The technology described herein relates generally to shower hardware, and more particularly to a bracket for a showerhead.
Some bath and shower systems include a handheld showerhead that is connected to the water supply by a flexible hose. Usually, a bracket is mounted within the bath or shower enclosure to hold the handheld showerhead when not in use. In some configurations, the bracket is mounted to or provided as part of the shower arm extending from the shower pipe in the wall that supports a standard, fixed showerhead. In some configurations, the bracket may even be provided as an integral component part of the shower arm. In such configurations, these showerhead brackets may also supply water from the shower pipe to either or both conventional and/or handheld showerheads. These showerhead brackets may be fixed or removable from the shower pipe and/or the showerhead.
In order to meet government standards or simply to conserve water, some brackets may contain a flow regulator. However, the flow regulator may be set to a predetermined flow rate. This may be problematic as some users may wish to further decrease the flow rate as compared with other users and/or some users may wish to dynamically change the flow rate while showering.
The information included in this Background section of the specification, including any references cited herein and any description or discussion thereof, is included for technical reference purposes only and is not to be regarded subject matter by which the scope of the invention is defined in the claims is to be bound.
Some embodiments may include a showerhead bracket having a fluid inlet, a fluid outlet, a valve, and a valve housing. The valve may be operably connected between the fluid inlet and the fluid outlet. The valve may include a valve inlet port, a low flow exit port, and a high flow exit port. The valve housing may be disposed between the fluid inlet and the valve inlet port and may be configured such that the valve can selectively rotate within the valve housing.
Other embodiments may include a bracket assembly for a showerhead. The bracket assembly may include a bracket body and a flow control assembly. The bracket body may include an inlet and an outlet. The flow control assembly may be substantially surrounded by the bracket body and may be disposed between the inlet and the outlet. The flow control assembly may include a flow regulator configured to selectively alternate a rate of fluid flow through the bracket and a housing configured to partially secure the flow regulator within the bracket body.
Still other embodiments may include a showerhead assembly having a showerhead and a bracket fluidly connected to the showerhead. The bracket may include a bracket body, a flow regulator, and a controller. The flow regulator may be substantially surrounded by the bracket body. The flow regulator may include a valve configured to selectively decrease or increase a flow rate of water through the bracket and a valve housing operably connected to the valve. The valve housing may be configured to partially restrain lateral movements of the valve, while still allowing the valve to rotate within the valve housing. The controller may be operably connected to the flow regulator and the bracket body. The controller may be configured to selectively rotate the valve.
Another embodiment may take the form of a showerhead bracket including a bracket housing defining a fluid inlet and a fluid outlet, a spool that is selectively rotatable relative to the bracket housing to adjust a flow rate of fluid flowing from the fluid inlet to the fluid outlet, a spring-biased fluid seal supported within the spool defining a metering hole, and a cradle configured to support a showerhead handle that is selectively rotatable relative to the bracket housing. Rotation of the spool to a low flow position positions the fluid seal against the fluid outlet such that fluid is directed through the metering hole.
A further embodiment may take the form of a showerhead bracket including a bracket housing defining a fluid inlet attachable to a shower pipe and a fluid outlet attachable to showerhead assembly including a showerhead handle, a cradle configured to support the showerhead handle that is selectively rotatable by a user relative to the bracket housing, and a spring sandwiched between the bracket housing and the cradle, such that the spring is configured to rotate relative to the bracket housing in both clockwise and counter-clockwise directions. The frictional forces between the spring and the bracket housing prevent the spring from rotating relative to the bracket housing when the showerhead handle is supported by the cradle and no rotational forces are applied to the cradle by the user.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. A more extensive presentation of features, details, utilities, and advantages of the present invention as defined in the claims is provided in the following written description of various embodiments of the invention and illustrated in the accompanying drawings.
Various examples of a handheld showerhead bracket with fluid flow controls are described herein. The showerhead bracket may be configured for coupling a conventional handheld showerhead in fluid communication with a showerhead assembly. A coupling member may join the showerhead bracket to a shower pipe and a flexible hose may be joined to the showerhead bracket to deliver water or other fluid from the showerhead assembly to the handheld shower. The showerhead bracket may provide a cradle for holding the handheld showerhead when not being handled by a user. When in the cradle, the handheld showerhead may be configured to direct water towards a user in the same manner as a conventional showerhead. In other embodiments, a conventional showerhead may be mounted to the showerhead bracket, either in place of or in addition to the handheld showerhead. The showerhead bracket may be selectively rotatable and/or pivotable relative to the coupling member, the showerhead, or both in order to change the direction that water exits the showerhead assembly relative to the showerhead pipe.
The showerhead bracket may also include a flow control assembly or flow regulator assembly. The flow control assembly may be disposed between the inlet of the showerhead bracket and the outlet of the showerhead bracket. The flow control assembly selectively alternates the flow volume of water between the shower pipe and the showerhead(s). For example, in one embodiment the flow control assembly may decrease water flow out of the showerhead from approximately 2 gallons per minute to approximately 1.6 gallons per minute. The flow control assembly may include a valve housing, a valve housing base, a controller and a valve. The controller allows a user to rotate the valve within the valve housing. Depending on the position within the valve housing, the valve may restrict a portion, all (or substantially all), or none of the water exiting the shower pipe from reaching the showerhead. This allows a user to customize the water flow while the handheld showerhead is in use. For example, the user may wish to reduce the flow while applying condition to his or her hair. Alternatively or additionally, some spray modes for the showerhead may be too strong (i.e., too highly pressurized) for a particular user. In this case, the user may reduce the water flow while the showerhead is in a particular spray mode, thus reducing the pressure of the water. Then, after changing spray modes the user may increase the water flow (via the flow control assembly) to obtain a desired flow rate and/or pressure.
In some embodiments, the valve may be a stem or rod including a substantially hollow middle portion. A front surface of the valve may include an outlet port and a backside surface of the valve may include an inlet port. Water from the shower pipe enters the valve via the inlet port and exists via the outlet port. The outlet port may vary in dimensions and/or geometry along the body of the valve, such that a first portion of the outlet port may be substantially narrow and a second portion may be substantially wider than the narrow portion. In one embodiment, the outlet port transitions from a narrow open rectangular aperture into a half-circle aperture. In this embodiment, the outlet port aperture may roughly resemble an umbrella. The varying dimensions of the outlet port allow the user to selectively adjust the water flow through the valve (and therefore to the outlet of the shower head bracket). For example, if the narrow portion of the outlet port (i.e., umbrella stem) is aligned with the inlet port, less water will flow between the shower pipe and the showerhead than if the larger portion of the outlet port is aligned with the valve inlet port. As such, the valve may rotate within the valve housing, allowing the user to dynamically adjust the size/shape of the outlet port aligned with the inlet port, thus, varying the flow rate through the valve.
