Field
This disclosure is generally related to devices that can be used for storing and/or organizing personal articles, and specifically to shelving systems.
Description of the Related Art
Certain shelving devices, such as those commonly known as “shower caddies,” are used in a shower or bath enclosure to store and organize personal care articles, such as shampoo, soap, razors, toothbrushes, bath sponges, etc. Shower caddies typically include shelves or baskets for holding the personal care items. The collection of personal care articles on the shelving can sometimes appear cluttered or disorganized. Some shower caddies are configured to hang and thus can be called “hanging shower caddies.”
In accordance with some embodiments, a shelving system can comprise at least one elongated support member configured to be positionable in an orientation such that it is elongated in a generally vertical direction. The at least one elongated support member can also comprise at least one channel. The channel can extend along a rear wall of the support member. In some variants, one or more channels extend along lateral edges of the support member. At least one member can be configured to support an article for drying. A connecting mechanism can be configured to releasably connect the at least one member to the elongated support member. The connecting mechanism can comprise first and second engaging members, each of the first and second engaging members can be pivotally mounted relative to the at least one elongated support member and comprising a control portion and an engaging portion. The engaging portions can be configured to extend into at least one of the channels. The connecting mechanism can comprise a biasing device configured to bias the first and second engaging members toward a position in which the engaging portions extend into at least one channel. At least one of the biasing member and the engaging portions can be configured to engage the at least one channel with sufficient force to support the at least one member with at least one wet article supported by the at least one member.
In accordance with some embodiments, a drying rack can comprise at least one member configured to support an article for drying. A connecting mechanism can be configured to releasably connect the at least one member to an elongated vertical support member having first and second elongated vertical channels. The connecting mechanism can further comprise first and second engaging members. Each of the first and second engaging members can be pivotally mounted relative to the at least one member and can comprise a control portion and an engaging portion. Each of the engaging portions can be configured to extend into one of the first and second elongated vertical channels. The connecting mechanism can further comprise a biasing device configured to bias the first and second engaging members toward a position in which the engaging portions extend into the first and second vertical channels. At least one of the biasing member and the engaging portions can be configured to engage the first and second vertical channels with sufficient force to support the at least one member with at least one wet article supported by the at least one member.
In accordance with some embodiments, a shelving system can comprise a support member having a first end, a second end, and a longitudinal axis. At least one shelf can be slidably connected to the support member with a connection mechanism. The connection mechanism can be configured to allow the at least one shelf to be adjusted in a first direction generally parallel to the longitudinal axis and in a second direction substantially perpendicular to the longitudinal axis with respect to the support member.
In accordance with some embodiments, a shelving system for a shower can comprise a central portion having a top end and a bottom end, wherein the central portion comprises at least one shelf. An upper attachment device can be configured to hang the central portion within a shower. A lower attachment device can be connected to the bottom end, wherein the lower attachment device is configured to be adjustable in at least a generally horizontal direction.
In accordance with some embodiments, a shower organizer can comprise an elongated element having a longitudinal axis, a first end, and a second end. A connector can have an aperture configured to fit around a shower head pipe. At least one shelf can be mounted on the elongated element. A resilient member can be disposed in the aperture so as to lie between an outer surface of a shower head pipe and an inner surface of the aperture when the connector is disposed around a shower head pipe.
In accordance with some embodiments, a shower caddy can comprise an elongated central support member with a longitudinal axis. The central support member can have a generally I-shaped cross-section, comprising at least a first flange with first and second lateral edges. At least first and second shelves can be provided, wherein each of the first and second shelves can have at least first and second cross members extending generally laterally across the respective shelves.
At least first and second clamp mechanisms can releasably connect the first and second shelves, respectively, to the central support member. In some embodiments, each of the first and second clamp mechanisms can comprise a clamp body with first and second hooks configured to engage the first and second lateral edges of the first flange. In certain variants, the clamp mechanisms can each have a clamp plate disposed at least partially in the clamp body and configured to rest against the first and second cross members, and a lever member having a cam. The lever member can be configured to pivot between locked and unlocked positions, wherein in the locked position, the cam presses the clamp plate against the cross members and causes the first and second hooks to press against the first and second lateral edges, respectively, with sufficient force to support the weight of the shelf.
A first connector device can be disposed at an upper end of the central support member. The first connector can have a first portion fixed to the upper end of the support and a second portion pivotally connected to the first portion so as to be pivotable between open and closed positions. The first and second portions can have an aperture configured to fit around a shower head pipe when in the closed position. A second connector device can comprise a suction cup pivotally mounted to a lower end of the central support member so as to be pivotable about a pivot axis extending generally perpendicular to the longitudinal axis.
Certain embodiments include an attachment system for a hanging shower caddy. The attachment system comprising can include a bracket connected to a pivot point at a bottom end of an elongate support member of the shower caddy. The bracket can have a magnetic portion, which can be a central portion. The bracket can include an outwardly extending arm. The arm can be configured to rotate freely about the pivot point. The bracket can include a connection member, such as a suction cup, attached to the arm. In some embodiments, the attachment system includes a hub configured to couple with a shower wall, such as with adhesive tape. The hub can be magnetic. The hub can have a front and a rear. The front can be configured to couple (e.g., magnetically) with the central portion of the bracket. The rear can have a generally planar surface configured to engage an adhesive material, an outer wall, and a recess. The recess can be located radially between the generally planar surface and the outer wall. The recess can be configured to receive a sealant material.
In some implementations, the attachment system includes a plurality of arms and a plurality of connection member, each of the arms comprising at least one of the connection members. In some implementations, the arm is rotatable 360° around the pivot point. In certain embodiments, the outer wall comprises a generally planar surface that is generally parallel with and/or not coplanar with the generally planar surface of the central portion. Some embodiments include a distance adjustment unit that includes an adjustment member configured to vary the distance between the support member and the hub. The adjustment member can include a threaded member. In various embodiments, the hub comprises a magnet.
According to certain embodiments, a method of securing a hanging shower caddy includes adhering an adhesive to a wall of the shower and adhering a magnetic hub to the adhesive. The method can include attaching an upper portion of the shower caddy to a pipe such that the weight of the shower caddy is supported from the pipe. The shower caddy can include an elongate support member, at least one shelf, and an attachment assembly. The attachment assembly can be located at a lower end of the shower caddy. In some embodiments, the method includes magnetically coupling the magnetic hub with the attachment assembly of the shower caddy, thereby securing the lower end of the shower caddy relative to the wall. In some variants, such as embodiments in which the shower caddy includes a pivoting arm with a suction cup, the method includes rotating the pivoting arm and connecting the suction cup with the wall. In some implementations, the method includes inserting a sealant material into a recess in the magnetic hub. Some variants include adjusting an adjustment member of the attachment assembly, thereby changing the distance between the attachment assembly and the wall of the shower. In certain embodiments, the method includes adjusting an adjustment member comprises rotating a threaded pin.
Certain features, aspects, and advantages of the subject matter disclosed herein are described below with reference to the drawings, which are intended to illustrate and not to limit the scope of the disclosure. Various features of different disclosed embodiments can be combined to form additional embodiments, which are part of this disclosure. No structures, features, steps, or processes are essential or critical.
Various improved shelving systems, such as shower caddies, are disclosed. The embodiments disclosed below are described in the context of a shower caddy due to particular utility in that context. However, the inventions disclosed herein can also be applied to other types of shelving units and other types of environments.
As will be described in more detail below, the clamping mechanism 14 can be configured to allow a user to adjust a position of the shelf 16 in addition to holding it in place on the support member 12. In some embodiments, the shelf 16 can be adjusted both in the horizontal and vertical directions. This provides advantages in that the shelves can be positioned to accommodate other devices or appliances that may be in a user's shower, as well as various sizes of items, such as toiletries, that may be oversized.
The clamping mechanism 14 can be slidably mounted on the support member 12 in the vertical or longitudinal direction. As shown in
With reference to
The clamp plate 22 can be a generally flat member that is configured to fit through the slot 21 in the clamp body 20. As shown in
In some embodiments, the clamp plate 22 can be configured to engage the slot 21 so as to prevent the clamp plate 22 from falling through the slot 21, for example, when the clamp mechanism 14 is open. For example, with reference to
In some embodiments, the plate 22 can include shoulders 23. The shoulders 23 can be arranged to protrude outwardly from the main portion of the clamp plate 22. The clamp body 20 can include shoulders 25 configured to rest against the shoulders 23 so as to prevent the clamp plate 22 from falling through the clamp body 20.
