The invention relates to a shower jet outlet device comprising a jet disc which includes at least one jet disc opening, and comprising a jet outlet element disposed in the jet disc opening, and to a shower device comprising such a shower jet outlet device. The shower device in question can be for example a sanitary showering device, such as an overhead, hand-held or side shower device, or a shower device at the outlet of a sanitary water-dispensing or mixer tap for a bathtub or a washbasin or sink, such as a kitchen shower device for a kitchen sink.
Shower jet outlet devices of this type are variously known in particular for sanitary shower devices. Thus, laid-open publication EP 2 684 610 A1 discloses a shower device comprising such a shower jet outlet device in which the jet disc includes a plurality of jet disc openings and the jet outlet elements are formed hollow-cylindrically from elastomer material with a continuous hollow duct as jet outlet opening and are moulded to a common jet outlet plate abutting on the inner side of the jet disc. Such cylindrical jet outlet elements composed of an elastomer material are also referred to as jet outlet nipples or as nipples for short.
In the case of a further shower device of this type that is disclosed in laid-open publication DE 10 2014 200 741 A1, multi-duct jet outlet units having in each case at least two fluid-separated outlet ducts are provided for the shower jet outlet device. The various outlet ducts of the respective jet outlet unit open on the inlet side into separate fluid outlet chambers, with the result that the fluid can be optionally and selectively fed in each case to one of the outlet ducts in order for example to provide different shower jet types. Hollow-cylindrical jet outlet elements or nipples made of elastomer material function as jet outlet units, with the outlet ducts extending continuously from one to the other cylinder end side, for example in parallel next to one another or in a coaxial arrangement. Here too, the nipples are preferably formed integrally with and on a steel outlet plate made of the elastomer material, said plate being disposed on the inner side of the jet disc.
Patent publication U.S. Pat. No. 5,246,301 discloses a brush-like shower head with brush projections which function as jet outlet elements with a single-duct or two-duct design. The jet outlet projections are of cylindrical, conically tapering form and, in the single-duct design, have an outlet duct which extends longitudinally through the projection or an outlet duct which opens out on the cylinder side wall. In the two-duct design, the respective projection has one outlet duct which leads through longitudinally and centrally and one outlet duct which extends on the inlet side laterally of the former central outlet duct and opens out on the projection side wall.
A shower jet outlet device disclosed in laid-open publication WO 95/22407 A1 comprises a ring-shaped bottom piece made of elastic material, said bottom piece being provided with water passing openings at an output side and abutting with its side walls against side walls of a corresponding ring channel of a shower head housing so as to be fixed in the shower head. In case of forming the output-side bottom portion of said bottom piece to be inwardly curved or to be plane the bottom portion may bend outwardly in response to water pressure to assist in a detaching of lime in the area of the water passing openings.
Specifically in sanitary applications, shower jet outlet devices are typically designed for the provision of one or more, selectively choosable shower jet types, for example for the provision of a massage jet, a normal jet, a surge jet or a needle jet or fine jet. To obtain such a so-called fine/needle jet, it is known practice to provide a jet disc which has comparatively small jet disc openings which function as jet outlet openings of the shower device and accordingly as fine jet openings. A thin metal disc in which the fine jet openings can be incorporated relatively simply in terms of manufacturing conventionally serves for this purpose as a jet disc. Owing to their relatively small passage cross section, these fine jet openings are very sensitive to clogging by dirt particles and calcification, for which reason shower jet outlet devices of this type have already been proposed with a changeable metal jet disc.
It is an object of the invention to provide a shower jet outlet device of the type stated at the outset which can be produced and operated with relatively little effort and allows functionally reliable fine jet shower operation with comparatively fine individual jets as required, with said operation being relatively insensitive to clogging by dirt particles and calcification.
The invention achieves this and other objects by providing a shower jet outlet device and a shower device equipped therewith, said shower jet outlet device having a jet disk including at least one jet disk opening and a jet outlet element that is pot-shaped with an outlet-sided bottom, a side wall and a hollow chamber delimited by the bottom and the side wall. The jet outlet element is arranged, with its bottom facing in the jet outlet direction, in the associated jet disc opening and thus preferably held on the jet disc and has in its bottom a plurality of spaced-apart fine jet openings which extend through the bottom. This creates the precondition of being able, as required, to provide a very fine shower jet which can in particular be a mist-like fine shower jet.