The position of the valve within the valve housing may be controlled by a knob or other controller device (e.g., tab, handle, rod, etc.). There may be multiple controllers. For example, there may be a knob on both the left and right sides of the bracket. The controller may be operably connected to one or both sides of the valve. In embodiments where there is a controller operably connected to both sides of the valve, either controller may adjust the position of the valve within the valve housing.
In other embodiments, there may only be a single controller. In these embodiments, the valve may include a locking mechanism on one side, and a controller operably connected to a second side. The locking mechanism may secure the valve from being separated from the valve housing. The knob or controller may be placed at almost any location on the showerhead bracket. For example, the controller may be placed on the sides, top, oblique surfaces or in any other position along the showerhead bracket. When the controller is placed at varying locations, the angle and/or position of the flow control assembly may also be altered. For example, if the controller is placed on the top surface of the bracket body, the flow control assembly may be positioned within the bracket body so that the valve is substantially perpendicular to the top surface of the bracket body. This allows the controller to easily control the valve without requiring the geometry/shape of the controller, the valve, and/or the flow control assembly to be dramatically altered (if altered at all).
Also, in some embodiments, the flow control assembly may be in addition to a flow regulator or restrictor. The flow restrictor may reduce the flow rate of water through the showerhead bracket at a constant rate. For example, in some embodiments, the flow restrictor may reduce the flow rate to accommodate water conservation standards/regulations. Thus, the showerhead bracket assembly may have two flow regulators: an adjustable regulator and a non-adjustable restrictor. Further, the showerhead bracket assembly may also include a filter to filter the water as it travels from the shower pipe to the showerhead.
The bracket assembly 106 may have a housing or bracket body 116 with a coupling member 118 that may be operably connected at a first end and form a cradle 110 at a second, opposite end. The coupling member 118 may be configured to extend around a pivot ball 126. A fluid outlet port 114 may extend from a bottom portion of the bracket assembly 106. The various components forming the showerhead system 100 may be made of plastic, metal, ceramic, any other suitable material, or any combination thereof.
As shown in the exemplary embodiment of
The coupling member 118 may join the bracket assembly 106 to a shower pipe 104 or other water source (e.g., in alternative embodiments, hose 108). For example, the coupling member 118 may operably connect to the shower pipe 104 via a pivot ball 126, which may be operably connected to the end of the shower pipe 104 or some other component. The bracket assembly 106 may be selectively rotatable, pivotable, or otherwise movable relative to the pivot ball 126 or other connecting mechanism. Such selective movement may allow a user to control the direction that a fluid exits the showerhead system 100 through the handheld showerhead 102, when the handheld showerhead 102 is held within the cradle 110. The handheld showerhead 102 may be removable from the showerhead bracket 106 to allow a user to direct a fluid exiting the handheld showerhead 102 towards any part of a user's body.
In alternative embodiments, the bracket body 116 may have more than one fluid outlet 158 and corresponding outlet port 114, for example, to supply water flow to a fixed showerhead or any other suitable fluid delivery device in addition to the handheld showerhead 102.
The fluid outlet port 114 may be generally cylindrical or any other desired shape and may extend downward from a bottom portion of the bracket body 116. In still other embodiments, the outlet port 114 may extend from other surfaces of the bracket body 116. In these embodiments a conventional showerhead may be directly connected to the outlet port 114. At least a portion of the exterior surface of the fluid outlet port 114, as shown in
The upper, inner surface of the bracket body 116 may further include locking features 154 extending downward into the fluid cavity 150. In an exemplary embodiment, the locking features 154 may be formed as ridges running along the inner surface of the bracket body 116. For example, there may be seven locking features 154 spaced around the inner surface of the bracket body 116. However, in other embodiments there may be any number of locking features 154 spaced in substantially any configuration along the bracket body 116. Further, the locking features 154 may be one or more tabs, detents, protrusions, or the like and positioned anywhere within the bracket body 116.
As noted, the bracket body 116 may also include a controller housing 152 on either side of the bracket body 116. The controller housing 152 may be a substantially hollow cylinder and may extend partially into the fluid cavity 150 (see e.g.,
Additionally, each of the controller housing 152 members may also include a controller channel 151 and a lock tab 153 on a front face of the respective controller housing 152. The controller channel 151 may be a partially recessed ring on the front face of the controller housing 152 surrounding the controller aperture 149. The lock tab 153 may extend outward from a location on the face of the controller channel 151. The lock tab 153 may be configured to be even with a face of the controller housing 152 (i.e., the portion of the controller housing 152 not forming the controller channel 151) or may be lower or taller than the controller housing 152.
The back end of the bracket body 116 may transition into a collar 160. The collar 160 forms the back end of the bracket body 116 and may have a slightly larger diameter than other portions of the bracket body 116. The interior surface of the collar 160 may include threading 168 as shown in
The coupling member 118 may also include grip ridges or tabs 164 extending away from its outer surface. The grip tabs 164 provide a gripping surface, allowing a user to more easily twist the coupling member 118 to unscrew and release the coupling member 118 from the collar 160. Additionally, in some implementations, the coupling member 118 may define a pivot ball receiving portion 166. The pivot ball receiving portion 166 may extend from the rear of the coupling member 118 and may receive and surround at least a portion of the pivot ball 126 (see e.g.,
Referring now to
The valve retainer body 176 receives and at least partially surrounds a portion of the valve 132. The valve retainer body 176 may be shaped to correspond to the shape and/or dimensions of the valve 132. However, the valve retainer body 176 has a slightly larger diameter then the valve 132, such that the valve 132 may be able to rotate within the valve retainer body 176. In one embodiment, the valve retainer body 176 may be a hollow cylinder with a valve receiving aperture 180 on each end. As with the overall diameter of the valve retainer body 176 one or both of the valve receiving apertures 180 may have a diameter at least slightly larger than the diameter of the valve 132. This may allow the valve 132 to be inserted into the valve retainer body 176. In one embodiment, both valve receiving apertures 180 may be substantially the same dimensions and/or shape. This embodiment allows the valve 132 to be inserted into the valve retainer body 176 via either valve receiving aperture 180. However, in other embodiments, one of the valve receiving apertures 180 may be omitted and/or sized smaller than the diameter of the valve 132 (see e.g.,
The valve retainer body 176 may be aligned to be substantially perpendicular to the valve inlet conduit 174. Thus, the intersection of the valve retainer body 176 and the valve inlet conduit 176 may create a “T” shape. The valve retainer body 176 may include an outlet aperture 178 and an inlet aperture 182 on its front and rear side, respectively. The inlet aperture 182 and the outlet aperture 178 may be substantially aligned, such that when the valve 132 is in an open position water may flow substantially unrestricted between inlet aperture 182 and the outlet aperture 178. Similarly, the apertures 178, 182 may be substantially the same shape and/or dimensions. Further, the apertures 178, 182 may be aligned with the valve inlet conduit 174. For example, in one embodiment, the inlet aperture 182 may be formed at the intersection of the valve inlet conduit 174 and the valve retainer body 176 and the outlet aperture 178 may be spaced directly across from the inlet aperture 182.