As shown in
In some embodiments, the lever 24 can include a cam 26 configured to convert the pivotal movement of the lever 24 into a translational movement of the clamp plate 22. For example, the lever 24 can be hinged or otherwise pivotally mounted relative to the clamp body 20, as shown in
In some embodiments, the cam 26 can include a third portion 26c having a radius R3 which is larger than radius R2. As such, the cam 26 can be configured to provide an “over-center” operation. For example, with the radius R3 being larger than both the radiuses R1 and R2, the cam 26 will generate a maximum pressing force against the clamp plate 22 when the third portion 26c is juxtaposed to the clamp plate 22. However, as is described below in greater detail, this pressing force is reduced as the lever 24 is further pivoted until the second portion 26b is juxtaposed to the clamp plate 22. This provides an advantage in that the user is provided with a tactile signal that the lever 24 has been moved to the fully closed position. The lever 24 can move quickly from the intermediate position in which the third portion 26c is juxtaposed to the clamp plate 22 to the fully closed position in which the second portion 26b is juxtaposed to the clamp plate 22.
The pressure between the shoulders 22a, 22b of the clamp plate 22 and the cross members 30 as well as the pressure between the hooks 15 of the clamp body 20 and the outer flanges 12′, 12″ of the support member 12 secure the shelf 16 in place in both the horizontal and vertical directions. As such, the magnitude of the radius R2 can be determined so as to provide a sufficient pressing force against the clamp plate 22 such that the friction between at least one of the cross members 30, the outer surface of the support member 12, the inner surface of the flanges 12′, 12″, and the hooks 15 is sufficient to support the shelf 16 at the desired location under a maximum load. However, other devices can also be used to secure the shelves 16.
When the lever 24 is in the open position, as shown in
A user may “open” the lever 24 by pulling it generally in the direction of arrow A, away from the clamp plate 22 and the column 12. When the lever 24 is pulled in this direction, the cam 26 rotates in a clockwise direction (as viewed in
This arrangement provides various advantages. For example, with reference to
In operation, to adjust a shelf 16 in the lateral direction, a user can pivot the lever 24 toward the open position (
With reference to
In various embodiments, the loop mechanism 18 can be attached to the upper end of the support member 12. As shown in
The hinge 40 can be configured to allow the loop mechanism 18 to open, as shown in
With reference to
In some embodiments, a lower portion of the member 46 is tapered. For example, as shown in
In some embodiments, the tapered shape of the lower portion 46A can be configured to compliment the typical downwardly curved contour of a shower head pipe that emerges from a shower wall 52, such as the shower head pipe 50. Such tapering of the lower portion 46A can allow the shower caddy 10 to hang more straightly. For example, without the taper in the lower portion 46A, the lower surface of the pipe 50 would generate more pressure on a forward portion 46B of the lower portion 46A. This would generate a torque on the shower caddy 10, tending to pivot the shower caddy 10 in the direction of arrow P inwardly toward the shower wall 52. The contact patch between such an untapered member 46 would be smaller thereby weakening the grip between the member 46 and the pipe 50.
As shown in
A typical shower head pipe 50 has an outer diameter of about 0.8 inch. In some embodiments, the loop mechanism 18 has a minimum inner diameter D of about 0.74 inch when the member 46 is in a relaxed state, e.g., when the shower caddy 10 is not installed on a shower pipe 50, as shown in
This snug fit is particularly useful for stabilizing the shower caddy 10 on a shower pipe 50 when the weight of items (e.g., shampoo, soap, etc.) kept on the shelves 16 is not distributed evenly. It has been found that conventional shower caddies do not adequately resist sliding off a shower pipe. Conventional shower caddies configured to hang on a shower pipe are typically hung over the shower head pipe with a portion of a wire frame of the caddy and thus may be easily knocked off, either by a user or uneven weight distribution of articles stored on the shower caddy. By providing a hinged loop mechanism 18 at the top of the shower caddy 10, the shower caddy 10 can be more securely and stably attached to a shower head pipe.
In the illustrated embodiment, the shelves 16 are formed with cross-members 30 extending horizontally across and curved at the ends of the shelves 16 in a substantially semi-circular or generally “U” shape, as shown in
As shown in
In some embodiments, the baskets of each shelf 16, 16a, 16b, can be formed of polished stainless steel wire. In certain embodiments, the frame of the basket, including the cross members 30, can be formed of 6 mm polished stainless steel wire. The remainder of the baskets can be formed of 3 mm polished stainless steel wire.
In some embodiments, other accessories 100 (e.g., in the form of disks) can be attached to the shower caddy 10. The accessories 100 can be formed in the shape of disks having a groove 110 on the peripheral edge. The width of the groove 110 can be about the same or slightly larger than the outer diameter of the wire forming the substantially semi-circular or U-shaped portions on the ends of the shelves 16 so that the wire of the substantially semi-circular portion fits within the groove 110. The accessories 100 are sized and shaped to fit in the substantially semi-circular portion, as shown in
In some embodiments, the shower caddy 10 can be secured to the shower wall 52 with an attachment mechanism 92. As shown, the attachment mechanism 92 can be positioned at a bottom end of the shower caddy 10. This can inhibit or prevent movement (e.g., tilting) of the shower caddy 10, such as if a user accidentally bumps the caddy 10 or if the weight of items stored on the caddy 10 is shifted to one lateral side.
As shown in
The suction cup 90 can be rotatably attached to the lower end of the support member 12 by the mechanism 92 or some other mechanism allowing for at least lateral adjustment of the position of the suction cup 90 with respect to the wall 52. In some embodiments, the mechanism 92 can be configured to provide both lateral (e.g., generally perpendicular to the longitudinal axis of the support member 12) and longitudinal (e.g., generally parallel to the longitudinal axis of the support member 12) adjustment of the position of the suction cup 90.
The suction cup 90 can be configured to grip a substantially flat, planar surface. As mentioned above, suction cups positioned over a grout line or another type of break or irregularity in the shower wall may not generate a satisfactory seal with a suction cup. The mechanism 92 can be configured to allow movement of the suction cup 90, without adjusting the position of the shower caddy 10, so that a user may avoid positioning the suction cup 90 over a grout line or some other type of break or irregularity in the shower wall 52. In some embodiments, the suction cup 90 can be configured to be moveable such that it can be positioned over a smoother portion of the shower wall 52, thereby providing a strong and secure attachment to the wall 52.
In the illustrated embodiment, the mechanism 92 includes a pivot arm 94 having an upper end 96 pivotally mounted to the lower end of the support member 12 and a lower end 98 connected to the suction cup 90. The suction cup 90 can be pivoted along the arrow 100. As such, the suction cup 90 can be adjusted both in the longitudinal direction and the lateral direction.
The pivot arm 94 can be connected to the support member 12 and the suction cup 90 with any known device or mechanism. In some embodiments, the upper end 96 of the pivot arm can be connected to the support member 12 with a hinged connection. In some embodiments, friction can be built into the hinged connection to simplify the process of attaching the suction cup 90 to a shower wall.
In some embodiments, the lower end 98 of the pivot arm 94 can be configured to provide a flexible connection with the suction cup 90. In the illustrated embodiment, the suction cup 90 includes a shaft 102 with an enlarged head 104. The pivot arm 94, on the other hand, can include a resilient member 106 having an inner diameter, at rest, that is smaller than the outer diameter of the enlarged head 104. As such, the enlarged head 104 can be pressed through and thereby engaged with the resilient member 106.
In some embodiments, the shower caddy 10 can be provided with an adjustable suction cup assembly both at the top and the bottom, thereby eliminating the loop mechanism 18. Such alternative embodiments may be secured to the shower wall anywhere as they do not need to be secured to the shower head pipe.
With reference to
The support member 12A can have any configuration. In the illustrated embodiment, the support member 12A can have the same or a similar cross-sectional shape to the support member 12, as illustrated in
In some embodiments, the support member 12A is configured to have a telescoping configuration so that upper and lower ends of the support member 12A can be pressed against upper and lower stationary objects. For example, in some embodiments, the support member 12A can be configured to press against the floor of a shower and the ceiling above the shower or bathtub with sufficient force to anchor the entire caddy 10A in a desired position.
