally flat exterior surfaces of the arm coupling member 205 are aligned with the flat surfaces of the shower pipe coupling member 210 as shown in FIG. 2A. Such alignment may be achieved by rotating the shower pipe coupling member 210 relative to the arm coupling member 205 until the generally flat exterior surfaces for each member 205, 210 align. With reference to FIGS. 2E and 2F, in one embodiment, each coupling member 205, 210 may have six substantially flat exterior surfaces, which allow the arm coupling member 205 to be placed in six rotational positions relative to the shower pipe coupling member 210 for engagement with the locking sleeve 230. Further, the locking sleeve 230 may have six generally flat interior surfaces to match and engage the substantially flat exterior surfaces of the coupling members 205, 210. The coupling members 205, 210 and the locking sleeve 230 may have more or fewer than six flat surfaces to increase or decrease the number of rotational positions of the coupling members 205, 210 relative to each other that permit the locking sleeve 230 to be slid over them. Further, other types of non-rotational surfaces, such as ovoid and D-shaped surfaces, may be used rather than substantially flat surfaces for the arm coupling member 205, the shower pipe coupling member, and the locking sleeve 230.


With reference to FIGS. 2C and 2D, the inner surface of the shower pipe 105 may define a shower pipe fluid passage 265 for delivering fluid to the are coupling member 205 from a fluid source fluidly connected to the shower pipe 105. More particularly, the shower pipe fluid passage 265 may be fluidly connected to a fluid passage 270 defined by the shower pipe coupling member's inner surface, or surfaces, to deliver fluid from the shower pipe 105 to the arm coupling member 205 via the shower pipe coupling member 210. The shower pipe coupling member fluid passage 270, in turn, may be fluidly connected to a arm coupling member fluid passage 275 defined by the arm coupling member's inner surface, or surfaces, thus delivering fluid from the shower pipe coupling member 210 to the arm coupling member 205. Finally, the arm coupling member fluid passage 275 may be fluidly connected to a showerhead to deliver fluid to the showerhead.


With reference to FIGS. 2A-2G, a method of joining the shower arm attachment assembly 200 to a shower pipe 105 will now be described. A generally cylindrical shower pipe 105 may receive a locking sleeve 230 with a generally cylindrical exterior surface. A shower pipe O-ring 235 may be placed proximate the threaded end of the shower pipe 105, and the shower pipe coupling member 210 may thread onto the shower pipe 105. The coupling member groove 240 of the shower pipe coupling member 210 receives the coupling member O-ring 245. Next, the snap ring groove 250 of the shower pipe coupling member 210 receives the snap ring 260. Pushing the snap ring's free ends together compresses it so that it may be received within the snap ring groove 250 of the shower pipe coupling 210 in order to slide the shower pipe connection portion 215 of the shower arm coupling member 205 over an end portion of the shower pipe coupling member 210.


The arm coupling member 205 may be joined to the shower pipe coupling member 210 by sliding it over the compressed snap ring 260 (and the generally annular shower pipe coupling member 210) until the snap ring groove 255 of the arm coupling member 205 aligns with the snap ring groove 250 of the shower pipe coupling member 210. Once aligned, compressive forces in the compressed snap ring 260 bias a portion of the snap ring 260 into the snap ring groove 255 of the arm coupling member 205, thereby joining the arm coupling member 205 and the shower pipe coupling member 210. Once joined, the arm coupling member 205 may be rotated relative to the shower pipe coupling member 210 around the longitudinal axis marked as A-A on FIG. 2C until its exterior flat surfaces align with the exterior flat surfaces of the shower pipe coupling member 210 in the desired relative rotational position. When aligned, the locking sleeve 230 may be slid over the arm and shower pipe coupling members 205, 210 to substantially prevent further relative rotation between the coupling members 205, 210 as described above.


A second embodiment of a shower arm attachment assembly 300 is depicted in FIGS. 3A-3G. Similar to the first embodiment shown in FIGS. 2A-2G, the second embodiment may include an arm coupling member 305 joined to a shower pipe coupling member 310. Further, the shower pipe coupling member 310 may be joined to a shower pipe 105. A locking nut 315 (or other suitable device) may join the arm coupling member 305 to the shower pipe coupling member 310. Further, as described in more detail below, the locking nut 315 may be used to selectively allow or prevent rotation of the shower pipe coupling member 310 relative to the arm coupling member 305. For example, when the locking nut 315 is substantially threadedly received on the shower pipe coupling member 310 as shown in FIG. 3A, rotation of the arm coupling member 305 relative to the shower pipe coupling member 310 around the longitudinal axis marked as B-B on FIG. 3C is prevented. Continuing with the example, when the locking nut 315 is only partially threaded onto (as shown in FIG. 3B), or unthreaded from, the shower pipe coupling member 310, the arm coupling member 305 may be rotated relative to the shower pipe coupling member 310 around the longitudinal axis marked as B-B on FIG. 3C.