Referring now to
In an exemplary embodiment, the base body 192 extends downward and inward from the inner surface of the annular ring 188 on the front side of the valve base 134 to form a frustum. The base body 192 transitions from the frustum to form a flat, annular, bottom surface 191 that supports the valve housing 136. The base ring receiving cylinder 186 extends past both sides of the annular bottom surface 191 and the base body 192. In some embodiments, the base ring receiving cylinder 186 may include a receiving groove which may extend annularly along a first surface of the cylinder 186 facing the annular ring 188.
On the front side of the valve base 134, the base ring receiving cylinder 186 (and optionally, the receiving groove) connect the base connector ring 172 to the base body 192, i.e., a portion of the base connector ring 172 fits around the base ring receiving cylinder 186 and the extension ring 173 interfaces with the receiving cylinder 186. On the back side of the valve base 134, the base ring receiving cylinder 186 extends from the annular bottom surface 193 of the base body 192 and is surrounded by a concentric sleeve 184. The combination of the concentric sleeve 184 and the base ring receiving cylinder 186 help to secure an O-ring 140 between the valve base 134 and the pivot ball 126. For example, the O-ring 140 may be inserted between the inner surface of the concentric sleeve 184 and the outer surface of the base ring receiving cylinder 186. A face surface 187 of the base ring receiving cylinder may be beveled or curved to conform to the spherical surface of the pivot ball 126 to provide a tighter seal and an interface conducive to pivotable movement between the pivot ball 126 and the rest of the bracket assembly 106.
The valve 132 may be a substantially cylindrical body having a middle portion 193 defining an inlet port 210, an exit port 208, a pressure release aperture 196, and a peg 202 that extends from either or both ends. Additionally, the valve 132 may include seal receiving channels 194 spaced around its outer surface. The middle portion 193 may be substantially hollow, whereas the rest of the valve 132 body may be substantially solid. In one embodiment, the inlet port 210 is defined by the middle portion 193 as a substantially circular aperture along the rear outer surface of the middle portion 193. The inlet port 210 fluidly connects to the valve retainer inlet 182 and the inlet port 210 may have the approximately the same dimensions and/or shape of the valve retainer inlet 182.
The exit port 208 may be aligned with the inlet port 210, however, the exit port 208 may have a different shape and/or size than the inlet port 210. This is because the exit port 208 may act as a flow modifier/regulator. For example, the exit port 208 may include a high flow exit port 198 and a low flow exit port 200. The two portions/apertures of the exit port 198, 200 may have different shapes, geometries, and/or dimensions and, thus, the exit port 208 may essentially change in shape as the different portions are aligned with the valve retainer outlet aperture 178.
The high flow exit port 198 and the low flow exit port 200 may be connected together so as to form a single aperture (the exit port 208). The high flow exit port 198 may be shaped as a half-circle, whereas the low flow exit port 200 may be a thin rectangular aperture. In an exemplary embodiment, the vertical rectangular aperture that forms the low flow exit port 200 intersects with a horizontal face of the high flow exit port 198. In this embodiment, the exit port 208 may resemble an umbrella or handheld fan shape. However, other shapes are possible, as long as the water exit areas for the high flow exit port 198 and the low flow exit port 200 are larger and smaller, respectively. Additionally, although the high flow exit port 198 and the low flow exit port 200 have been illustrated as a single aperture, the two ports 198, 200 may be formed as two separate apertures.
Referring now to
The valve 132 body also may define the seal receiving channels 194 between outer flat ribs 195, inner flat ribs 197, and the middle portion 193. The seal receiving channels 194 may be spaced intermittently along the outer surface of the valve 132. The seal receiving channels 194 may each receive an O-ring, trickle seals, e.g., trickle seals 130, or other sealing materials (see
The pegs 202 may extend from the ends of the valve 132. Each peg 202 may be operably connected to a controller 120. The pegs 202 may be partially cylindrical rods having a smaller diameter than the diameter of the valve 132. Additionally, the pegs 202 may include a flat key surface 204 along a side of each of the pegs 202. In this manner, the controller 120 may fit onto the peg 202 and align/secure into place via the key surface 204. The key surface 204, which allows the controllers 120 to turn the valve 132, interfaces with a corresponding aligning feature 214 on the controller 120, as further described below. The pegs 202 may also include a peg aperture 206 on a distal end of each peg 202. The peg aperture 206 may or may not be threaded and receive a screw (not shown) that extends through the exit port 208 in the controller 120 to attach the controller 120 to the valve 132.
The features 212, 214, 218 may be shaped to be complementary to corresponding portions on the valve 132 and/or controller housing 152. For example, the pocket 211 defined by the annular sleeve 218 may have a slightly larger diameter than the peg 202. The aligning feature 214 may align with the key surface 204 of the peg 202. As the pocket 211 of the controller 120 is inserted onto the peg 202 when the valve 132 is installed within the bracket body 116, the annular sleeve 218 similarly fits within the controller housing 152 and the arcuate wall 212 may align with and rest against a front face of the controller channel 151. As can be seen in
An actuator tab 122 or finger grip may be operably connected to an outer surface of the controller 120. The actuator tab 122 may be used by a user to rotate the controller 120 and thus the valve 132. However, it should be noted that in some embodiments the actuator tab 122 may be omitted and the entire body of the controller 120 may be extended outwards or may be provided with griping features. This may allow the user to grip the outer surface of the controller 120 in order to rotate it.
Referring again to
The collar 232 extends around the filter 144 and may be used to help support a sealing material such as an O-ring 146 as shown in
It should be noted that although the flow restrictor 148 and the filter 144 have been illustrated as being operably connected to the pivot ball 126 other embodiments are envisioned. Thus, the filter 144 and/or the flow restrictor 148 may be placed/positioned within the bracket body 116, as well as in other locations. Further, the filter 144 and/or the flow restrictor 148 may be omitted in other embodiments.