With reference to
As noted above, the support member 12A can include a spring. In the illustrated embodiment, the support member 12A includes a spring 148 configured to bias the sections 144, 146 away from each other. As such, the support member 12A can generate an anchoring force to retain the caddy 10A (
With reference to
With reference back to
In some embodiments, the support member 12A can include upper and lower feet 152, 154 configured to provide additional traction when the upper and lower ends of the support member 12A are pressed against surfaces 143,145 such as the ceiling and floor of a shower or bathtub. For example, the feet 152, 154 can be made of rubber, silicon, or any other material that would provide enhanced traction in such an environment of use.
As illustrated in
As noted above, the shelves 16A can be secured to the support member 12A with clamping mechanisms 14A. The clamping mechanisms 14A can be the same or similar to the clamping mechanisms 14 described above in detail with reference to
With reference to
In the illustrated embodiment, the drying rack 140 comprises a clamping mechanism 142 and one or a plurality of rack members 160, 162. The rack members 160, 162 can have any configuration. In the illustrated embodiment, the rack members 160, 162 are configured to support a hanging article, such as a wet wash cloth. In the illustrated embodiment, the rack members 160, 162 are made from rod shaped material with enlarged end portions 164, 166 to prevent the hanging article from inadvertently sliding off of the rack members 160, 162. In certain embodiments, the rack members 160, 162 can be made from a metal material, such as stainless steel.
The drying rack 140 can include a main body portion 170 configured to support the rack members 160, 162 as well as supporting and/or forming a part of the clamping mechanism 142. The main body member can support one or a plurality of pivot pins 172, 174. The pivot pins 172, 174 can be used to pivotally support the rack members 160, 162. In some embodiments, the pivot pins 172, 174 support clamp members 176, 178. As such, the pivot pins 172, 174 can provide pivotal support for both the rack members 160, 162 and the clamp members 176, 178.
With reference to
In some embodiments, the members 176, 178 can be biased toward the closed position, as illustrated in
a
a illustrate embodiments of another shower caddy 10B. In many respects, the shower caddy 10B resembles or is identical to either or both of the shower caddies 10, 10A discussed above. As such, components of the shower caddy 10B that are the same or similar to the corresponding components of the shower caddy 10 and/or 10A are identified below with the same reference numerals except that a letter “B” has been added thereto. The shower caddy 10B can include one, some, or all of the features of the shower caddy 10 and/or 10A, including all combinations and sub-combinations. Any component or step disclosed in any embodiment in this specification can be used in any other embodiment.
With reference to
In various embodiments, the support member 12B and/or the shelf 16B are adjustable. For example, in certain implementations, an elongate length of the support member 12B is configured to be selectable and/or variable, such as by telescoping. For example, the support member 12B can include an outer portion 12B′ and an inner portion 12B″ that can be received in, and slide relative to, the outer portion 12B′. In some variants, the length of the support member 12B is fixed (e.g., does not include a telescoping feature).
In some embodiments, the shelf 16B can move along the support member 12B. For example, in some variants, the shelf 16B can slide generally parallel with a longitudinal axis of the support member 12B (e.g., generally vertically in the embodiment illustrated). In certain implementations, the shelf 16B can move generally perpendicular to the support member 12B (e.g., generally horizontally in the embodiment illustrated). In some embodiments, the shelf 16B can be selectively secured with the support member 12B, such as with the clamping mechanism described above.
As shown in
As shown in
As illustrated in
The divider 194 can move between first and second positions relative to the accessory 100B and/or with respect to the frame of the shelf 16B. For example, the divider 194 can rotate between retracted and extended positions. In the retracted position, such as is shown in
In certain embodiments, the divider 194 comprises a bar or wire. In some implementations, the divider 194 has a generally U-shaped configuration. In some embodiments, the divider 194 is shaped substantially as a rectangle. In some embodiments, the divider 194 may be shaped as a semicircle or at least a portion of its length may be shaped as a semicircle. In some embodiments, the divider 194 is shaped to accommodate any number of suitable accessories that may be stored on the shelf 16B, such as an electric razor, travel-size bottles (e.g., of shampoo), or otherwise. In various embodiments, the divider 194 includes at least one end 196 that is configured to be secured to the accessory 100B. For example, the end 196 can be shaped as a prong that is configured to be inserted into a corresponding opening or recess in the accessory 100B, as is discussed in greater detail below. In some embodiments, the divider 194 is shaped so as to be flush with the accessory 100B or so as to conform to the shape of the shelf 16B, such that it occupies no more space than necessary, or at least a reduced amount of space, when in a retracted position. As shown in
As shown in
When the divider 194 is in the retracted position (see
In various embodiments, the portions of the divider 194 interact with and/or are received in the accessory 100B. For example, the accessory 100B can include a support structure 197 configured to interact with section 194b and/or to receive section 194c of the divider 194. As illustrated in
In some embodiments, the accessory 100B includes a securing structure, such as a detent structure 204, that is configured to secure and/or support the divider 194 in the extended position. In certain implementations, the detent structure 204 is located at the intersection of the two segments of the L-shaped groove 202. In some embodiments, the detent structure 204 is located toward the end of one of the segments of the L-shaped groove 202. The detent structure 204 is shown as including a ledge 206 and a slope 208, though it will be understood that other configurations could be used to adequately support the divider 194.
In some embodiments, when the divider 194 is moved between the retracted and expanded positions, the divider 194 engages components of the detent structure 204. For example, when the divider 194 is moved from the retracted position, the segment 194a can slide along the slope 208, can reach the ledge 206, and/or can be received in the groove 202. In some implementations, a user can grasp the cross-member 195 and apply a force to rotate the divider 194 (e.g., generally toward a midpoint of the shelf 16B, in the clockwise direction from the position shown in
To move the divider 194 from the extended position to the retracted position, a force can be applied to the divider 194 to encourage counter-rotation of the divider 194. For example, a user can apply force to the cross-member 195. In some embodiments, when the divider 194 is moved from the extended position to the retracted position, the portion of the divider 194 that is engaged (e.g., abutted) with the ledge 206 can move over the ledge 206 and down the slope 208. In some embodiments, a greater amount of force is needed to move the divider 194 from the extended position to the retracted position than to move the divider 194 from the retracted position to the extended position. In certain variants, a greater amount of initial of force is needed to begin rotating the divider 194 from the extended position to the retracted position than is needed to begin rotating the divider 194 from the retracted position to the extended position.
With reference to
As illustrated, in some implementations, the support structure 214 and the accessory 100B are located on opposite sides of the longitudinal axis of the elongate member 12B. This can facilitate balancing the caddy 10B. For example, from the vantage of a front elevation view, the accessory 100B can be on a right portion of one of the shelves 16B, 16Ba, and the support structure 214 can be on a left portion of the other of the shelves 16B, 16Ba. In some embodiments, the shelves 16B, 16Ba each include the accessory 100B and the support structure 214.
The container 210 can include an expandable bottom portion 212. The illustrated container 210 has four walls; however, the container 210 may include any number of walls, both exterior and interior, and may include no walls. In some embodiments, the container 210 includes a lip (e.g., a bar) around some or all of a top perimeter portion, so as to keep an item (e.g., a razor brush, toothbrush, etc.) contained within the container 210. This can reduce or eliminate the need for the container 210 to have solid walls.
In some implementations, the container 210 can have an expandable bottom portion 212. In certain embodiments, the extendable bottom portion 212 can be extended generally downward (e.g., toward a floor of the shower) from the container 210. For example, the extendable bottom portion 212 can include an accordion-like portion, telescoping portion, or other portion configured to facilitate movement of the bottom of the container 210 between extended and retracted positions. In various implementations, the expandable bottom portion 212 may be formed of a flexible material, such as silicone, rubber, plastic, or another suitable material.
Certain variants are configured to allow a user to select the amount (e.g., length or volume) of extension of the bottom portion 212. For example, the extendable bottom portion 212 can include discrete positions during the course of extension. In some variants, the expandable bottom portion 212 is formed of one or more extendable segments, such as multiple nested telescoping sections or multiple nested accordion-like sections.