With reference to FIGS. 3C and 3D, the arm coupling member 305 may have a connection portion 320 for receiving a coupling segment 325 of the shower pipe coupling member 310. A keying feature may be associated with one or both of the coupling members 305, 310 and may prevent, or otherwise substantially restrict, rotation of the arm coupling member 305 relative to the shower pipe coupling member 310. More particularly, as shown in FIG. 3E, an interior surface of the arm coupling member's connection portion 320 may include at least one groove 330 that engages with at least one projection 335 on an exterior surface of the coupling segment 325. In some embodiments, the arm coupling member's connection portion 320 may include at least one projection and the coupling segment's exterior surface may include at least one groove. Engagement of the grooves of either the arm coupling member 305 or the shower pipe coupling member 310 with the other member's projections prevents rotation of the arm coupling member 305 relative to shower pipe coupling member 310 around the longitudinal axis marked as B-B on FIG. 3C.


Returning to FIGS. 3C and 3D, the arm coupling member 305 of the second embodiment is similar to the first embodiment depicted in FIGS. 2A-2G except as noted. Between the arm coupling member's intermediate and coupling member portions 320, 325, an exterior surface of the arm coupling member 305 may be stepped to define a locking nut engagement surface 345. The locking nut engagement surface 345 may engage a flange 350 of the locking nut 315 to substantially prevent movement of the arm coupling member 305 relative to the locking nut 315 in a direction away from the shower pipe 105. Further, when the locking nut 315 is substantially threaded onto the shower pipe coupling member 310 as shown in FIG. 3C, the locking nut 315 presses the arm coupling member 305 against the shower pipe coupling member 310. Effectively, threading the locking nut 315 onto the shower pipe coupling member 310 as shown in FIG. 3C joins the arm coupling member 315 with the shower pipe coupling member 310 and substantially prevents rotation of the arm coupling member 305 relative to the shower pipe coupling member 310.


An interior surface of the arm coupling member 305 may be stepped to form a coupling member O-ring surface for positioning a coupling member O-ring 355 or other suitable seal element between the arm coupling member 205 and the shower pipe coupling member 310. Similar to the coupling member O-ring for the first embodiment of the shower arm attachment assembly 200, the coupling member O-ring 355 forms a water-tight seal between the arm and shower pipe coupling members 305, 310 to substantially prevent water from leaking through the joint formed between these members 305, 310.


The shower pipe coupling member 310 may include a lock nut connection portion 360 for joining the lock nut 315 to the shower pipe coupling member 310 and a shower pipe connection portion 365 for joining the shower pipe 105 to the shower pipe coupling member 310. The coupling segment 325, the lock nut connection portion 360, and the shower pipe connection portion 365 may be integrally formed, or may be separate elements joined together by adhesives, heat or sonic welds, any other suitable means for joining elements together, or any combination thereof.


The shower pipe coupling member 310 may be threadedly joined to the locking nut 315 as shown in FIGS. 3C and 3D, or joined by any other suitable method, including, but not limited to, by press fitting, clamping, welding, and so on. To threadedly join the shower pipe coupling member 310 to the lock nut 315, an exterior surface of the lock nut connection portion 360 may be threaded. The shower pipe coupling member 310 may also be threadedly joined to the shower pipe 105 as shown in FIGS. 3C and 3D in a manner similar to the one described above for the first embodiment.


With further reference to FIGS. 3C and 3D, the locking nut 315 may include a locking nut sidewall 370 and a locking nut flange 350. The flange 350 may extend radially inward from the locking nut sidewall 370 to engage the arm coupling member 305 as described above. An interior surface of the locking nut sidewall 370 may be threaded to threadedly join the locking nut 315 to the shower pipe coupling member 310 as discussed above. Further, a user may grip an exterior surface of the locking nut 315, such as the hand gripping grooves 375 shown in FIGS. 3A and 3B, when threading the locking nut 315 on and off the shower pipe coupling member 310.


As the locking nut 315 is threaded onto the shower pipe coupling member, the projections 335 of the showerhead coupling member 310 are received within the grooves 330 of the arm coupling member 305. As discussed above, receipt of the projections 335 within the grooves 330 prevents rotation of the arm coupling member 305 relative to the shower pipe coupling member 310. To rotate the arm coupling member 305 relative to the shower pipe coupling member 310, the locking nut 315 is unscrewed from the shower pipe coupling member 310 until the arm coupling member connection portion 320 is removed the shower pipe coupling segment 325 as depicted in FIG. 3D. Once removed, the arm coupling member 315 may be rotated relative to the shower pipe coupling member 310 around the longitudinal axis marked as B-B on FIG. 3C.


To thread the locking nut 315 onto the shower pipe coupling member 310, the projections 335 of the showerhead coupling member 310 must generally align with the grooves 330 of the arm coupling member 305 as shown in FIG. 3E. Such alignment may be obtained by selectively rotating the arm coupling member 305 relative to the shower pipe coupling member 310 around the longitudinal axis marked as B-B on FIG. 3C until the arm coupling member grooves 330 align with the shower pipe coupling member projections 335. As the number of projections 335 and corresponding grooves 330 increase or decrease, the number of relative rotational positions of the arm coupling member 305 to the shower pipe coupling member 310 respectively increases or decreases. Any number of projections 335 and corresponding grooves 330 may be used.


Similar to the first embodiment, the shower pipe 105 may be fluidly joined to an attached showerhead via fluid passages in the arm coupling member 305 and shower pipe coupling member 310.