The showerhead bracket assembly 106 may also include a variety of sealing mechanisms, such as O-rings and trickle seals. For example, the showerhead bracket assembly 106 may include trickle seals 130, 146, O-rings, 138, 140, and split ring 142. These sealing mechanisms 130, 138, 140, 146, and 142 may be used to prevent water from leaking around and between particular elements. As such, each sealing mechanism 130, 138, 140, 146, and 142 may be individually customized to fit around the particular element. Further, the sealing mechanisms/material 130, 138, 140, 146 and 142 may take substantially any form and there may be any number desired in order to accomplish the particular seal desired by the user.
In operation, water from the shower pipe 104 enters into the shower bracket assembly 106 via the rear portion of the pivot ball 126. As the water enters into the pivot ball 126, it is forced into the entry apertures 236 within the filter 144 as the filter collar 232 and the trickle seal 146 seal against the shower pipe 104. As water enters the entry apertures 236, large particles and other matter may be removed by the grates 228, 234. Water then exits the filter 144 and enters into a pivot ball fluid passageway 242. The pivot ball fluid passageway 242 fluidly connects the filter 144 and the flow restrictor 148. The water is then forced into the restrictor apertures 224 and the water flow rate is reduced. The water exits the flow restrictor 148 and enters the valve inlet conduit 174 via the base receiving cylinder 186 in the valve base 134.
The valve inlet conduit 174 directs the water to the valve housing inlet aperture 182. The valve inlet port 210 may be at least partially aligned with the valve housing inlet aperture 182 and the water then enters the middle portion 193 of the valve 132. The alignment of the exit port 208 with the valve housing outlet aperture 178 controls the rate the water exits the valve 132. The alignment of the outlet aperture 178 depends on the position of the valve 132 within the valve retainer body 176. The valve 132 position may be adjusted/altered by a user via the controllers 120. Thus, by using one or both of the controllers 120, the user may adjust flow rate exiting the valve 132.
For example, if the valve 132 is rotated to a first position, the low flow rate port 200 may be aligned with the valve housing outlet aperture 178. In the first position, the other portions of the valve exit port 208 (i.e., the high flow rate port 198) may be aligned with the inner surface of the valve retainer body 176, and therefore be substantially blocked. Thus, the only exit that may be available for the water is the low flow rate port 200. Because of the comparatively small size, the low flow rate port 200 reduces the flow rate of the water exiting the valve 132. If, on the other hand, the valve 132 is rotated so that the high flow rate port 198 is aligned with the valve housing outlet aperture 178, the flow rate may be only slightly reduced (if at all). This is because the high flow rate port 198 may be substantially the same dimensions as the valve housing inlet aperture 182. Further, the valve 132 may be rotated to include combinations of both the low flow rate port 200 and the high flow rate port 198, such that flow rates between the minimum (i.e., only the low flow rate port 200 open) and the maximum (i.e., the only the high flow rate port 198) may be obtained.
Furthermore, in instances where the flow rate may be substantially restricted, water may exit the valve 132 via the pressure release aperture 196. This may help to prevent pressure buildup in the showerhead bracket assembly 106, thus helping to prevent damage to any components.
After the water exits the valve housing outlet aperture 178, the water enters into a bracket fluid outlet path 244. The fluid outlet path 244 is defined by the bracket body 116 and the fluid outlet 158 opening to the outlet port 114. Once the water travels through the outlet port 114, it enters the hose 108. From the hose 108, the water may enter the showerhead 102 and exit the nozzles 111 onto a user. However, if the showerhead bracket assembly 106 is connected to a conventional showerhead, then the hose 108 may be omitted and the water may flow directly from the outlet port 114 to a connected showerhead.
As shown in
The locking face 335 may define a locking aperture 337 that may be configured to receive a portion of the valve 332, but only when the valve 332 is in a particular position. The locking face 335 in conjunction with the locking aperture 337 may help to secure the valve 332 within the valve housing 336. The locking face 335 extends downward from the end of the valve retaining body 376 and forms an end face for the valve retaining body 376. The locking aperture 337 may then be defined by the locking face 335 and may include a circular center aperture with two tabs or rectangular apertures extending from opposite sides of the circular center aperture.
Referring now to
In operation, the embodiments illustrated in
The range of motion of the knob 520 may be observed by the position of the lever 522 with respect to the bracket body 516. For example, the lever 522 may define an angle relative to the threaded outlet 524 of the bracket body 516 and the coupling member 518 at the fluid inlet 526. In one particular embodiment, the direction of extension of the lever 662 and the direction of extension of the threaded outlet 644 may form an obtuse angle A that is less than 180 degrees. Additionally, the direction of extension of the lever 662 and the direction of extension of the coupling member of the fluid outlet 664 may form an acute angle B that is between 0 and 90 degrees. In further embodiments, the direction of extension of the lever 662 and the direction of extension of the threaded outlet 644 may form an acute or a right angle, or may be co-linear. Similarly, the direction of extension 662 of the lever and the direction of extension 664 of the coupling member of the fluid outlet may form an obtuse or a right angle, or may be co-linear. In this particular embodiment, the lever 522 may be pulled downwardly, in a clockwise direction, to reduce the flow rate of fluid dispensed through the fluid outlet 514, and upwardly, in a counter-clockwise direction, to increase the flow rate of fluid dispensed through the fluid outlet 514. In other embodiments, the lever 522 may be pulled in a counter-clockwise direction to decrease the flow rate of fluid dispensed through the fluid outlet 514, and in a clockwise direction to increase the flow rate of the dispensed fluid.
The bracket body 516 may also be joined to a cradle 510 that is configured to hold the shower head 502. As in prior embodiments, the cradle 510 may be generally C-shaped, although other embodiments may utilize cradles 510 of other shapes that are complementary to the showerhead handle 512 and suitable for securely and releasably attaching the handheld showerhead 502 to the showerhead bracket 506. As will be further discussed below, the cradle 510 may be rotated in either clockwise or counter-clockwise directions relative to its rotational axis to allow for adjusting the position of the handheld showerhead 502. In some embodiments, the cradle 510 may be rotated a full 360 degrees in either direction, with no absolute stops to prevent rotation of the cradle 510.
As best shown in
The right side of the bracket body 516 may be configured to engage the cradle 510, which may be joined to the right side of the bracket body 516. Specifically, the right side of the bracket body 516 may define a socket 572, best shown in
One example of a spring 544 that may be used in conjunction with this particular embodiment is shown in
The hub 610 of the wheel-shaped spring 544 defines a central aperture through which the shaft 552 of the cradle 510 extends. The central aperture may be pentagonal-shaped on one side (as best shown in
As rotational forces are applied to the cradle 510, the teeth 616 provided on the outer arms 614 of the wheel-shaped spring 544 engage corresponding teeth 606 provided by the socket wall, thereby resisting the rotational forces applied to the cradle 510.