The bottom and the side wall of the jet outlet element are composed of an elastic material, preferably in one part from the same elastic material. Optionally, the entire jet outlet element can be produced in one part from this elastic material. The elastic material can in particular be an elastomer material, such as, for example, a conventional silicone-based elastomer material. The jet outlet element is configured such that it deforms by bulging of its bottom and/or its side wall, in response to a fluid operating pressure present in the hollow chamber. What is meant by fluid operating pressure here is a pressure of the fluid supplied to the shower device that occurs when the shower device is used as intended. This deformation of the jet outlet element by the fluid operating pressure occurring during operation of the shower jet outlet device particularly advantageously prevents functional failures or functional limitations caused by dirt particles and calcification. The deformation makes it more difficult for dirt and lime particles to adhere, and any already adhering contaminants or lime particles can be detached or removed easily and simply. This can significantly reduce the required cleaning effort for the shower jet outlet device. Here, the increasing deformation of the jet outlet element with higher fluid operating pressure promotes a self-cleaning function of the shower jet outlet device in operation by virtue of the fact that an incipient clogging of the fine jet openings, for example caused by incipient lime deposits, leads to an increased fluid operating pressure in the hollow chamber of the jet outlet element, whereby the deformation is increased, as a result of which the incipient clogging of the shower can be automatically released again or dislodged.
As a result, this shower jet outlet device according to the invention can be produced and operated in a functionally reliable manner with relatively little outlay. The fine jet openings can be incorporated in the bottom of the jet outlet element with a relatively small passage or outlet cross section. Fed-in shower fluid enters the hollow chamber of the pot-shaped jet outlet element and from there can exit the shower jet outlet device through the fine jet openings as a fine/needle jet. The pot-shaped design of the jet outlet element can keep low the susceptibility of the shower jet outlet device to clogging of the fine jet openings on account of accumulating dirt/lime particles and facilitate the removal of any adhering dirt/lime particles. A contributing factor to this is that, owing to the pot-shaped design of the jet outlet element, the length of the fine jet openings through which the flow is to pass is limited to the wall thickness of the bottom which can be kept considerably smaller than the overall axial length of the jet outlet element, in corresponding embodiments less than a fifth or even less than a tenth thereof.
The shower jet outlet device according to the invention can have any desired number of such jet outlet elements corresponding to the number of associated jet disc openings, preferably a plurality of jet outlet elements which are arranged in a uniformly distributed manner over the extent of an associated jet disc surface.
Depending on the requirement, the one or more jet outlet elements can terminate with its/their bottom externally flush with the jet disc or be somewhat set back from the outer side thereof or preferably project outwardly beyond the jet disc. In the latter case, it can be further preferred if the jet outlet element also additionally projects outwardly beyond the jet disc by a region of its side wall that adjoins the bottom. In corresponding embodiments, the jet outlet element projects outwardly beyond the jet disc by more than half the axial length of its side wall. This promotes the fluid-pressure-dependent deformation of the jet outlet element and in particular of its side wall, unhindered by the jet disc.
In a development of the invention, the fine jet openings are produced with a passage cross section of in each case at most 0.2 mm2, in particular of in each case at most 0.1 mm2. This dimensioning measure allows the provision of a correspondingly fine shower jet.
In a development of the invention, an outer diameter of the bottom and of the side wall of the jet outlet element is at most 10 mm, in particular at most 6 mm, in corresponding applications even only at most 5 mm or at most 4 mm. This dimensioning measure can also be beneficial for achieving a very fine shower jet.
In a development of the invention, the bottom of the jet outlet element has at least three and at most ten fine jet openings. This dimensioning measure can also be favourable in terms of manufacture and advantageous with respect to the achievable shower jet characteristics.