A third embodiment of a shower arm attachment assembly 400 is depicted in FIGS. 4A-4H. Generally, the third embodiment is similar to the second embodiment. For example, the third embodiment may include an arm coupling member 405, a shower pipe coupling member 410, and a locking nut 415. The primary difference between the second and third embodiments relates to the keying mechanism for limiting rotation of the arm coupling member 405 relative to the shower pipe coupling member 410. Other features of the various components for the third embodiment of the showerhead coupling assembly are slightly modified from the second embodiment to accommodate the alternative keying feature.


With reference to FIGS. 4C and 4D, the arm coupling member 405 may include a connection portion 420 for receipt in a coupling segment 425 of the showerhead pipe coupling member 410. Near the arm coupling member's connection portion 420, an annular keying flange 430 may extend around a shaft 435 of the arm coupling member 405. Multiple tapered arm coupling member projections 440 (see FIG. 4F) extend from a surface of the keying flange 430 abutting the shower pipe coupling member 410. The multiple arm coupling member projections 440 engage the recesses formed between multiple tapered shower pipe coupling member projections 445 (see FIG. 4E) extending from an end surface of the shower pipe coupling member 410 abutting the arm coupling member 405. When each coupling member's respective tapered projections 440, 445 are engaged with recesses formed by the other member's tapered projections, the arm coupling member 405 is prevented from rotating relative to the shower pipe coupling member 410 around the longitudinal axis marked as D-D on FIG. 4C. The other portions of the arm coupling member 405 are similar to those described above for the first and second embodiments of the showerhead coupling assembly.


In a manner similar to the one described for the second embodiment of the shower arm coupling assembly 300, the shower pipe coupling member 410 may be threadedly joined to the locking nut 415 and the shower pipe 105 as shown in FIGS. 4C and 4D, or may be joined to the shower pipe 105 by any other suitable joining means.


Similar to the second embodiment, proximate the threads for joining the shower pipe coupling member 410 to the shower pipe 105, the interior surface of the shower pipe coupling member 410 may be stepped inwardly to receive a shower pipe O-ring 450 or other suitable seal element. The shower pipe O-ring 450 forms a water-tight seal between the shower pipe coupling member 410 and the shower pipe 105 to substantially prevent water from leaking through the joint formed between them.


A coupling member seal groove 455 may be formed in the interior surface of the shower pipe coupling member 410 to receive a coupling member O-ring 460 or other suitable seal element. The coupling member O-ring 460 forms a water-tight seal between the shower pipe coupling member 410 and the arm coupling member 405 to substantially prevent fluid leaks through the joint formed between them.


The locking nut 415 is similar to the locking nut for the second embodiment of the coupling member assembly and operates in a similar manner. The locking nut 415 causes the arm coupling member projections 440 to engage the recesses formed by the shower pipe coupling member projections 445 as it is threaded onto the shower pipe coupling member 410. This engagement prevents rotation of the coupling members 405, 410 relative to each around the longitudinal axis marked as D-D on FIG. 4C. To rotate the coupling members 405, 410 relative to each other, the locking nut 415 is sufficiently unthreaded from the shower pipe coupling member 410 to disengage the projections 440, 445 from the recesses as shown in FIG. 4D. When disengaged, the arm coupling member 405 may be selectively rotated relative to the shower pipe coupling member 410 to change the relative rotation position of an attached showerhead relative to the shower pipe 105.


Further, like the second embodiment, the arm coupling member 405 may be selectively rotated to a position relative to the shower pipe coupling member 410 to properly align the projections 440, 445 with matching recesses prior to tightening the locking nut 415 onto the shower pipe coupling member 410. As the number of matching projections 440, 445 with corresponding recesses increases or decreases on each coupling member 405, 410, the number of relative rotation positions of the arm coupling member 405 to the shower pipe coupling member 410 respectively increases or decreases.


Similar to the first and second embodiments, the internal surface, or surfaces, of the arm and shower pipe coupling member 405, 410 of the third embodiment may define fluid passages for transporting fluid from a shower pipe 105 to an attached showerhead.


A fourth embodiment of a shower arm attachment assembly 500 is depicted in FIGS. 5A and 5B. Like the previously described embodiments, this embodiment of the showerhead attachment assembly 500 may be used in an arm assembly, such as the arm assembly 110 shown in FIG. 1A. The fourth embodiment may include a stud 505 connected to an arm cross-member 510. The stud 505 may be fused to the arm cross-member 510, or otherwise suitably joined, to form a high strength, water-tight connection. Alternatively, the stud 505 may be integrally formed with the arm cross-member 510.


The stud 505 may be joined to a tee 515 using threads. The stud 505 may be selectively rotated relative to the tee 515. The tee 515 may include a tee flange 520 extending from a tee shaft 525 for engagement with a stepped, interior surface of a shower pipe nut 530. The tee 515 may be connected to a shower pipe 105 by abutting the tee flange 520 with the stepped interior surface of the nut 530 and threading the shower pipe nut 530 onto the shower pipe 105 as depicted in FIG. 5B. When the stud is joined to the tee 515, and the tee 515 is joined to the shower pipe 105, the stud 505 may be selectively rotated relative to the tee 515. A jam nut 535 may be threaded onto the tee 515 to substantially prevent rotation of the tee 515 relative to the stud 505. A hole in the jam nut 535 for receiving the tee shaft 525 may be sized slightly smaller than the outer diameter of the tee shaft 525, thus compressing the tee shaft 525 slightly inward onto the stud 505. Such compression locks the tee shaft 525 onto the stud 505, thus substantially limiting rotation of the tee shaft 525 relative to the stud. As the jam nut 535 is thread off the tee shaft 525, the tee shaft 525 is allowed to uncompress, thus allowing the stud 505 to be rotated relative to the tee shaft 525. Accordingly, sufficiently threading the jam nut 535 onto the tee 515 will substantially prevent rotation of the stud 505 relative to the tee 515 while sufficiently unthreading the jam nut 535 from the tee 515 will allow the stud 505 to be rotated relative to the tee 515.


