1. Field of the Invention
The present invention relates to a shower head, and more particularly to a shower head capable of automatic switching and manual positioning.
2. Description of the Prior Art
A conventional shower head implements function switching in a rotating manner. When the shower head is switched, one hand holds a shower head main body and the other hand holds a rotating unit composed of a face plate and other parts. By rotating the face plate of the rotating unit, the shower head provides different outflow modes. It needs both hands to implement function switching for the existing shower heads. It is inconvenient for use. Accordingly, the inventor of the present invention has devoted himself based on his many years of practical experiences to solve these problems.
The primary object of the present invention is to provide a shower head capable of automatic switching and manual positioning. The shower head implements function switching with one hand and is convenient to use.
In order to achieve the aforesaid object, the shower head capable of automatic switching and manual positioning of the present invention comprises a body, a face plate, a water diversion plate, a water diversion seat, a rotor, a gear transmission unit, a switching gear, a first switching block, a second switching block, a connecting rod, buttons, a stop pin, and a stop seat. The water diversion plate is buckled on the body to form functional water channels and a water inlet channel. The face plate is disposed on top of the water diversion plate. The water diversion seat used for dividing the functional water channels from the water inlet channel is installed at a position where all the functional water channels converge. The switching gear is installed on the water diversion seat in a rotatable manner. The switching gear is formed with a water hole corresponding to water diversion holes of the water diversion seat. The rotor is installed at a water inlet of the body. The rotor drives the switching gear through the gear transmission unit. The gear transmission unit comprises a final-stage small gear installed on the second swinging block to mesh with the switching gear. The second swinging block is installed in the body through a second switching shaft. The second swinging block is formed with a first limiting face, a second limiting face, a first stop groove, and a second stop groove. The first swinging block is installed on the second swinging block through a first switching shaft. The first swinging block is formed with a first limiting block and a second limiting block to cooperate with the first limiting face and the second limiting face. The first swinging block is further formed with a slope to cooperate with a positioning column of the switching gear and a push lever to cooperate with the connecting rod. A tension spring is provided between the first switching block and the second switching block. The stop seat is installed in the body. A spring and the stop pin are installed in the stop seat. The stop pin is biased by the spring to cooperate with the first stop groove and the second stop groove. The connecting rod is installed in the body. The connecting rod is formed with a push surface to cooperate with the push lever of the first switching block. Two ends of the connecting rod are provided with the buttons. The buttons extend out of the body. Sealing members are provided between the aforesaid parts.
Preferably, the body is formed with an oblique water trough between the water inlet channel and the water inlet. The oblique water trough is formed with an oblique opening facing the water inlet. The rotor is installed in the oblique trough.
Preferably, the connecting rod has a -shaped cross-section. The buttons are disposed on two side rods. The push surface is disposed on a middle transverse rod.
When the present invention is used, the buttons are pressed. The tension spring brings the final-stage small gear of the gear transmission unit to mesh with the switching gear. The rotor drives the switching gear through the gear transmission unit, enabling the water hole of the switching gear to align with one of the water diversion holes of the water diversion seat for automatic switching to provide different outflow modes. When the shower head is in the state of the desired outflow mode, the buttons are pressed again. The connecting rod brings the final-stage small gear of the gear transmission unit to disengage from the switching gear. The stop pin cooperates with the second stop groove to position the second switching block. The slope of the first switching block cooperates with the positioning column of the switching gear to stop the switching gear. The shower head is operated manually to be in the state of the desired outflow mode.
The present invention can be operated in a press manner instead of a traditional rotating manner. The shower head implements function switching with one hand and is convenient to use.
Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings.
As shown in
The body has a water inlet 11. The water diversion plate 3 is buckled on the body 1, such that two functional water channels 12 and a water inlet channel 13 are formed between the water diversion plate 3 and the body 1. The number of the functional water channels 12 depends on the design, not limited to this embodiment. The face plate 2 is disposed on top of the water diversion plate 3 and cooperates with the functional water channels to provide different outflow modes. The water diversion seat 31 used for dividing the functional water channels 12 from the water inlet channel 13 is installed at a position where all the functional water channels 12 converge. The switching gear 5 is installed on the water diversion seat 31 in a rotatable manner. The switching gear 5 is formed with a water hole 51 corresponding to water diversion holes 32 of the water diversion seat 31, as shown in
The rotor 4 is installed at the water inlet 11 of the body 1 for installing conveniently and ensuring that the rotor 4 works effectively. In this embodiment, the body 1 is formed with an oblique water trough 14 between the water inlet channel 13 and the water inlet 11. The oblique water trough 14 is formed with an oblique opening 15 facing the water inlet 11. The rotor 4 is installed in the oblique trough 14. Water flows from the water inlet 11 to the body 1 through the oblique opening 15 to enter the oblique trough 14 so as to lash the rotor 4, such that the rotor 4 is turned to work. The rotor 4 drives the switching gear 5 through the gear transmission unit 41. The gear transmission unit 41 can be a multi-stage transmission unit. The gear transmission unit 41 comprises a final-stage small gear 42 installed on the second swinging block 7 to mesh with the switching gear 5.
Referring to
The first swinging block 6 is installed on the second swinging block 7 through a first switching shaft 75 on the second swinging block 7. The first swinging block 6 is formed with a first limiting block 61 and a second limiting block 62 to cooperate with the first limiting face 71 and the second limiting face 72. The first swinging block 6 is further formed with a slope 63 to cooperate with the positioning column 52 of the switching gear 5 and a push lever 64 to cooperate with the connecting rod 8. A tension spring 65 is provided between the first switching block 6 and the second switching block 7.
The stop seat 91 is installed in the body 1. A spring 92 and the stop pin 9 are installed in the stop seat 91. The stop pin 9 is biased by the spring 92 to cooperate with the first stop groove 73 and the second stop groove 74.
The connecting rod 8 is installed in the body 1. The connecting rod 8 is formed with a push surface 82 to cooperate with the push lever 64 of the first switching block 6. Two ends of the connecting rod 8 are provided with the buttons 81. The buttons 81 extend out of the body 1 to be operated conveniently. For convenient assembly, the connecting rod 8 of this embodiment has a -shaped cross-section. The buttons 81 are disposed on two side rods, and the push surface 82 is disposed on a middle transverse rod.
Sealing members are provided between the aforesaid parts to enhance effect, such as O-shaped rings 17 and sealing gaskets 18.
When the present invention is used, as shown in
When the shower head is in the state of a desired outflow mode, as shown in
Although particular embodiments of the present invention have been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the present invention. Accordingly, the present invention is not to be limited except as by the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2012/083435 | 10/24/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/063318 | 5/1/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2726120 | Bletcher | Dec 1955 | A |
3632083 | Meeks | Jan 1972 | A |
3682392 | Kint | Aug 1972 | A |
3722798 | Bletcher | Mar 1973 | A |
5172866 | Ward | Dec 1992 | A |
5862985 | Neibrook | Jan 1999 | A |
6557587 | Chiu | May 2003 | B1 |
6722391 | Gabrel | Apr 2004 | B2 |
7818828 | Zhou | Oct 2010 | B2 |
8297538 | Zhou | Oct 2012 | B2 |
8573512 | Hu | Nov 2013 | B2 |
9427749 | Zhou | Aug 2016 | B2 |
Number | Date | Country | |
---|---|---|---|
20160184840 A1 | Jun 2016 | US |