The wheel-shaped spring 544 may be rotatable relative to the socket 572 so long as the rotational forces applied to the cradle 510 are sufficient to overcome the radial spring retention forces applied to the cradle 510. Preferably, the spring and frictional forces between the teeth 616 of the wheel-shaped spring 544 and the teeth 606 of the socket 572 may be sufficiently high so as to resist rotation of the cradle 510 in response to the weight of the showerhead 502 and the hose 508 when the handheld shower 502 is merely resting in the cradle 510. In other words, once adjusted, the cradle 510 may remain stationary when it is not being manipulated by a user. One of the benefits of the disclosed rotational mechanism of the cradle 510 is that is allows users to reposition the showerhead handle 502 with a single hand. This is an improvement over most existing showerhead bracket cradles, which require a user to grasp the bracket with one hand and the cradle (or other adjustment mechanism) with the other in order to alter and set the new position of the handle. Here, a user need only use one hand to move the cradle 510 in order to adjust the position of the handle 502 because the bracket 516 is fixedly attached to the shower pipe.
Preferably, the cradle 510 may be rotatable in both clockwise and counter-clockwise directions, as is the case in the illustrated embodiment in which the teeth 606 of the socket 572 and the teeth 616 of the wheel-shaped spring 544 are uniform and symmetrical. However, in some embodiments, the cradle 510 may only be rotated in one direction. For example, the teeth 606 of the socket 572 and the teeth 616 of the wheel-shaped spring 544 may be uniform but asymmetrical, with each tooth having a moderate slope on one edge and a much steeper slope on the other edge to allow rotation in only one direction and to prevent rotation in the opposite direction. In another embodiment, the teeth 606 of the socket 572 and the teeth 616 of the wheel-shaped spring 544 may be angled in a forward direction to allow rotation in only the forward direction and to prevent rotation in the opposite direction.
As shown in
As is shown in
During operation, the bottom portion of the spool 584 may be nested within the interior chamber 566 of the bracket body 516. The bottom portion 600 of the spool 584 may define a semicircular or arcuate, tapered cavity 532 that, with the bracket body 516, forms a fluid passage 638 when the spool 584 is nested within the inner chamber 566. The shape of the cavity 532 is best shown in
The fluid passage 638 formed by the cavity 532 may also be fluidly coupled by a port 590 to a smaller compartment 592 that is configured to receive a trickle seal 530. The trickle seal 530 may be biased away from the shaft 576 by a spring 646 mounted on a spring shaft or post 630 extending radially outward into the compartment 592 from the spool shaft 576, such that the trickle seal 530 is pressed against the inner surface of the bracket body 516 by the spring 646. The compartment 592 may be fluidly coupled to the larger cavity 532 of the spool 584 by the port 590 that is defined by the wall 636 that extends between the spool 584 and the compartment 592 and separates the compartment 592 from the cavity 532. As best shown in
In
In some embodiments, the bottom portion of the bracket assembly 506 may further define two annular recesses 582 that are each configured to receive an O-ring seal 538. These O-ring seals 538 may serve to prevent leakage between any potential gaps between the outer surface 628 of the bottom portion of the spool 584 and the cylindrical sidewall 604 of the bracket body 516. As is shown, e.g., in
In some embodiments, rotational limits on the angular distance that the spool shaft 576 is allowed to rotate relative to the bracket body 516 may be provided. In one embodiment, an arcuate wall 588 protruding from the bottom wall 586 of the bracket body 516 (shown in
The coupling member, the showerhead bracket, and other elements of the various examples of the showerhead assembly may be integrally formed or may be made of two or more separate components that are joined together by mechanical fasteners, sonic or heat welds, adhesives, chemical bonds, any other suitable method, or any combination thereof. All directional references (e.g., upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the examples of the invention, and do not create limitations, particularly as to the position, orientation, or use of the invention unless specifically set forth in the claims. Joinder references (e.g., attached, coupled, connected, joined and the like) are to be construed broadly and may include intermediate members between the connection of elements and relative movement between elements. As such, joinder references do not necessarily infer that two elements are directly connected and in fixed relation to each other.