A shower pipe resilient washer 540 may be placed between the tee flange 520 and the shower pipe 105 to form a water-tight seal between the tee 515 and the shower pipe 105, which prevents water from leaking through the joint formed between the tee 515, the shower pipe 105, and the shower pipe nut 530. Similarly, a stud washer 545 may be placed between an interior stepped surface of the tee 515 and the stud 505 to form a water-tight seal between the tee 515 and the stud 505, which prevents water from leaking through the joint formed between the tee 515 and the stud 505. Fluid passages may be defined by inner surfaces of the tee 515 and the stud 505 to convey fluid from the shower pipe 105 to an attached showerhead.


Any of the various components for the various embodiments of the arm assembly, including, but not limited to, the components of the shower arm attachment assembly, may be formed of plastic, metal, ceramic, any other suitable metal, or any combination thereof. Further, any of various components for the arm assembly may be integrally formed or may be formed from two or more parts joined by any suitable joining method.


All directional references (e.g., upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the embodiments of the present invention, and do not create limitations, particularly as to the position, orientation, or use of the invention unless specifically set forth in the claims. Joinder references (e.g., attached, coupled, connected, joined, and the like) are to be construed broadly and may include intermediate members between a connection of elements and relative movement between elements. As such, joinder references do not necessarily infer that two elements are directly connected and in fixed relation to each other.


In some instances, components are described with reference to “ends” having a particular characteristic and/or being connected with another part. However, those skilled in the art will recognize that the present invention is not limited to components which terminate immediately beyond their points of connection with other parts. Thus, the term “end” should be interpreted broadly, in a manner that includes areas adjacent, rearward, forward of, or otherwise near the terminus of a particular element, link, component, part, member or the like. In methodologies directly or indirectly set forth herein, various steps and operations are described in one possible order of operation, but those skilled in the art will recognize that steps and operations may be rearranged, replaced, or eliminated without necessarily departing from the spirit and scope of the present invention. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the spirit of the invention as defined in the appended claims.