As shown in
The expandable bottom portion 212 can facilitate accommodating elongate items that, absent the extra depth, may more easily fall out of expandable container 210, perhaps due to being top heavy. For example, some razors have an elongate portion (e.g., the handle) and a head portion (e.g., the razor portion) that weighs substantially more than the elongate portion. When items of that type are stored in a substantially upright configuration (e.g., in a cup) they tend to fall out if the cup has insufficient depth. The expandable bottom portion 212 can provide the container 210 with additional depth, thereby better supporting such elongate items and/or can reducing the likelihood of such items falling out of the container 210.
As shown in
With reference to
In various embodiments, the attachment mechanism 92B is rotatable about a pivot point such that the suction cups 90B can rotate about the pivot point. This can aid in positioning at least one of the suction cups 92B relative to a surface to which they can be secured. For example, rotation of the attachment mechanism 92B can facilitate securing at least one (and preferably both) of the suction cups 90B to a smooth surface and/or can aid in avoiding engaging at least one of the suction cups 90B with tile edges and/or grout lines. In various embodiments, the attachment mechanism 92B is fully rotatable around the pivot point (e.g., can rotate 360° around the pivot point).
In some embodiments, the attachment mechanism 92B includes a hub 218 that is separable from the remainder of the caddy 10B. According to some embodiments, the separability of the hub 218 aids in positioning and securing the hub 218, as is discussed in more detail below. In some embodiments, the caddy 10B is configured such that the hub 218 is installed on the wall of a shower prior to the remainder of the caddy 10B being installed. Various embodiments of the hub 218 are configured to engage with a mating portion 223 of the attachment mechanism 92B. For example, at least a portion of the hub 218 and the mating portion 223 are magnetically attracted. In some embodiments, one of the hub 218 and the mating portion 223 can include a magnet and the other of the hub 218 and the mating portion 223 can include a material attracted to the magnet. In certain implementations, the hub 218 and/or the mating portion 223 can include a portion made of ferromagnetic material.
As shown in
In some embodiments, the hub 218 includes a recess 220 that extends around some or all of the mounting area 222. The recess 220 can receive a water-resistant material, such as caulking, silicone, or some other suitable sealant that substantially inhibits or prevents water passage. This can reduce or eliminate water from accessing the adhesive material located on mounting area 222, which can increase the life of certain adhesives. In certain variants, the recess 220 allows the sealant to be hidden, thereby maintaining a cleaner appearance (e.g., compared to applying sealant around the exterior of hub 218).
In certain implementations, the attachment mechanism 92B includes only the suction cups 90B. In some embodiments, the attachment mechanism 92B includes only the hub 218 and the mating portion 223. In some embodiments, the attachment mechanism 92B includes both the hub 218 and the mating portion 223 as well as the suction cups 90B. In embodiments where both are included, rotation of the attachment mechanism 92B allows for the positioning of the suction cups 90B on smooth surfaces, while the adhesive material applied to the mounting area 222 to secure hub 218 to a wall may be able to function even if it is located at the edge of a tile, between tiles, or adjacent grout.
According to some embodiments, the attachment mechanism 92B includes a distance adjustment unit, such as is shown in
In various embodiments, the shower caddy 10C can include an elongated support member 12C and at least one shelf 16C. In certain implementations, the support member 12C can be configured to have a variable length, such as with one or more telescoping sections. In certain embodiments, the support member 12C can be secured at a desired length. For example, the length can be maintained with a fastener, such as a screw, pin, detent, ratchet mechanism, or otherwise. In some embodiments, the fastener can slide in a track 12Ca of the support member 12C. As is shown, the shower caddy 10C can include a loop mechanism 18C that is configured to support the weight of the shower caddy 10C, such as from a shower head (not shown) or a pipe leading to a shower head. The mechanism 18C can be configured to open, such as with a hinged connection. In some implementations, the caddy 10C includes a soap tray 60C, which can be positioned in one of the shelves 16C. Some embodiments include an accessory 100C, such as an insert or divider. In certain variants, the accessory 100C is removable from the shelf 16C. The shower caddy 10C can include an attachment mechanism 92C, which can be positioned at a bottom portion of the caddy 10C.
In some embodiments, the shelves 16C are rigidly attached with the support member 12C. In certain variants, the shelves 16C are configured to move vertically and/or horizontally with respect to the support member 12C, such as is described above. For example, any of the shelves 16C can include the clamping mechanism described above. As shown, the shelves 16C can include one or more hooks or other mounts. The bottom of the shelves 16C can include slots (e.g., holes) to facilitate drainage and/or airflow. In some embodiments, one or more walls of one or more shelves 16C can be solid, and/or generally solid, and/or not predominantly or entirely made of wire, and/or generally planar. For example, as illustrated, one or more of a front wall, a rear wall, a left wall, and/or a right wall can each or all be generally planar and/or generally solid. One or more such walls can help to obscure disorganized or cluttered contents, providing a more clean and smooth aesthetic for the shelving. In certain embodiments, the shelves 16C and/or the support member 12C are metal, such as stainless steel or aluminum.
As illustrated in
In some implementations, the shower caddy 10D includes features to aid in organizing and/or accessing bathing implements. For example, the shower caddy 10D can have a soap tray 60D, which can be positioned below one or all of the shelves 16D. Some embodiments have an accessory 100D that includes one or more supports, such as hooks, loops, ledges, partial openings, cups, cavities, containers, etc.
In some embodiments, the shower caddy 10D includes a handle and/or a divider 310. As shown, in some embodiments, the divider 310 can engage with portions of the shelf 16D, such as with a first end 312 that engages a first support member of the shelf 16D and a second end 314 that engages a second support member of the shelf 16D. In various embodiments, the divider 310 is readily disengagable from the shelf 16D, such as to facilitate repositioning of the divider 310. For example, in the illustrated embodiment, the front end 312 of the divider 310 can be rotated about the second end 314, thereby allowing removal of the divider 310 from the shelf 16D. As shown, in some embodiments, the front end 312 and the second end 314 each have recesses that receive the respective first and second support members of the shelf 16D. The opening of these recesses can be oriented in generally perpendicular directions. For example, in
In various embodiments, the shower caddy 10D includes one or more clamping mechanisms 14D, such as one clamping mechanism 14D associated with each shelf 16D. The clamping mechanism 14D can be configured to secure the shelf 16D with the support member 12D, as will be discussed in more detail below. In certain embodiments, the clamping mechanism 14D is positioned on the rear of the shower caddy 10D and/or engages a rear wall of the support member 12D. Rearward location of the clamping mechanism 14D can aid in obscuring the clamping mechanism 14D from view, protecting the clamping mechanism 14D from damage due to being impacted by bath implements (e.g., shampoo bottles), providing a streamlined (e.g., generally uninterrupted) front face of the support member 12D, and/or increasing the amount of usable space in the shelf 16D (e.g., by not taking-up space with the clamping mechanism 14D). In some embodiments, from a front elevation view of the shower caddy 10D, the clamping mechanism 14D is substantially obscured from view, such as by permitting only a user-actuatable portion (e.g., a lateral region of a dial or lever) to be exposed in the front view only as needed to contact a user's fingers. In some implementations, from a front elevation view of the shower caddy 10D, a great majority (e.g., at least about: 90%, 95%, 99%, 99.9%, percentages between the aforementioned percentages, or other percentages) of the total surface area of the clamping mechanism 14D is obscured from view.
In various embodiments, the clamping mechanism 14D is accessible from the front of the shower caddy 10D and/or without needing to turn the shower caddy 10D around. For example, as shown in
As shown in
As shown in
An example of the clamping mechanism 14D is illustrated in
Certain interactions between the clamping mechanism 14D and the support member 12D are shown in the cross-sectional views of
The shower caddy 10D can be configured such that actuating (e.g., rotating) the adjustment portion 320 (e.g., dial) secures the clamping mechanism 14D and/or the shelf 16D to the support member 12D. For example, in the embodiment illustrated, rotation of the dial 320 tightens the bolt 326 in the nut 328, which results in force being applied from the dial 320 to the base portion 322. The force is applied through the flange 324a of base portion 322 and against the corresponding flange 12Db of the support member 12D, thereby clamping the clamping mechanism 14D and/or the shelf 16D to the support member 12D. In some implementations, a portion of the force is applied from the base portion 322, through the support 30D of the shelf 16D, and against a rear wall of the support member 12D. This can facilitate securing the shelf 16D to the support member 12D, such as by clamping the support 30D of the shelf 16D between the support member 12D and the base portion 322 of the clamping mechanism 14D.