In a development of the invention, the jet outlet element is arranged in the jet disc opening to be displaceable, i.e. translationally movable, parallel to the jet outlet direction between a backward end position and forward end position, wherein the jet outlet element is situated in the forward end position, when the fluid operation pressure is present in the hollow chamber, and is situated in the backward end position, when there is no fluid operation pressure. This can in many cases have functional advantages. In the backward end position jet outlet element may be fully retracted into the jet disc opening, e.g. so as to end flush with the same or to be back of the same. Alternatively, the jet outlet element in its backward end position is retracted in the jet disc opening only with a back portion. In the forward end position jet outlet element may be situated e.g. at least with its bottom outside of the jet disc opening, in corresponding embodiments in addition with a minor or, alternatively, a major part of its side wall. This favours the bulging deformation of the jet outlet element, in particular of its bottom and/or its side wall, under the action of the fluid operation pressure in the hollow chamber. In corresponding embodiments the jet outlet element is guided to be displaceable as a whole in the jet disc opening, or is alternatively hold with a backward portion at the jet disk or at a shower device part arranged at the backside of the jet disk so as to be forward movable under fluid pressure with its bottom and preferably also with its side wall, e.g. elastically. Preferably the jet outlet element is arranged to elastically self-return to the backward end position, so that it moves automatically back to the backward end position when the fluid pressure decreases.
In an advantageous refinement, the jet outlet element is configured in such a way that, in relation to a non-pressurized condition, the diameter of its side wall and/or a passage cross section of its fine jet openings are/is increased by the bulging of the bottom and/or of the side wall by at least 3% at a fluid operating pressure of 0.5 bar, and/or are/is increased by at least 8% at a fluid operating pressure of 1 bar, and/or are/is increased by at least 12% at a fluid operating pressure of 1.5 bar. It is shown that this system design for the jet outlet element results in a sufficiently good protection from rapid clogging by dirt particles and/or lime deposits precisely during use in sanitary shower devices in which the water operating pressure typically lies in this range.
In another refinement of this measure, the bottom and the side wall of the jet outlet element are composed of an elastomer material having a Shore A hardness of at most 75, in particular of at most 40. It is shown that, with this system design of the jet outlet element, the bulging deformation of the jet outlet element is also assisted in a favourable manner in response to the fluid operating pressure.
In a development of the invention, the jet outlet element includes a holding shoulder radially salient from the side wall. This can be used to securely hold the jet outlet element on the jet disc or an adjacent component.
In a development of the invention, the jet outlet element includes spacers axially projecting on its inlet-sided face end. This can be used to hold the jet outlet element between the jet disc and a, for example plate- or disc-shaped, housing wall or intermediate wall of the shower device that is disposed at a distance from the inner side of the jet disc, against which wall the jet outlet element abuts by way of its axially projecting spacer. Here, the jet disc and the housing wall or intermediate wall can have formed between them a fluid outlet chamber to which the shower fluid is supplied and from which the shower fluid can pass into the hollow chamber of the jet outlet element.
In a development of the invention, the jet disc has a plurality of jet disc openings in which a corresponding number of jet outlet elements are disposed, wherein the jet outlet elements are moulded integrally to a jet outlet plate abutting on an interior side of the jet disc and made of elastic material. In this case too, the material can again in particular be an elastomer material which is conventional per se. The integral moulding of the jet outlet elements to the jet outlet plate can simplify the production of the jet outlet elements and the placing thereof in the jet disc openings.
The shower device according to the invention is equipped with a shower jet outlet device according to the invention. The shower device can in particular be a sanitary shower device, for example a showering device embodied as an overhead shower device, hand-held shower device or side shower device.
Advantageous embodiments of the invention are illustrated in the drawings and are described below. In the drawings:
The shower device shown by way of example in
As a further constituent part of the shower jet outlet device, a jet outlet element 6 is arranged in each case in each jet disc opening 5. The jet outlet element 6 is pot-shaped with an outlet-sided bottom 6a, a side wall 6b and a hollow chamber 6c delimited by the bottom and the side wall, said element being arranged with its bottom 6a facing in the jet outlet direction, i.e. the bottom 6a forms the outlet-side end face of the respective jet element 6. In
In the exemplary embodiment of
In the two exemplary embodiments of
Since the wall thickness of the bottom 6a is significantly smaller that the axial length of the jet outlet element 6, for example only about a fifth to a twentieth of the axial length of the jet outlet element 6, the fine jet openings 7 can be incorporated into the elastic material of the bottom 6a in a comparatively simple manner in terms of manufacturing and with a comparatively small passage cross section.