Claims
  • 1. A shower arm assembly comprising a tubular arm with a transverse connection portion at a first end; anda shower arm attachment assembly rotatably connected to the transverse connection portion and including an arm coupling member configured to both allow rotation of the arm with respect thereto and fixedly interface with the transverse connection portion at multiple positions; andan arm rotation assembly including a connector rod comprising a threaded portion at a first end and a flange at a second end and positioned axially within a portion of the arm coupling member and axially within the transverse connection portion of the arm;a nut joined to the connector rod at the threaded end and operative with the connector rod to releasably press together the arm coupling member and the transverse connection portion of the arm; anda retaining clip slideably attached to and directly engaging the connector rod between the threaded portion and the flange and statically positioned with respect to the transverse connection portion of the arm to prevent disassembly of the arm from the arm coupling member independent of the nut.
  • 2. The shower arm assembly of claim 1, wherein the arm rotation assembly further comprises a sleeve and a sleeve washer positioned about the connector rod between the transverse connection portion of the arm and the nut.
  • 3. The shower arm assembly of claim 2, wherein the retaining clip is positioned between the sleeve washer and the transverse connection portion of the arm.
  • 4. The shower arm assembly of claim 2, wherein tightening the nut on the threaded end causes the nut to bear against sleeve, and the sleeve to bear against the transverse connection portion of the arm, pressing the arm and arm coupling member together.
  • 5. The shower arm assembly of claim 3, wherein disassembly of the arm from the arm coupling member is stopped by the retaining clip engaging the threaded portion of the connector rod.
  • 6. The shower arm assembly of claim 1, wherein: the arm coupling member includes a first keying feature and the transverse connection portion of the arm includes a second keying feature for engagement with the first keying feature to substantially prevent rotation of the arm relative to the arm coupling member; andpressing the arm coupling member and the arm together using the arm rotation assembly engages the first and second keying features.
  • 7. The shower arm assembly of claim 6, wherein: the arm coupling member includes a third keying feature; andthe shower arm attachment assembly further includes: a shower pipe coupling member operative for attachment to a shower pipe and including a fourth keying feature for engagement with the third keying feature to substantially prevent rotation of the shower pipe coupling member relative to arm coupling member; anda locking nut selectively engageable with the arm coupling member and the shower pipe coupling member, wherein engagement of the locking nut with the arm coupling member and the shower pipe coupling member joins the arm coupling member with the shower pipe coupling member and engages the third keying feature with the fourth keying feature.
  • 8. A shower arm assembly comprising: an arm including a first keying feature;a shower arm attachment assembly rotatably connected to the arm comprising an arm coupling member including a second keying feature for engagement with the first keying feature to substantially prevent rotation of the arm relative to the arm coupling member; andan arm rotation assembly including a connector rod positioned within the arm coupling member and within a portion of the arm and configured to be in fluid communication with a fluid flowing through the arm rotation assembly, the connector rod comprising a first end configured to engage and seal against the arm coupling member and a threaded portion at a second end that extends beyond the arm;a nut joined to the threaded portion of the connector rod and operative with the connector rod to releasably press together the arm coupling member and the arm to engage the first keying feature with the second keying feature; anda retaining clip slideably attached to and directly engaging the connector rod between the first end of the connector rod and the threaded portion at the second end and statically interfacing with the arm such that the retaining clip is operative with the connector rod to prevent disassembly of the arm from the arm coupling member independent of the nut.
  • 9. The shower arm assembly of claim 8, wherein the arm coupling member includes a third keying feature; andthe shower arm attachment assembly further includes a shower pipe coupling member operative for attachment to a shower pipe and including a fourth keying feature for engagement with the third keying feature to substantially prevent rotation of the shower pipe coupling member relative to arm coupling member; anda locking nut selectively engageable with the arm coupling member and the shower pipe coupling member, wherein engagement of the locking nut with the arm coupling member and the shower pipe coupling member joins the arm coupling member with the shower pipe coupling member and engages the third keying feature with the fourth keying feature.
  • 10. The shower arm assembly of claim 8, wherein disassembly of the arm from the arm coupling member is stopped by the retaining clip engaging the threaded portion of the connector rod.
  • 11. A shower arm assembly comprising: an arm defining a fluid flow conduit and including a first keying feature;a shower arm attachment assembly rotatably connected to the arm comprising; an arm coupling member including a second keying feature for engagement with the first keying feature to substantially prevent rotation of the arm relative to the arm coupling member; andan arm rotation assembly defining a fluid flow passage in fluid communication with the fluid flow conduit and including a connector rod comprising a threaded end and a flange at an opposite end, wherein the connector rod defines at least a portion of the fluid flow passage;a nut joined to the threaded end of the connector rod and operative with the connector rod to releasably press together the arm coupling member and the arm to engage the first keying feature with the second keying feature; anda retaining clip slideably attached to and directly engaging the connector rod between the threaded end and the flange and statically interfacing with the arm such that the retaining clip is operative with the connector rod to prevent disassembly of the arm from the arm coupling member independent of the nut.
  • 12. The shower arm assembly of claim 11, wherein the flange of the connector rod forms a wall bounding the fluid flow passage.
  • 13. The shower arm assembly of claim 11, wherein disassembly of the arm from the arm coupling member is stopped by the retaining clip engaging the threaded portion of the connector rod.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/470,120 filed on 27 Aug. 2014 entitled “Showerhead attachment assembly,” which is a divisional of U.S. patent application Ser. No. 11/869,183 filed on 9 Oct. 2007 entitled “Showerhead attachment assembly,” which claims priority pursuant to 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/828,741 filed on 9 Oct. 2006 entitled “Showerhead attachment assembly,” the disclosures of which are each hereby incorporated by reference herein in their entireties.