This application is a continuation of U.S. application Ser. No. 15/162,107, filed on May 23, 2016, and entitled “Showerhead Bracket,” which is a divisional application of U.S. application Ser. No. 13/924,265, filed on Jun. 21, 2013, now U.S. Pat. No. 9,347,208, issued on May 24, 2016, and entitled “Bracket for Showerhead With Integral Flow Control,” which claims the benefit of priority pursuant to 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 61/663,385, filed on Jun. 22, 2012, and entitled “Bracket for Showerhead with Integral Flow Control,” all of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
203094 | Wakeman | Apr 1878 | A |
204333 | Josias | May 1878 | A |
309349 | Hart | Dec 1884 | A |
428023 | Schoff | May 1890 | A |
432712 | Taylor | Jul 1890 | A |
445250 | Lawless | Jan 1891 | A |
453109 | Dreisorner | May 1891 | A |
486986 | Schinke | Nov 1892 | A |
566384 | Engelhart | Aug 1896 | A |
566410 | Schinke | Aug 1896 | A |
570405 | Jerguson et al. | Oct 1896 | A |
694888 | Pfluger | Mar 1902 | A |
800802 | Franquist | Oct 1905 | A |
832523 | Andersson | Oct 1906 | A |
835678 | Hammond | Nov 1906 | A |
845540 | Ferguson | Feb 1907 | A |
854094 | Klein | May 1907 | A |
926929 | Dusseau | Jul 1909 | A |
1001842 | Greenfield | Aug 1911 | A |
1003037 | Crowe | Sep 1911 | A |
1018143 | Vissering | Feb 1912 | A |
1046573 | Ellis | Dec 1912 | A |
1130520 | Kenney | Mar 1915 | A |
1203466 | Benson | Oct 1916 | A |
1217254 | Winslow | Feb 1917 | A |
1218895 | Porter | Mar 1917 | A |
1255577 | Berry | Feb 1918 | A |
1260181 | Garnero | Mar 1918 | A |
1276117 | Riebe | Aug 1918 | A |
1284099 | Harris | Nov 1918 | A |
1327428 | Gregory | Jan 1920 | A |
1451800 | Agner | Apr 1923 | A |
1459582 | Dubee | Jun 1923 | A |
1469528 | Owens | Oct 1923 | A |
1500921 | Bramson et al. | Jul 1924 | A |
1560789 | Johnson et al. | Nov 1925 | A |
1597477 | Panhorst | Aug 1926 | A |
1633531 | Keller | Jun 1927 | A |
1669949 | Reynolds | May 1928 | A |
1692394 | Sundh | Nov 1928 | A |
1695263 | Jacques | Dec 1928 | A |
1724147 | Russell | Aug 1929 | A |
1724161 | Wuesthoff | Aug 1929 | A |
1736160 | Jonsson | Nov 1929 | A |
1754127 | Srulowitz | Apr 1930 | A |
1758115 | Kelly | May 1930 | A |
1778658 | Baker | Oct 1930 | A |
1821274 | Plummer | Sep 1931 | A |
1849517 | Fraser | Mar 1932 | A |
1890156 | Konig | Dec 1932 | A |
1906575 | Goeriz | May 1933 | A |
1934553 | Mueller et al. | Nov 1933 | A |
1946207 | Haire | Feb 1934 | A |
2011446 | Judell | Aug 1935 | A |
2024930 | Judell | Dec 1935 | A |
2033467 | Groeniger | Mar 1936 | A |
2044445 | Price et al. | Jun 1936 | A |
2085854 | Hathaway et al. | Jul 1937 | A |
2096912 | Morris | Oct 1937 | A |
2117152 | Crosti | May 1938 | A |
D113439 | Reinecke | Feb 1939 | S |
2196783 | Shook | Apr 1940 | A |
2197667 | Shook | Apr 1940 | A |
2216149 | Weiss | Oct 1940 | A |
D126433 | Enthof | Apr 1941 | S |
2251192 | Krumsiek et al. | Jul 1941 | A |
2268263 | Newell et al. | Dec 1941 | A |
2285831 | Pennypacker | Jun 1942 | A |
2342757 | Roser | Feb 1944 | A |
2402741 | Draviner | Jun 1946 | A |
D147258 | Becker | Aug 1947 | S |
D152584 | Becker | Feb 1949 | S |
2467954 | Becker | Apr 1949 | A |
2518709 | Mosby, Jr. | Aug 1950 | A |
2546348 | Schuman | Mar 1951 | A |
2567642 | Penshaw | Sep 1951 | A |
2581129 | Muldoon | Jan 1952 | A |
D166073 | Dunkelberger | Mar 1952 | S |
2648762 | Dunkelberger | Aug 1953 | A |
2664271 | Arutunoff | Dec 1953 | A |
2671693 | Hyser et al. | Mar 1954 | A |
2676806 | Bachman | Apr 1954 | A |
2679575 | Haberstump | May 1954 | A |
2680358 | Zublin | Jun 1954 | A |
2726120 | Bletcher et al. | Dec 1955 | A |
2759765 | Pawley | Aug 1956 | A |
2776168 | Schweda | Jan 1957 | A |
2792847 | Spencer | May 1957 | A |
2873999 | Webb | Feb 1959 | A |
2930505 | Meyer | Mar 1960 | A |
2931672 | Merritt et al. | Apr 1960 | A |
2935265 | Richter | May 1960 | A |
2949242 | Blumberg et al. | Aug 1960 | A |
2957587 | Tobin | Oct 1960 | A |
2966311 | Davis | Dec 1960 | A |
D190295 | Becker | May 1961 | S |
2992437 | Nelson et al. | Jul 1961 | A |
3007648 | Fraser | Nov 1961 | A |
D192935 | Becker | May 1962 | S |
3032357 | Shames et al. | May 1962 | A |
3034809 | Greenberg | May 1962 | A |
3037799 | Mulac | Jun 1962 | A |
3081339 | Green et al. | Mar 1963 | A |
3092333 | Gaiotto | Jun 1963 | A |
3098508 | Gerdes | Jul 1963 | A |
3103723 | Becker | Sep 1963 | A |
3104815 | Schultz | Sep 1963 | A |
3104827 | Aghnides | Sep 1963 | A |
3111277 | Grimsley | Nov 1963 | A |
3112073 | Larson et al. | Nov 1963 | A |
3143857 | Eaton | Aug 1964 | A |
3196463 | Farneth | Jul 1965 | A |
3231200 | Heald | Jan 1966 | A |
3236545 | Parkes et al. | Feb 1966 | A |
3239152 | Bachli et al. | Mar 1966 | A |
3266059 | Stelle | Aug 1966 | A |
3272437 | Coson | Sep 1966 | A |
3273359 | Fregeolle | Sep 1966 | A |
3306634 | Groves et al. | Feb 1967 | A |
3323148 | Burnon | Jun 1967 | A |
3329967 | Martinez et al. | Jul 1967 | A |
3341132 | Parkison | Sep 1967 | A |
3342419 | Weese | Sep 1967 | A |
3344994 | Fife | Oct 1967 | A |
3363842 | Burns | Jan 1968 | A |
3383051 | Fiorentino | May 1968 | A |