The shower caddy 10D can be configured such that the clamping mechanism 14D can be loosened to allow adjustment. For example, actuation of the adjustment portion 320 (e.g., dial) can be reversed (e.g., rotated in the opposite direction) to decrease or remove the securement of the clamping mechanism 14D and/or the shelf 16D to the support member 12D. In some embodiments, in the loosened state, the clamping mechanism 14D and the shelf 16D can move relative to the support member 12D. For example, the clamping mechanism 14D can slide generally vertically along the track 12Da. In certain implementations, in the loosened state, the shelf 16D can move relative to the clamping mechanism 14D and the support member 12D, such as by the supports 30D sliding generally horizontally along the shoulders 22Da, 22Db.
a
a illustrate another embodiment of a shower caddy 10E. In many respects, the shower caddy 10E resembles or is identical to any of the shower caddies 10-10D discussed above. Components of the shower caddy 10E that are the same or similar to the corresponding components of the shower caddy 10, 10A, 10B, 10C, and/or 10D are identified below with the same reference numerals except that a letter “E” has been added thereto. The shower caddy 10E can include one, some, or all of the features of the shower caddy 10, 10A, 10B, 10C, and/or 10D, including all combinations and sub-combinations. Any component or step disclosed in any embodiment in this specification can be used in any other embodiment.
The shower caddy 10E can include an elongated support member 12E and at least one shelf 16E. As shown, the support member 12E can include an engaging portion 12Ea, such as a groove or track. Some embodiments of the shower caddy 10E have an openable loop mechanism 18E that is configured to support the weight of the shower caddy 10E, such as from a shower head (not shown) or a pipe leading to a shower head. Certain embodiments have an attachment mechanism 92E that is configured to secure the shower caddy 10E to a shower wall. Some embodiments include a container 210E, which can be connected with a support structure 214E that is engaged with the shelf 16E. In certain embodiments, the support member 12E can telescope. For example, support member 12E can include a first (e.g., outer) portion 12E′ and a second (e.g., inner) portion 12E″ that can be received in, and slide relative to, the outer portion 12E′.
In some embodiments, the shower caddy 10E includes a length adjustment assembly 330. The length adjustment assembly 330 can be configured to adjust the length of the support member 12E. As shown in
As shown, in a non-actuated state, the pin 342 can be engaged with an opening 346 in the second portion 12E″ of the support member 12E. This can provide an interference that secures the portions 12E′, 12E″ of the support member 12E relative to each other, which can inhibit or prevent the portions 12E′, 12E″ from translating relative to each other and/or can aid in maintaining a desired length of the support member 12E. In various embodiments, maintaining the pin 342 in the opening 346 is aided by the bias of the biasing member 340. For example, the biasing member 340 can apply rearward force to the first end 334 of the actuation member 332, which the pivot 344 translates into frontward force on the second end 336 and the pin 342, thereby pressing the pin 342 toward the front of the caddy 10E and/or further into the opening 346.
In some embodiments, the length of the support member 12E can be adjusted by actuating the actuating member 332, such as by frontwardly depressing the first end 334 of the actuation member 332. This can move the first end 334 against the bias of the biasing member 340 and/or can pivot the actuation member 332 about the pivot element 344, which in turn can move the second end 336 and the pin 342 rearwardly. In some embodiments, such movement of the pin 342 disengages the pin 342 from the opening 346 in the second portion 12E″ of the support member 12E. This can allow the second portion 12E″ to slide relative to the first portion 12E′, thereby allowing a change in the length of the support member 12E. In some embodiments, the second portion 12E″ includes a plurality of the openings 346 along its length. This can allow a user to select and set a variety of lengths for the support member 12E. In various embodiments, after the actuating member 332 is released, the bias of the biasing member 340 pushes the pin 342 into the opening 346, thereby resecuring the portions 12E′, 12E″ of the support member 12E relative to each other.
In some embodiments, the length adjustment assembly 330 is similar or identical in structure and/or operation to the clamping mechanism 14D discussed above. The length adjustment assembly 330 can include any one, or any combination, of the features of the clamping mechanism 14D. In certain implementations, the actuation member 332 of the length adjustment assembly 330 includes a rotatable member, such as a dial. The dial can be configured to allow a user to vary the length of the support member 12E and/or to maintain a desired length of the support member 12E. For example, the dial can be configured to adjust the ability of the portions 12E′, 12E″ to move (e.g., slide) relative to each other, such as by increasing or decreasing the amount of friction on one or both of the portions 12E′, 12E″. In certain variants, the dial connects with a threaded member, such as a screw, that can be adjusted to increase or decrease the amount of friction on a flange or other surface of one or both of the portions 12E′, 12E″. In various embodiments, the actuation member 332 is on the rear of the shower caddy 10E and/or is generally obscured from the vantage of a front elevation view of the shower caddy 10E. In some embodiments, the actuation member 332 extends laterally outward of one or both lateral sides of the support member 12E.
Certain Terminology
Terms of orientation used herein, such as “top,” “bottom,” “horizontal,” “vertical,” “longitudinal,” “lateral,” and “end” are used in the context of the illustrated embodiments. However, this disclosure should not be limited to the illustrated orientation. Other orientations are possible and are within the scope of this disclosure.
Terms relating to circular shapes as used herein, such as diameter or radius, should be understood not to require perfect circular structures, but rather should be applied to any suitable structure with a cross-sectional region that can be measured from side-to-side. Terms relating to shapes generally, such as “circular” or “cylindrical” or “semi-circular” or “semi-cylindrical” or any related or similar terms, are not required to conform strictly to the mathematical definitions of circles or cylinders or other structures, but can encompass structures that are reasonably close approximations.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include or do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments.
Conjunctive language, such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.
The terms “approximately,” “about,” and “substantially” as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, in some embodiments, as the context may dictate, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than or equal to 10% of the stated amount. The term “generally” as used herein represents a value, amount, or characteristic that predominantly includes or tends toward a particular value, amount, or characteristic. For example, in certain embodiments, as the context may dictate, the term “generally parallel” can refer to something that departs from exactly parallel by less than or equal to 20 degrees and the term “generally perpendicular” can refer to something that departs from exactly perpendicular by less than or equal to 20 degrees.
Unless otherwise explicitly stated, articles such as “a” or “an” should generally be interpreted to include one or more described items. Accordingly, phrases such as “a device configured to” are intended to include one or more recited devices. Such one or more recited devices can also be collectively configured to carry out the stated recitations. For example, “a device configured to carry out recitations A, B, and C” can include a first device configured to carry out recitation A working in conjunction with a second device configured to carry out recitations B and C.
The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Likewise, the terms “some,” “certain,” and the like are synonymous and are used in an open-ended fashion. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list.
Overall, the language of the claims is to be interpreted broadly based on the language employed in the claims. The language of the claims is not to be limited to the non-exclusive embodiments and examples that are illustrated and described in this disclosure, or that are discussed during the prosecution of the application.
Summary
Various shelving systems have been disclosed. Although the shelving systems have been disclosed in the context of certain embodiments and examples (e.g., the shower caddies 10-10E), the shelving systems extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the embodiments and certain modifications and equivalents thereof. For example, although the illustrated embodiment of the shower caddies have two or three shelves, the shower caddy may have only one shelf, more than three shelves, or even no shelves. As another example, although the illustrated embodiments have shelves having certain configurations, the shelves may have different configurations. Various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the conveyor. The scope of this disclosure should not be limited by the particular disclosed embodiments described herein.
Certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as any subcombination or variation of any subcombination.
Some embodiments have been described in connection with the accompanying drawings. The figures are drawn to scale, but such scale should not be limiting, since dimensions and proportions other than what are shown are contemplated and are within the scope of the disclosed invention. Distances, angles, etc. are merely illustrative and do not necessarily bear an exact relationship to actual dimensions and layout of the devices illustrated. Components can be added, removed, and/or rearranged. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. Additionally, it will be recognized that any methods described herein may be practiced using any device suitable for performing the recited steps.