US Referenced Citations (354)
Number Name Date Kind
203094 Wakeman Apr 1878 A
428023 Schoff May 1890 A
445250 Lawless Jan 1891 A
486986 Schinke Nov 1892 A
566410 Schinke Aug 1896 A
570405 Jerguson et al. Oct 1896 A
800802 Franquist Oct 1905 A
832523 Andersson Oct 1906 A
854094 Klein May 1907 A
926929 Dusseau Jul 1909 A
1001842 Greenfield Aug 1911 A
1003037 Crowe Sep 1911 A
1018143 Vissering Feb 1912 A
1193302 Seltner Aug 1916 A
1207380 Duffy Dec 1916 A
1217254 Winslow Feb 1917 A
1218895 Porter Mar 1917 A
1255577 Berry Feb 1918 A
1260181 Garnero Mar 1918 A
1276117 Riebe Aug 1918 A
1284099 Harris Nov 1918 A
1327428 Gregory Jan 1920 A
1451800 Agner Apr 1923 A
1469528 Owens Oct 1923 A
1500921 Bramson et al. Jul 1924 A
1560789 Johnson et al. Nov 1925 A
1597477 Panhorst Aug 1926 A
1692394 Sundh Nov 1928 A
1695263 Jacques Dec 1928 A
1724147 Russell Aug 1929 A
1736160 Jonsson Nov 1929 A
1754127 Srulowitz Apr 1930 A
1758115 Kelly May 1930 A
1778658 Baker Oct 1930 A
1821274 Plummer Sep 1931 A
1906575 Goeriz May 1933 A
2011446 Judell Aug 1935 A
2024930 Judell Dec 1935 A
2044445 Price et al. Jun 1936 A
2117152 Crosti May 1938 A
2196783 Shook Apr 1940 A
2197667 Shook Apr 1940 A
2204856 Hinrichs Jun 1940 A
2268263 Newell et al. May 1941 A
2342757 Roser Feb 1944 A
D147258 Becker Aug 1947 S
D152584 Becker Feb 1949 S
2467954 Becker Apr 1949 A
2472030 Thulin May 1949 A
2546348 Schuman Mar 1951 A
2581129 Muldoon Jan 1952 A
D166073 Dunkelberger Mar 1952 S
2648762 Dunkelberger Aug 1953 A
2664271 Arutunoff Dec 1953 A
2676806 Bachman Apr 1954 A
2679575 Haberstump May 1954 A
2680358 Zublin Jun 1954 A
2721089 Shames Oct 1955 A
2759765 Pawley Aug 1956 A
2776168 Schweda Jan 1957 A
2825135 Tilden Mar 1958 A
2873999 Webb Feb 1959 A
2931672 Merritt et al. Apr 1960 A
2966311 Davis Dec 1960 A
D190295 Becker May 1961 S
D192935 Becker May 1962 S
3032357 Shames et al. May 1962 A
3034809 Greenberg May 1962 A
3064998 Syverson Nov 1962 A
3095892 Laing et al. Jul 1963 A
3103723 Becker Sep 1963 A
3111277 Grimsley Nov 1963 A
3121235 Gellmann Feb 1964 A
3143857 Eaton Aug 1964 A
3196463 Farneth Jul 1965 A
3231200 Heald Jan 1966 A
3266059 Stelle Aug 1966 A
3306634 Groves et al. Feb 1967 A
3329967 Martinez et al. Jul 1967 A
3389925 Gottschald Jun 1968 A
3393311 Dahl Jul 1968 A
3393312 Dahl Jul 1968 A
3402893 Hindman Sep 1968 A
3492029 French et al. Jan 1970 A
3546961 Marton Dec 1970 A
3556141 Hind Jan 1971 A
3565116 Gabin Feb 1971 A
3584822 Oram Jun 1971 A
3612577 Pope Oct 1971 A
3641333 Gendron Feb 1972 A
3663044 Contreras et al. May 1972 A
3669362 Meyerhofer et al. Jun 1972 A
3669470 Deurloo Jun 1972 A
3685745 Peschcke-Koedt Aug 1972 A
3731084 Trevorrow May 1973 A
3754779 Peress Aug 1973 A
3778610 Wolf Dec 1973 A
3860271 Rodgers Jan 1975 A
3861719 Hand Jan 1975 A
3869151 Fletcher et al. Mar 1975 A
3910277 Zimmer Oct 1975 A
D237708 Grohe Nov 1975 S
3929164 Richter Dec 1975 A
3931992 Coel Jan 1976 A
D240178 Johansen Jun 1976 S
D240322 Staub Jun 1976 S
3971074 Yxfeldt Jul 1976 A
4005880 Anderson et al. Feb 1977 A
4006920 Sadler et al. Feb 1977 A
4023782 Eifer May 1977 A
4045054 Arnold Aug 1977 A
D249356 Nagy Sep 1978 S
4162801 Kresky et al. Jul 1979 A
4174822 Larsson Nov 1979 A
4243253 Rogers, Jr. Jan 1981 A
4258414 Sokol Mar 1981 A
D259054 Petersons Apr 1981 S
4274400 Baus Jun 1981 A
4282612 King Aug 1981 A
D262353 Kitson Dec 1981 S
4358056 Greenhut et al. Nov 1982 A
D268442 Darmon Mar 1983 S
D268609 Thompson Apr 1983 S
4383554 Merriman May 1983 A
4396797 Sakuragi et al. Aug 1983 A
4425965 Bayh, III et al. Jan 1984 A
4465308 Martini Aug 1984 A
4479610 Etheridge et al. Oct 1984 A
4495550 Visciano Jan 1985 A
4540202 Amphoux et al. Sep 1985 A
4545081 Nestor et al. Oct 1985 A
4545535 Knapp Oct 1985 A
4553775 Hailing Nov 1985 A
D281820 Oba et al. Dec 1985 S
4568216 Mizusawa et al. Feb 1986 A
4571003 Roling et al. Feb 1986 A
D283645 Tanaka Apr 1986 S