3389925 | Gottschald | Jun 1968 | A |
3393311 | Dahl | Jul 1968 | A |
3393312 | Dahl | Jul 1968 | A |
3404410 | Sumida | Oct 1968 | A |
3492029 | French et al. | Jan 1970 | A |
3516611 | Piggott | Jun 1970 | A |
3546961 | Marton | Dec 1970 | A |
3550863 | McDermott | Dec 1970 | A |
3552436 | Stewart | Jan 1971 | A |
3565116 | Gabin | Feb 1971 | A |
3566917 | White | Mar 1971 | A |
3580513 | Martin | May 1971 | A |
3584822 | Oram | Jun 1971 | A |
3596835 | Smith et al. | Aug 1971 | A |
3612577 | Pope | Oct 1971 | A |
3637143 | Shames et al. | Jan 1972 | A |
3641333 | Gendron | Feb 1972 | A |
3647144 | Parkison et al. | Mar 1972 | A |
3663044 | Contreras et al. | May 1972 | A |
3669470 | Deurloo | Jun 1972 | A |
3672648 | Price | Jun 1972 | A |
3682392 | Kint | Aug 1972 | A |
3685745 | Peschcke-Koedt | Aug 1972 | A |
D224834 | Laudell | Sep 1972 | S |
3711029 | Bartlett | Jan 1973 | A |
3722798 | Bletcher et al. | Mar 1973 | A |
3722799 | Rauh | Mar 1973 | A |
3731084 | Trevorrow | May 1973 | A |
3754779 | Peress | Aug 1973 | A |
D228622 | Juhlin | Oct 1973 | S |
3762648 | Deines et al. | Oct 1973 | A |
3768735 | Ward | Oct 1973 | A |
3786995 | Manoogian et al. | Jan 1974 | A |
3801019 | Trenary et al. | Apr 1974 | A |
3810580 | Rauh | May 1974 | A |
3826454 | Zieger | Jul 1974 | A |
3840734 | Oram | Oct 1974 | A |
3845291 | Portyrata | Oct 1974 | A |
3860271 | Rodgers | Jan 1975 | A |
3861719 | Hand | Jan 1975 | A |
3865310 | Elkins et al. | Feb 1975 | A |
3869151 | Fletcher et al. | Mar 1975 | A |
3887136 | Anderson | Jun 1975 | A |
3896845 | Parker | Jul 1975 | A |
3902671 | Symmons | Sep 1975 | A |
3910277 | Zimmer | Oct 1975 | A |
D237708 | Grohe | Nov 1975 | S |
3929164 | Richter | Dec 1975 | A |
3929287 | Givler et al. | Dec 1975 | A |
3958756 | Trenary et al. | May 1976 | A |
D240322 | Staub | Jun 1976 | S |
3963179 | Tomaro | Jun 1976 | A |
3967783 | Halsted et al. | Jul 1976 | A |
3979096 | Zieger | Sep 1976 | A |
3994443 | Shenker | Nov 1976 | A |
3997116 | Moen | Dec 1976 | A |
3998390 | Peterson et al. | Dec 1976 | A |
3999714 | Lang | Dec 1976 | A |
4005880 | Anderson et al. | Feb 1977 | A |
4006920 | Sadler et al. | Feb 1977 | A |
4023782 | Eifer | May 1977 | A |
4042984 | Butler | Aug 1977 | A |
4045054 | Arnold | Aug 1977 | A |
D245858 | Grube | Sep 1977 | S |
D245860 | Grube | Sep 1977 | S |
4068801 | Leutheuser | Jan 1978 | A |
4081135 | Tomaro | Mar 1978 | A |
4084271 | Ginsberg | Apr 1978 | A |
4091998 | Peterson | May 1978 | A |
D249356 | Nagy | Sep 1978 | S |
4117979 | Lagarelli et al. | Oct 1978 | A |
4129257 | Eggert | Dec 1978 | A |
4130120 | Kohler, Jr. | Dec 1978 | A |
4131233 | Koenig | Dec 1978 | A |
4133486 | Fanella | Jan 1979 | A |
4135549 | Baker | Jan 1979 | A |
D251045 | Grube | Feb 1979 | S |
4141502 | Grohe | Feb 1979 | A |
4151955 | Stouffer | May 1979 | A |
4151957 | Gecewicz et al. | May 1979 | A |
4162801 | Kresky et al. | Jul 1979 | A |
4165837 | Rundzaitis | Aug 1979 | A |
4167196 | Morris | Sep 1979 | A |
4174822 | Larsson | Nov 1979 | A |
4185781 | O'Brien | Jan 1980 | A |
4190207 | Fienhold et al. | Feb 1980 | A |
4191332 | De Langis et al. | Mar 1980 | A |
4203550 | On | May 1980 | A |
4209132 | Kwan | Jun 1980 | A |
D255626 | Grube | Jul 1980 | S |
4219160 | Allred, Jr. | Aug 1980 | A |
4221338 | Shames et al. | Sep 1980 | A |
4239409 | Osrwo | Dec 1980 | A |
4243253 | Rogers, Jr. | Jan 1981 | A |
4244526 | Arth | Jan 1981 | A |
D258677 | Larsson | Mar 1981 | S |
4254914 | Shames et al. | Mar 1981 | A |
4258414 | Sokol | Mar 1981 | A |
4272022 | Evans | Jun 1981 | A |
4274400 | Baus | Jun 1981 | A |
4275843 | Moen | Jun 1981 | A |
4282612 | King | Aug 1981 | A |
D261300 | Klose | Oct 1981 | S |
D261417 | Klose | Oct 1981 | S |
4303201 | Elkins et al. | Dec 1981 | A |
4319608 | Raikov et al. | Mar 1982 | A |
4324364 | Diller | Apr 1982 | A |
4330089 | Finkbeiner | May 1982 | A |
D266212 | Haug et al. | Sep 1982 | S |
4350298 | Tada | Sep 1982 | A |
4353508 | Butterfield et al. | Oct 1982 | A |
4358056 | Greenhut et al. | Nov 1982 | A |
D267582 | Mackay et al. | Jan 1983 | S |
D268359 | Klose | Mar 1983 | S |
D268442 | Darmon | Mar 1983 | S |
D268611 | Klose | Apr 1983 | S |
4383554 | Merriman | May 1983 | A |
4396797 | Sakuragi et al. | Aug 1983 | A |
4398669 | Fienhold | Aug 1983 | A |
4425965 | Bayh, III et al. | Jan 1984 | A |
4432392 | Paley | Feb 1984 | A |
D274457 | Haug | Jun 1984 | S |
4461052 | Mostul | Jul 1984 | A |
4465308 | Martini | Aug 1984 | A |
4467964 | Kaeser | Aug 1984 | A |
4495550 | Visciano | Jan 1985 | A |
4527745 | Butterfield et al. | Jul 1985 | A |
4540202 | Amphoux et al. | Sep 1985 | A |
4545081 | Nestor et al. | Oct 1985 | A |
4553775 | Hailing | Nov 1985 | A |
D281820 | Oba et al. | Dec 1985 | S |
4561593 | Cammack et al. | Dec 1985 | A |
4564889 | Bolson | Jan 1986 | A |
4571003 | Roling et al. | Feb 1986 | A |
4572232 | Gruber | Feb 1986 | A |
D283645 | Tanaka | Apr 1986 | S |
4587991 | Chorkey | May 1986 | A |