In summary, various embodiments and examples of shelving systems have been disclosed. Although the shelving systems have been disclosed in the context of those embodiments and examples, this disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments and/or other uses of the embodiments, as well as to certain modifications and equivalents thereof. This disclosure expressly contemplates that various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another. Accordingly, the scope of this disclosure should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
This application claims the priority benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 61/953,376, filed Mar. 14, 2014, the entirety of which is hereby incorporated by reference. This application also hereby incorporates by reference in their entirety U.S. application Ser. Nos. 29/518,327 and 29/518,332, both filed Feb. 23, 2015.
Number | Name | Date | Kind |
---|---|---|---|
141186 | Thomas | Jul 1873 | A |
163852 | Denman | Jun 1875 | A |
181593 | Randall | Aug 1876 | A |
284090 | Tingle | Aug 1883 | A |
387758 | Barnhart | Aug 1888 | A |
397558 | Lumley | Feb 1889 | A |
434708 | Grier | Aug 1890 | A |
475020 | Perry | May 1892 | A |
477291 | Bomar | Jun 1892 | A |
496961 | Trude | May 1893 | A |
527273 | Fowler | Oct 1894 | A |
536272 | Edsall | Mar 1895 | A |
543935 | Hostler | Aug 1895 | A |
612061 | Shambaugh | Oct 1898 | A |
613231 | Bennett | Nov 1898 | A |
618425 | Manger | Jan 1899 | A |
626739 | Vanderman | Jun 1899 | A |
644080 | Huebel | Feb 1900 | A |
661755 | Cheheyl | Nov 1900 | A |
799233 | Hubbell | Sep 1905 | A |
839339 | Tuttle | Dec 1906 | A |
841866 | Hollis | Jan 1907 | A |
845917 | Worley | Mar 1907 | A |
913955 | Hansen | Mar 1909 | A |
970485 | Frey | Sep 1910 | A |
1026149 | Crane | May 1912 | A |
1071428 | Jones | Aug 1913 | A |
1254094 | Vogt | Jan 1918 | A |
1446036 | Dodd | Feb 1923 | A |
1478339 | Jayne | Dec 1923 | A |
1511704 | Buck | Oct 1924 | A |
1554137 | Slifkin | Sep 1925 | A |
1582762 | Klock | Apr 1926 | A |
1639551 | Booth | Aug 1927 | A |
1931321 | Keil | Oct 1933 | A |
2012452 | Littell | Aug 1935 | A |
2042517 | Ellis | Jun 1936 | A |
2155097 | Mendle | Apr 1939 | A |
2157309 | Swedman et al. | May 1939 | A |
2199851 | Culver | May 1940 | A |
2254770 | Bitney | Sep 1941 | A |
2513889 | Nilsson | Jul 1950 | A |
2593738 | Dollahite | Apr 1952 | A |
2675782 | Lage et al. | Apr 1954 | A |
2677519 | Hobson | May 1954 | A |
2693751 | Allen | Nov 1954 | A |
2746661 | Kaplan | May 1956 | A |
2788902 | Nowicki | Apr 1957 | A |
2837219 | Ferdinand et al. | Jun 1958 | A |
2868386 | Seyforth | Jan 1959 | A |
2919873 | Tice | Jan 1960 | A |
2923415 | Brown | Feb 1960 | A |
2923428 | Averill | Feb 1960 | A |
2928512 | Slater et al. | Mar 1960 | A |
2932873 | Reichert | Apr 1960 | A |
2936146 | Wunder | May 1960 | A |
2937766 | Penn | May 1960 | A |
2941669 | Palay et al. | Jun 1960 | A |
D188332 | Salen | Jul 1960 | S |
D189722 | Wolf | Feb 1961 | S |
2976003 | Foster | Mar 1961 | A |
2977953 | Miller | Apr 1961 | A |
3035708 | Freeman | May 1962 | A |
3043440 | Berlin | Jul 1962 | A |
3059374 | Bernay | Oct 1962 | A |
3088598 | Werneke | May 1963 | A |
D195412 | Vernik | Jun 1963 | S |
3111723 | Bates | Nov 1963 | A |
3115107 | Glenny | Dec 1963 | A |
3119496 | Burk | Jan 1964 | A |
3124253 | Pelrich et al. | Mar 1964 | A |
3132609 | Chesley | May 1964 | A |
3134474 | Marchman | May 1964 | A |
3138260 | Tedrick | Jun 1964 | A |
3181923 | Guillon et al. | May 1965 | A |
3239182 | Blanz | Mar 1966 | A |
3266764 | Briles | Aug 1966 | A |
3307710 | Negri | Mar 1967 | A |
3319983 | Zibell | May 1967 | A |
3323851 | Duboff | Jun 1967 | A |
3343685 | Giambalvo | Sep 1967 | A |
3471031 | Coplan | Oct 1969 | A |
3533583 | Azim | Oct 1970 | A |
3593857 | Hernes | Jul 1971 | A |
D222276 | Hughes | Oct 1971 | S |
3641922 | Nachazel et al. | Feb 1972 | A |
3661121 | Zielin | May 1972 | A |
3695455 | Larson | Oct 1972 | A |
3710096 | McFarlin | Jan 1973 | A |
3734439 | Wintz | May 1973 | A |
3787078 | Williams | Jan 1974 | A |
3789996 | Stroh | Feb 1974 | A |
3791091 | Albrizzi | Feb 1974 | A |
3807574 | Lanza | Apr 1974 | A |
3854686 | Konstant | Dec 1974 | A |
3894707 | Heard | Jul 1975 | A |
3907119 | Franz | Sep 1975 | A |
3923162 | Hussey | Dec 1975 | A |
D239579 | Taub | Apr 1976 | S |
3954182 | McEvers | May 1976 | A |
3983823 | McDonnell | Oct 1976 | A |
3998334 | Smith | Dec 1976 | A |
4018019 | Raith et al. | Apr 1977 | A |
4033539 | Bardocz | Jul 1977 | A |
4059915 | Owens | Nov 1977 | A |
4096951 | Menssen | Jun 1978 | A |
4106736 | Becker, III et al. | Aug 1978 | A |
D250560 | Gordon | Dec 1978 | S |
4154356 | Schieve | May 1979 | A |
4192426 | Gauthier | Mar 1980 | A |
4215840 | Babberl | Aug 1980 | A |
4232790 | Serrano | Nov 1980 | A |
4274400 | Baus | Jun 1981 | A |
4310193 | Kolleas | Jan 1982 | A |
4360283 | Psotta | Nov 1982 | A |
4387811 | Ragir et al. | Jun 1983 | A |
4415091 | Wolff | Nov 1983 | A |
4415211 | Alissandratos | Nov 1983 | A |
4428488 | McAvinn et al. | Jan 1984 | A |
4437450 | Connelly | Mar 1984 | A |
D273645 | McEvers | May 1984 | S |
D274201 | Aaron | Jun 1984 | S |
4511047 | Elinsky | Apr 1985 | A |
4541131 | Sussman | Sep 1985 | A |
4559879 | Hausser | Dec 1985 | A |
D286599 | Sussman | Nov 1986 | S |
D289353 | Davis et al. | Apr 1987 | S |
4664428 | Bridges | May 1987 | A |
D293183 | Aaron | Dec 1987 | S |
4761092 | Nakatani | Aug 1988 | A |
4771897 | Ho | Sep 1988 | A |
4771899 | Benedict et al. | Sep 1988 | A |
4776471 | Elkins | Oct 1988 | A |
4786022 | Grieshaber | Nov 1988 | A |
4805784 | Solheim et al. | Feb 1989 | A |
4860909 | Leumi | Aug 1989 | A |
4865283 | Parker | Sep 1989 | A |