4639018 Froelich Jan 1987 A
4643463 Hailing et al. Feb 1987 A
4645244 Curtis Feb 1987 A
4651770 Denham Mar 1987 A
4652025 Conroy, Sr. Mar 1987 A
4669757 Bartholomew Jun 1987 A
4683917 Bartholomew Aug 1987 A
4707770 Van Duyn Nov 1987 A
4717180 Roman Jan 1988 A
4722029 Ahle et al. Jan 1988 A
4733337 Bieberstein Mar 1988 A
4739801 Kimura et al. Apr 1988 A
4752975 Tiernan Jun 1988 A
4790294 Allred, III et al. Dec 1988 A
4809369 Bowden Mar 1989 A
4839599 Fischer Jun 1989 A
4842059 Tomek Jun 1989 A
D302325 Charet et al. Jul 1989 S
4850616 Pava Jul 1989 A
4856822 Parker Aug 1989 A
4863328 Malek Sep 1989 A
4865362 Holden Sep 1989 A
4871196 Kingsford Oct 1989 A
D306351 Charet et al. Feb 1990 S
4901765 Poe Feb 1990 A
4901927 Valdivia Feb 1990 A
4903178 Englot et al. Feb 1990 A
4907137 Schladitz et al. Mar 1990 A
4946202 Perricone Aug 1990 A
4951329 Shaw Aug 1990 A
4959758 Filosa et al. Sep 1990 A
4964573 Lipski Oct 1990 A
4972048 Martin Nov 1990 A
4975123 Gray Dec 1990 A
D314246 Bache Jan 1991 S
5004158 Halem et al. Apr 1991 A
5022103 Faist Jun 1991 A
5032015 Christianson Jul 1991 A
5033528 Volcani Jul 1991 A
5046764 Kimura et al. Sep 1991 A
D321062 Bonbright Oct 1991 S
D322681 Yuen Dec 1991 S
5071070 Hardy Dec 1991 A
5086878 Swift Feb 1992 A
D325769 Haug et al. Apr 1992 S
5103384 Drohan Apr 1992 A
5107406 Sekido et al. Apr 1992 A
5134251 Martin Jul 1992 A
5135173 Cho Aug 1992 A
D329504 Yuen Sep 1992 S
5143123 Richards et al. Sep 1992 A
5148556 Bottoms, Jr. et al. Sep 1992 A
5153976 Benchaar et al. Oct 1992 A
5154483 Zeller Oct 1992 A
5163752 Copeland et al. Nov 1992 A
5197767 Kimura et al. Mar 1993 A
5215338 Kimura et al. Jun 1993 A
5220697 Birchfield Jun 1993 A
D337839 Zeller Jul 1993 S
D338542 Yuen Aug 1993 S
5254809 Martin Oct 1993 A
D341220 Eagan Nov 1993 S
5263646 McCauley Nov 1993 A
5265833 Heimann et al. Nov 1993 A
5268826 Greene Dec 1993 A
5276596 Krenzel Jan 1994 A
5286071 Storage Feb 1994 A
5288110 Allread Feb 1994 A
D345811 Van Deursen et al. Apr 1994 S
5333787 Smith et al. Aug 1994 A
5333789 Garneys Aug 1994 A
5340165 Sheppard Aug 1994 A
5349987 Shieh Sep 1994 A
5356036 Garnett Oct 1994 A
5356076 Bishop Oct 1994 A
5368235 Drozdoff et al. Nov 1994 A
5369556 Zeller Nov 1994 A
5370427 Hoelle et al. Dec 1994 A
5385500 Schmidt Jan 1995 A
D356626 Wang Mar 1995 S
5398977 Berger et al. Mar 1995 A
D361399 Carbone et al. Aug 1995 S
5449206 Lockwood Sep 1995 A
D363360 Santarsiero Oct 1995 S
5468057 Megerle et al. Nov 1995 A
D364935 deBlois Dec 1995 S
D365625 Bova Dec 1995 S
D365646 deBlois Dec 1995 S
D366707 Kaiser Jan 1996 S
D366708 Santarsiero Jan 1996 S
D366709 Szymanski Jan 1996 S
D366710 Szymanski Jan 1996 S
5481765 Wang Jan 1996 A
D366948 Carbone Feb 1996 S
D367333 Swyst Feb 1996 S
D367934 Carbone Mar 1996 S
D368146 Carbone Mar 1996 S
D368317 Swyst Mar 1996 S
D368539 Carbone et al. Apr 1996 S
D368540 Santarsiero Apr 1996 S
D368541 Kaiser et al. Apr 1996 S
D368542 deBlois et al. Apr 1996 S
D369873 deBlois et al. May 1996 S
D369874 Santarsiero May 1996 S
D369875 Carbone May 1996 S
D370277 Kaiser May 1996 S
D370278 Nolan May 1996 S
D370279 deBlois May 1996 S
D370280 Kaiser May 1996 S
D370281 Johnstone et al. May 1996 S
5517392 Rousso et al. May 1996 A
5521803 Eckert et al. May 1996 A
D370542 Santarsiero Jun 1996 S
D370735 deBlois Jun 1996 S
D370987 Santarsiero Jun 1996 S
D370988 Santarsiero Jun 1996 S
D371448 Santarsiero Jul 1996 S
D371618 Nolan Jul 1996 S
D371619 Szymanski Jul 1996 S
D371856 Carbone Jul 1996 S
D372318 Szymanski Jul 1996 S
D372319 Carbone Jul 1996 S
5531625 Zhong Jul 1996 A
D372548 Carbone Aug 1996 S
D372998 Carbone Aug 1996 S
D373210 Santarsiero Aug 1996 S
D373434 Nolan Sep 1996 S
D373435 Nolan Sep 1996 S
D373645 Johnstone et al. Sep 1996 S
D373646 Szymanski et al. Sep 1996 S
D373647 Kaiser Sep 1996 S
D373648 Kaiser Sep 1996 S
D373649 Carbone Sep 1996 S
D373651 Szymanski Sep 1996 S