In further alternative embodiments, the fine jet openings 7 do not, as can be seen for example from
As already mentioned in relation to the embodiment of
As mentioned,
These deformation tendencies are intensified with increasing fluid operating pressure.
As will be understood by a person skilled in the art, the system design for the bulging behaviour of the jet outlet element 6 is determined above all by suitable selection of the wall thickness for the bottom 6a and the side wall 6b and of the ratio of axial length to diameter and of the elasticity of the material used, such as the Shore hardness of an elastomer material used. It can further be of importance whether and by what fraction of their axial length the jet outlet elements 6 project beyond the jet disc 4. As needed, the respective jet outlet element can be configured such that with fluid pressure present only its bottom or only its side wall deforms by bulging, or, as explained above, its bottom as well as its side wall deform by bulging.
By virtue of the above-explained bulging, which can also be referred to as breathing, of the jet outlet element 6 in response to the prevailing fluid pressure, the surface of said element remains in movement through the operation of the shower device since the fluid pressure changes during operation, in particular between the non-pressurized condition with the shower device switched off and the respectively provided normal operating pressure of the fluid during active shower device operation. This constant or recurring movement of the surface of the jet outlet element 6 hampers or prevents remaining deposits of dirt and lime particles. This applies in particular also to the region of the fine jet openings 7 which are thus kept free of adhering dirt/lime particles and remain passable over comparatively long operating periods. Moreover, by virtue of this breathing of the jet outlet element 6, any accumulated dirt/lime deposits can usually be automatically detached or discarded through the operation of the shower device.
As explained above, in the exemplary embodiment of
In this exemplary embodiment, the fine jet openings 7 in the non-pressurized condition shown in
For the exemplary embodiment of
Thus, depending on the requirement, it is possible with a typical fluid operating pressure in the range from 0.5 bar to 1.5 bar by using the embodiment variant of
In the examples shown the respective jet outlet element is arranged in the associated jet disk opening to be axially unmovable and laterally guided. In alternative embodiments, not shown, the respective jet outlet element is arranged in the associated jet disk opening to be axially movable, i.e. in jet output direction, so that it moves forward by fluid pressure action and thus moves a bit more or nearly completely out of the jet disk opening. This favours, depending on the specific realization, the bulging of its bottom and/or its side wall by the fluid pressure. The skilled person is aware of various possibilities to realize such axially movable support of a jet outlet element in a jet disk opening, so this needs no further explanations here. In further alternative embodiments, not shown, the respective jet outlet element is arranged with lateral distance from the associated jet disk opening, so that its side wall can bulge by the fluid pressure, if needed, not only in a region which axially protrudes out of the jet disk opening, but also in an region which is not axially protruding out of the jet disk opening.
As the shown and aforementioned exemplary embodiments make clear, the invention provides a shower jet outlet device which is comparatively insensitive to clogging phenomena through dirt particles and lime deposits and can be embodied as required in such a way that it can produce a particularly fine, if desired virtually mist-fine shower jet. For this purpose, the fine jet openings can preferably be incorporated with a very small passage cross section in an elastic bottom material of the respective jet outlet element. The fluid-pressure-dependent breathing of the jet outlet element prevents clogging of the small fine jet openings. By virtue of the fact that the cross section of the fine jet openings 7 changes significantly in its area and in its shape, for example between oval and circular as in the embodiments shown, any accumulated dirt/lime particles can be automatically detached or dislodged, and the development of dirt/lime deposits which appreciably constrict the fine jet openings 7 in their free throughflow cross section is effectively counteracted.
It will be understood that, in addition to the shown and the above-explained embodiment variants, the invention encompasses further embodiments of the shower jet outlet device, with the only necessity being that the jet outlet element arranged in the associated jet disc opening is pot-shaped and is arranged with its bottom facing in the jet outlet direction and a plurality of fine jet openings are provided in the bottom. The shower jet outlet device can be used for any conventional type of sanitary shower devices, such as showering devices, kitchen shower devices and shower devices for mixer taps, and non-sanitary shower devices.
Number | Date | Country | Kind |
---|---|---|---|
102016225987.3 | Dec 2016 | DE | national |