4869378 | Miller | Sep 1989 | A |
4869379 | Hawkrige | Sep 1989 | A |
4875593 | Trimble | Oct 1989 | A |
4883399 | MacLean | Nov 1989 | A |
4895331 | Nehls | Jan 1990 | A |
4909467 | Shan-Pao | Mar 1990 | A |
D314294 | Axhamre | Feb 1991 | S |
4998647 | Sharp | Mar 1991 | A |
D315840 | Emery | Apr 1991 | S |
5014860 | Emery | May 1991 | A |
5023755 | Rosenberg | Jun 1991 | A |
5083670 | Zimmer | Jan 1992 | A |
D327187 | Swon | Jun 1992 | S |
5127528 | Cone | Jul 1992 | A |
5160101 | Ferraro et al. | Nov 1992 | A |
5165644 | Allen | Nov 1992 | A |
5180067 | Conaway et al. | Jan 1993 | A |
5190170 | Steiner | Mar 1993 | A |
5192427 | Eger et al. | Mar 1993 | A |
5197614 | Dalton et al. | Mar 1993 | A |
D340604 | Conaway et al. | Oct 1993 | S |
5255401 | Sambrookes et al. | Oct 1993 | A |
5284260 | Caligiuri, Sr. | Feb 1994 | A |
5307797 | Kleefeld | May 1994 | A |
5318175 | Stevens | Jun 1994 | A |
D351750 | Sweeney | Oct 1994 | S |
D351751 | Brightbill et al. | Oct 1994 | S |
5355867 | Hall et al. | Oct 1994 | A |
5429252 | Liu | Jul 1995 | A |
5462178 | Wallach et al. | Oct 1995 | A |
5483761 | Simpson | Jan 1996 | A |
5505318 | Goff | Apr 1996 | A |
5505319 | Todd, Jr. | Apr 1996 | A |
D370809 | Munoz et al. | Jun 1996 | S |
D370810 | Munoz | Jun 1996 | S |
D371031 | Munoz et al. | Jun 1996 | S |
5524772 | Simmons | Jun 1996 | A |
5527273 | Manna et al. | Jun 1996 | A |
D376941 | Munoz et al. | Dec 1996 | S |
5588543 | Finger | Dec 1996 | A |
D377286 | Munoz | Jan 1997 | S |
D378556 | Munoz | Mar 1997 | S |
5620105 | Macek | Apr 1997 | A |
5632049 | Chen | May 1997 | A |
D382733 | Goetz | Aug 1997 | S |
5666940 | Kreiter | Sep 1997 | A |
D387595 | Whang | Dec 1997 | S |
5692817 | Jun et al. | Dec 1997 | A |
5697508 | Rifkin et al. | Dec 1997 | A |
5702010 | Liang | Dec 1997 | A |
D388642 | Winter | Jan 1998 | S |
5735413 | Allen | Apr 1998 | A |
5772048 | Sopcisak | Jun 1998 | A |
5772050 | Shih | Jun 1998 | A |
D395773 | Hofman | Jul 1998 | S |
D396379 | Stoetzl | Jul 1998 | S |
D396585 | Hofman | Aug 1998 | S |
D397567 | Hofman | Sep 1998 | S |
D400745 | France | Nov 1998 | S |
5833192 | Buhrman | Nov 1998 | A |
D402145 | Hofman et al. | Dec 1998 | S |
5855184 | Eichler et al. | Jan 1999 | A |
5855286 | Zaid | Jan 1999 | A |
5897002 | Carlino | Apr 1999 | A |
D409424 | Hofman et al. | May 1999 | S |
5899423 | Albertini | May 1999 | A |
5934636 | Cyrell | Aug 1999 | A |
5941397 | Buchanan et al. | Aug 1999 | A |
5944896 | Landesman et al. | Aug 1999 | A |
5984114 | Frankel | Nov 1999 | A |
D417991 | Hofman et al. | Dec 1999 | S |
D419020 | Emery et al. | Jan 2000 | S |
6017009 | Swartz et al. | Jan 2000 | A |
D421692 | Wojtowicz et al. | Mar 2000 | S |
D421867 | Carville et al. | Mar 2000 | S |
6050426 | Leurdijk | Apr 2000 | A |
D424355 | Barton | May 2000 | S |
6065618 | Stetler | May 2000 | A |
D427469 | Thurston-Chartraw et al. | Jul 2000 | S |
D429091 | Chen | Aug 2000 | S |
D429934 | Hofman | Aug 2000 | S |
6113042 | Welsch et al. | Sep 2000 | A |
6119878 | Zen | Sep 2000 | A |
6123303 | Huang | Sep 2000 | A |
6135668 | Lin | Oct 2000 | A |
6152312 | Nava et al. | Nov 2000 | A |
6206206 | Saylor et al. | Mar 2001 | B1 |
6233877 | Monroe | May 2001 | B1 |
D443162 | Winter | Jul 2001 | S |
D444333 | Ferrer Beltran | Jul 2001 | S |
D446670 | Emery et al. | Aug 2001 | S |
6302036 | Carson et al. | Oct 2001 | B1 |
6302280 | Bermes | Oct 2001 | B1 |
6311856 | Battaglia et al. | Nov 2001 | B2 |
6318572 | Lai | Nov 2001 | B1 |
6347777 | Webber | Feb 2002 | B1 |
6378709 | Stuart | Apr 2002 | B1 |
6394404 | Cyrell | May 2002 | B1 |
6409029 | Bermes | Jun 2002 | B1 |
D462552 | Emery et al. | Sep 2002 | S |
6481586 | Hoff | Nov 2002 | B1 |
6494327 | Huang | Dec 2002 | B2 |
6502794 | Ting | Jan 2003 | B1 |
D470703 | Hoernig | Feb 2003 | S |
6520351 | Zadro | Feb 2003 | B1 |
6527473 | Chen | Mar 2003 | B2 |
D472750 | Clucas | Apr 2003 | S |
D473084 | Suero, Jr. | Apr 2003 | S |
D473411 | Walker | Apr 2003 | S |
6540430 | Hsu | Apr 2003 | B2 |
6550739 | Brindisi | Apr 2003 | B1 |
6551226 | Webber et al. | Apr 2003 | B1 |
D475560 | Suero, Jr. | Jun 2003 | S |
D475561 | Suero, Jr. | Jun 2003 | S |
6575315 | Zidek | Jun 2003 | B2 |
6581790 | Zadro | Jun 2003 | B1 |
6591996 | Wu | Jul 2003 | B1 |
D477947 | Snell | Aug 2003 | S |
D479073 | Snell | Sep 2003 | S |
D479074 | Snell | Sep 2003 | S |
6619164 | Ricci et al. | Sep 2003 | B1 |
6648152 | Bermes | Nov 2003 | B2 |
D483251 | Suero, Jr. | Dec 2003 | S |
D485462 | Suero, Jr. | Jan 2004 | S |
6688238 | Alexiou | Feb 2004 | B1 |
6726034 | Holbrook et al. | Apr 2004 | B2 |
D489207 | Rosen | May 2004 | S |
D492188 | Goldberg | Jun 2004 | S |
6758355 | Zidek | Jul 2004 | B2 |
D493991 | Dretzka | Aug 2004 | S |
D495549 | Yu et al. | Sep 2004 | S |
D496549 | Snell | Sep 2004 | S |
D498102 | Snell | Nov 2004 | S |
6824000 | Samelson | Nov 2004 | B2 |
6824225 | Stiffler | Nov 2004 | B2 |
6848144 | McDonald | Feb 2005 | B1 |
6871748 | Suttles | Mar 2005 | B2 |
6918498 | Sparkowski | Jul 2005 | B2 |
D509361 | Suero, Jr. | Sep 2005 | S |
6957794 | Landreville et al. | Oct 2005 | B2 |
D512861 | Rosen | Dec 2005 | S |
6983853 | Fickett | Jan 2006 | B1 |
D516901 | Murray | Mar 2006 | S |
7021814 | Berardi | Apr 2006 | B2 |
7059271 | Santa Cruz et al. | Jun 2006 | B2 |
7086633 | Welch et al. | Aug 2006 | B2 |
D530551 | Snell | Oct 2006 | S |
D533283 | Holztrager | Dec 2006 | S |
D534062 | van den Bosch | Dec 2006 | S |
7152488 | Hedrich et al. | Dec 2006 | B2 |
7195213 | Weatherly | Mar 2007 | B2 |
D543747 | Harwanko | Jun 2007 | S |
D544786 | Barrese | Jun 2007 | S |
7229059 | Hood | Jun 2007 | B1 |
D546879 | Qiu | Jul 2007 | S |
7246711 | Metcalf | Jul 2007 | B1 |
7255312 | Melic | Aug 2007 | B2 |