D373652 Kaiser Sep 1996 S
D374297 Kaiser Oct 1996 S
D374298 Swyst Oct 1996 S
D374299 Carbone Oct 1996 S
D374493 Szymanski Oct 1996 S
D374494 Santarsiero Oct 1996 S
D374732 Kaiser Oct 1996 S
D374733 Santarsiero Oct 1996 S
5567115 Carbone Oct 1996 A
D376217 Kaiser Dec 1996 S
D376860 Santarsiero Dec 1996 S
D376861 Johnstone et al. Dec 1996 S
D376862 Carbone Dec 1996 S
5624074 Parisi Apr 1997 A
D379404 Spelts May 1997 S
D381405 Waidele et al. Jul 1997 S
5660079 Friedrich Aug 1997 A
5667146 Pimentel et al. Sep 1997 A
5667148 Pimentel et al. Sep 1997 A
5692252 Zwezdaryk Dec 1997 A
5749602 Delaney et al. May 1998 A
5778939 Hok-Yin Jul 1998 A
D398370 Purdy Sep 1998 S
D401680 Tiernan Nov 1998 S
5865378 Hollinshead et al. Feb 1999 A
D406636 Male et al. Mar 1999 S
D413157 Ratzlaff Aug 1999 S
5997047 Pimentel et al. Dec 1999 A
6042155 Lockwood Mar 2000 A
6095801 Spiewak Aug 2000 A
D431072 Milrud et al. Sep 2000 S
6164569 Hollinshead et al. Dec 2000 A
6164570 Smeltzer Dec 2000 A
6199729 Drzymkowski Mar 2001 B1
D440641 Hollinshead et al. Apr 2001 S
6227456 Colman May 2001 B1
6276004 Bertrand et al. Aug 2001 B1
D450370 Wales Nov 2001 S
6336764 Liu Jan 2002 B1
6382531 Tracy May 2002 B1
6425149 Wang Jul 2002 B1
6450425 Chen Sep 2002 B1
6464265 Mikol Oct 2002 B1
D465553 Singtoroj Nov 2002 S
6511001 Huang Jan 2003 B1
D470219 Schweitzer Feb 2003 S
6537455 Farley Mar 2003 B2
6626210 Luettgen et al. Sep 2003 B2
6629651 Male et al. Oct 2003 B1
6643862 Aitken Nov 2003 B2
6659117 Gilmore Dec 2003 B2
6701953 Agosta Mar 2004 B2
D496446 Zwezdaryk Sep 2004 S
6848384 Higgins Feb 2005 B2
D502761 Zieger et al. Mar 2005 S
6863227 Wollenberg et al. Mar 2005 B2
6926212 Glass Aug 2005 B1
D517669 Zieger et al. Mar 2006 S
D520105 Kosasih May 2006 S
7066411 Male et al. Jun 2006 B2
7097122 Farley Aug 2006 B1
D529151 Macan et al. Sep 2006 S
D531259 Hseih Oct 2006 S
7147172 Darling, III et al. Dec 2006 B2
7201331 Bertrand Apr 2007 B2
7299510 Tsai Nov 2007 B2
D557770 Hoernig Dec 2007 S
D559953 Bickler et al. Jan 2008 S
7533906 Luettgen et al. May 2009 B2
7905429 Somerfield et al. Mar 2011 B2
8024822 Macan et al. Sep 2011 B2
20020033424 Rivera et al. Mar 2002 A1
20020070292 Hazenfield Jun 2002 A1
20040163169 Kollmann et al. Aug 2004 A1
20050283904 Macan Dec 2005 A1
20060151632 Larsen Jul 2006 A1
20060208111 Tracy et al. Sep 2006 A1
20060231648 Male et al. Oct 2006 A1
20070251590 Weinstein Nov 2007 A1
20070272312 Chang Nov 2007 A1
20080083844 Leber et al. Apr 2008 A1
20080271240 Leber et al. Nov 2008 A1
20110139900 Somerfield et al. Jun 2011 A1
Foreign Referenced Citations (37)
Number Date Country
687527 Nov 1996 AU
659510 Mar 1963 CA
2150317 Nov 1995 CA
352813 May 1922 DE
854100 Oct 1952 DE
2360534 Jun 1974 DE
2806093 Aug 1979 DE
3246327 Dec 1982 DE
4034695 May 1991 DE
4142198 Apr 1993 DE
19608085 Mar 1998 DE
0167063 Jun 1985 EP
0683354 Nov 1995 EP
0687851 Dec 1995 EP
0695907 Feb 1996 EP
0721082 Jul 1996 EP
538538 Jun 1922 FR
1098836 Aug 1955 FR
2596492 Oct 1987 FR
2695452 Mar 1994 FR
10086 May 1893 GB
3314 Dec 1914 GB
129812 Jul 1919 GB
204600 Oct 1923 GB
634483 Mar 1950 GB
971866 Oct 1964 GB
2156932 Oct 1985 GB
2298595 Sep 1996 GB
327400 Jul 1936 IT
350359 Jul 1937 IT
S63-181459 Nov 1988 JP
H2-78660 Jun 1990 JP
8902957 Jun 1991 NL
WO9312894 Jul 1993 WO
WO9325839 Dec 1993 WO
WO9623999 Aug 1996 WO
WO9830336 Jul 1998 WO
Non-Patent Literature Citations (2)
Entry
Decision on Appeal mailed Jun. 30, 2016, in U.S. Appl. No. 11/869,183, 9 pages.
“Showermaster 2” advertisement, Showermaster, P.O. Box 5311, Coeur d'Alene, ID 83814, as early as Jan. 1997.
Related Publications (1)
Number Date Country
20170304859 A1 Oct 2017 US
Provisional Applications (1)
Number Date Country
60828741 Oct 2006 US
Divisions (1)
Number Date Country
Parent 11869183 Oct 2007 US
Child 14470120 US
Continuations (1)
Number Date Country
Parent 14470120 Aug 2014 US
Child 15644562 US