D552391 | Rosen | Oct 2007 | S |
D552392 | Rosen | Oct 2007 | S |
D552393 | Rosen | Oct 2007 | S |
7275647 | Thompson | Oct 2007 | B1 |
D557050 | Dretzka | Dec 2007 | S |
7316376 | Engler | Jan 2008 | B1 |
D562608 | Kramer | Feb 2008 | S |
D562609 | Kramer | Feb 2008 | S |
D564257 | Yang et al. | Mar 2008 | S |
7347197 | Hankinson | Mar 2008 | B2 |
D566991 | Harwanko | Apr 2008 | S |
D568657 | Snider | May 2008 | S |
D568658 | Yang et al. | May 2008 | S |
D569148 | Yang et al. | May 2008 | S |
D569149 | Walker | May 2008 | S |
D572060 | Snider | Jul 2008 | S |
D572502 | Yang et al. | Jul 2008 | S |
D572516 | Snider | Jul 2008 | S |
D573386 | Clucas | Jul 2008 | S |
D573387 | Walker | Jul 2008 | S |
D573822 | Yang et al. | Jul 2008 | S |
7398790 | Glatz | Jul 2008 | B2 |
7401754 | Welch et al. | Jul 2008 | B2 |
D574649 | Snider | Aug 2008 | S |
D574650 | Snider | Aug 2008 | S |
D575087 | Ghiorghie | Aug 2008 | S |
7407060 | Swartz et al. | Aug 2008 | B2 |
D578815 | Dominique et al. | Oct 2008 | S |
D579254 | Dominique et al. | Oct 2008 | S |
D587504 | Russell et al. | Mar 2009 | S |
D589728 | Shaha et al. | Apr 2009 | S |
D598688 | Yang et al. | Aug 2009 | S |
7591385 | Brooks | Sep 2009 | B2 |
D615333 | Snell | May 2010 | S |
D616235 | Guindi | May 2010 | S |
D617128 | Guindi | Jun 2010 | S |
D622990 | Yang et al. | Sep 2010 | S |
D627969 | Klein et al. | Nov 2010 | S |
D628385 | Klein et al. | Dec 2010 | S |
D628841 | Yang et al. | Dec 2010 | S |
D632081 | Klein et al. | Feb 2011 | S |
D632514 | Didehvar et al. | Feb 2011 | S |
D635807 | Lindo | Apr 2011 | S |
D640488 | Didehvar et al. | Jun 2011 | S |
D641191 | Walker | Jul 2011 | S |
D641193 | Vaccaro | Jul 2011 | S |
7975653 | Cash | Jul 2011 | B2 |
D644050 | Cittadino | Aug 2011 | S |
D651837 | Yang et al. | Jan 2012 | S |
D651838 | Yang et al. | Jan 2012 | S |
8225946 | Yang et al. | Jul 2012 | B2 |
D670520 | Gilbert | Nov 2012 | S |
D676696 | Primeau | Feb 2013 | S |
D677956 | Tawil | Mar 2013 | S |
D677957 | Tawil | Mar 2013 | S |
8408405 | Yang et al. | Apr 2013 | B2 |
D683165 | Yang et al. | May 2013 | S |
8474632 | Yang et al. | Jul 2013 | B2 |
D694548 | Snell | Dec 2013 | S |
D698575 | Tawil | Feb 2014 | S |
D699478 | Snider | Feb 2014 | S |
8763821 | Yang et al. | Jul 2014 | B2 |
8845045 | Stubblefield | Sep 2014 | B2 |
8950599 | Wilder | Feb 2015 | B2 |
D726441 | Yang et al. | Apr 2015 | S |
D727060 | Yang et al. | Apr 2015 | S |
D734956 | Yang et al. | Jul 2015 | S |
D753411 | Yang et al. | Apr 2016 | S |
9339151 | Yang et al. | May 2016 | B2 |
D769641 | Yang et al. | Oct 2016 | S |
D770197 | Yang et al. | Nov 2016 | S |
D770198 | Yang et al. | Nov 2016 | S |
20010004064 | Battaglia et al. | Jun 2001 | A1 |
20020158033 | Chen | Oct 2002 | A1 |
20020172549 | Koros et al. | Nov 2002 | A1 |
20030000905 | Zidek | Jan 2003 | A1 |
20030132181 | Saulnier-Matteini | Jul 2003 | A1 |
20030136782 | Dicello et al. | Jul 2003 | A1 |
20030222191 | Tsai | Dec 2003 | A1 |
20040188369 | Yu | Sep 2004 | A1 |
20040188577 | Gaderick | Sep 2004 | A1 |
20050040301 | Walter | Feb 2005 | A1 |
20050139562 | Chen | Jun 2005 | A1 |
20050205509 | Flynn | Sep 2005 | A1 |
20050205722 | Krueger | Sep 2005 | A1 |
20060038097 | Diller | Feb 2006 | A1 |
20060124812 | Berardi | Jun 2006 | A1 |
20060130381 | Caterinacci | Jun 2006 | A1 |
20060180561 | Wisnoski et al. | Aug 2006 | A1 |
20060261022 | Sampaio | Nov 2006 | A1 |
20070045208 | Quan | Mar 2007 | A1 |
20070194191 | Persson | Aug 2007 | A1 |
20070235611 | Riblet | Oct 2007 | A1 |
20070295681 | Colin | Dec 2007 | A1 |
20080053935 | Newbouild et al. | Mar 2008 | A1 |
20080142669 | Zlotocha | Jun 2008 | A1 |
20090134290 | Begic et al. | May 2009 | A1 |
20090188880 | Yang et al. | Jul 2009 | A1 |
20100000449 | Botkin | Jan 2010 | A1 |
20120091088 | Didehvar et al. | Apr 2012 | A1 |
20130313212 | Lindo et al. | Nov 2013 | A1 |
20140319083 | Stark | Oct 2014 | A1 |
20150257534 | Yang et al. | Sep 2015 | A1 |
20160120303 | Constantino | May 2016 | A1 |
20160183737 | Yang et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
364938 | Oct 2015 | AU |
364939 | Oct 2015 | AU |
364940 | Oct 2015 | AU |
132180 | Jul 2010 | CA |
135666 | Mar 2011 | CA |
136936 | Mar 2011 | CA |
158594 | Dec 2015 | CA |
164018 | Mar 2016 | CA |
164019 | Mar 2016 | CA |
164017 | Apr 2016 | CA |
301523949 | Apr 2011 | CN |
301642065 | Aug 2011 | CN |
301735061 | Nov 2011 | CN |
303191392 | Apr 2015 | CN |
303649072 | Apr 2016 | CN |
303649076 | Apr 2016 | CN |
303662895 | May 2016 | CN |
303662896 | May 2016 | CN |
106132260 | Nov 2016 | CN |
29600613 | Mar 1996 | DE |
0 717 947 | Jun 1996 | EP |
2191757 | Jun 2010 | EP |
001217053 | Aug 2010 | EP |
001232896 | Oct 2010 | EP |
001232912 | Oct 2010 | EP |
001420582-0001 | Nov 2014 | EP |
001438428-0001 | Aug 2015 | EP |
001438394-0001 | Nov 2015 | EP |
001438410-0001 | Nov 2015 | EP |
2549361 | Jan 1985 | FR |
D1136196 | Jan 2002 | JP |
2003093290000 | Mar 2003 | KR |
WO 2009097298 | Aug 2009 | WO |
WO 2013005462 | Jan 2013 | WO |
WO 2015138257 | Sep 2015 | WO |
Entry |
---|
Magnite—The Magnetic Shower Caddy by Max Hunt, Coroflot product webpage; available as early as Aug. 10, 2012 [retrieved on Feb. 17, 2015 from internet <URL: http://www.coroflot.com/theha/Magnite-The-Magnetic-Shower-Caddy. |
White Adjustable Shower Caddy, Simplehuman SKU# BT1015, available at least as early as Dec. 14, 2007 on the internet at www.simplehuman.com (see http://web.archive.org/web/20071221125437/www.simplehuman.com/products/bathroom-organization/white-shower-caddy.html). |
Number | Date | Country | |
---|---|---|---|
20150257533 A1 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
61953376 | Mar 2014 | US |