4588130 | Trenary et al. | May 1986 | A |
4598866 | Cammack et al. | Jul 1986 | A |
4614303 | Moseley, Jr. et al. | Sep 1986 | A |
4616298 | Bolson | Oct 1986 | A |
4618100 | White et al. | Oct 1986 | A |
4629124 | Gruber | Dec 1986 | A |
4629125 | Liu | Dec 1986 | A |
4643463 | Halling et al. | Feb 1987 | A |
4645244 | Curtis | Feb 1987 | A |
RE32386 | Hunter | Mar 1987 | E |
4650120 | Kress | Mar 1987 | A |
4650470 | Epstein | Mar 1987 | A |
4652025 | Conroy, Sr. | Mar 1987 | A |
4654900 | McGhee | Apr 1987 | A |
4657185 | Rundzaitis | Apr 1987 | A |
4669666 | Finkbeiner | Jun 1987 | A |
4669757 | Bartholomew | Jun 1987 | A |
4674687 | Smith et al. | Jun 1987 | A |
4683917 | Bartholomew | Aug 1987 | A |
4703893 | Gruber | Nov 1987 | A |
4717180 | Roman | Jan 1988 | A |
4719654 | Blessing | Jan 1988 | A |
4733337 | Bieberstein | Mar 1988 | A |
D295437 | Fabian | Apr 1988 | S |
4739801 | Kimura et al. | Apr 1988 | A |
4749126 | Kessener et al. | Jun 1988 | A |
D296582 | Haug et al. | Jul 1988 | S |
4754928 | Rogers et al. | Jul 1988 | A |
D297160 | Robbins | Aug 1988 | S |
4764047 | Johnston et al. | Aug 1988 | A |
4778104 | Fisher | Oct 1988 | A |
4778111 | Leap | Oct 1988 | A |
4787591 | Villacorta | Nov 1988 | A |
4790294 | Allred, III et al. | Dec 1988 | A |
4801091 | Sandvik | Jan 1989 | A |
4809369 | Bowden | Mar 1989 | A |
4839599 | Fischer | Jun 1989 | A |
4841590 | Terry | Jun 1989 | A |
4842059 | Tomek | Jun 1989 | A |
D302325 | Charet et al. | Jul 1989 | S |
4850616 | Pava | Jul 1989 | A |
4854499 | Neuman | Aug 1989 | A |
4856822 | Parker | Aug 1989 | A |
4865362 | Holden | Sep 1989 | A |
D303830 | Ramsey et al. | Oct 1989 | S |
4871196 | Kingsford | Oct 1989 | A |
4896658 | Yonekubo et al. | Jan 1990 | A |
D306351 | Charet et al. | Feb 1990 | S |
4901927 | Valdivia | Feb 1990 | A |
4903178 | Englot et al. | Feb 1990 | A |
4903897 | Hayes | Feb 1990 | A |
4903922 | Harris, III | Feb 1990 | A |
4907137 | Schladitz et al. | Mar 1990 | A |
4907744 | Jousson | Mar 1990 | A |
4909435 | Kidouchi et al. | Mar 1990 | A |
4914759 | Goff | Apr 1990 | A |
4946202 | Perricone | Aug 1990 | A |
4951329 | Shaw | Aug 1990 | A |
4953585 | Rollini et al. | Sep 1990 | A |
4964573 | Lipski | Oct 1990 | A |
4972048 | Martin | Nov 1990 | A |
D313267 | Lenci et al. | Dec 1990 | S |
4976460 | Newcombe et al. | Dec 1990 | A |
D314246 | Bache | Jan 1991 | S |
D315191 | Mikol | Mar 1991 | S |
4998673 | Pilolla | Mar 1991 | A |
5004158 | Halem et al. | Apr 1991 | A |
D317348 | Geneve et al. | Jun 1991 | S |
5020570 | Cotter | Jun 1991 | A |
5022103 | Faist | Jun 1991 | A |
D317968 | Tsai | Jul 1991 | S |
5032015 | Christianson | Jul 1991 | A |
5033528 | Volcani | Jul 1991 | A |
5033897 | Chen | Jul 1991 | A |
D319294 | Kohler, Jr. et al. | Aug 1991 | S |
D320064 | Presman | Sep 1991 | S |
5046764 | Kimura et al. | Sep 1991 | A |
D321062 | Bonbright | Oct 1991 | S |
5058804 | Yonekubo et al. | Oct 1991 | A |
D322119 | Haug et al. | Dec 1991 | S |
D322681 | Yuen | Dec 1991 | S |
5070552 | Gentry et al. | Dec 1991 | A |
D323545 | Ward | Jan 1992 | S |
5082019 | Tetrault | Jan 1992 | A |
5086878 | Swift | Feb 1992 | A |
5090624 | Rogers | Feb 1992 | A |
5100055 | Rokitenetz et al. | Mar 1992 | A |
D325769 | Haug et al. | Apr 1992 | S |
D325770 | Haug et al. | Apr 1992 | S |
5103384 | Drohan | Apr 1992 | A |
D326311 | Lenci et al. | May 1992 | S |
D327115 | Rogers | Jun 1992 | S |
5121511 | Sakamoto et al. | Jun 1992 | A |
D327729 | Rogers | Jul 1992 | S |
5127580 | Fu-I | Jul 1992 | A |
5134251 | Martin | Jul 1992 | A |
D328944 | Robbins | Aug 1992 | S |
5141016 | Nowicki | Aug 1992 | A |
D329504 | Yuen | Sep 1992 | S |
5143300 | Cutler | Sep 1992 | A |
5145114 | Monch | Sep 1992 | A |
5148556 | Bottoms et al. | Sep 1992 | A |
D330068 | Haug et al. | Oct 1992 | S |
D330408 | Thacker | Oct 1992 | S |
D330409 | Raffo | Oct 1992 | S |
5153976 | Benchaar et al. | Oct 1992 | A |
5154355 | Gonzalez | Oct 1992 | A |
5154483 | Zeller | Oct 1992 | A |
5161567 | Humpert | Nov 1992 | A |
5163752 | Copeland et al. | Nov 1992 | A |
5171429 | Yasuo | Dec 1992 | A |
5172860 | Yuch | Dec 1992 | A |
5172862 | Heimann et al. | Dec 1992 | A |
5172866 | Ward | Dec 1992 | A |
D332303 | Klose | Jan 1993 | S |
D332994 | Huen | Feb 1993 | S |
D333339 | Klose | Feb 1993 | S |
5197767 | Kimura et al. | Mar 1993 | A |
D334794 | Klose | Apr 1993 | S |
D335171 | Lenci et al. | Apr 1993 | S |
5201468 | Freier et al. | Apr 1993 | A |
5206963 | Wiens | May 1993 | A |
5207499 | Vajda et al. | May 1993 | A |
5213267 | Heimann et al. | May 1993 | A |
5220697 | Birchfield | Jun 1993 | A |
D337839 | Zeller | Jul 1993 | S |
5228625 | Grassberger | Jul 1993 | A |
5230106 | Henkin et al. | Jul 1993 | A |
D338542 | Yuen | Aug 1993 | S |
5232162 | Chih | Aug 1993 | A |
D339492 | Klose | Sep 1993 | S |
D339627 | Klose | Sep 1993 | S |
D339848 | Gottwald | Sep 1993 | S |
5246169 | Heimann et al. | Sep 1993 | A |
5246301 | Hirasawa | Sep 1993 | A |
D340376 | Klose | Oct 1993 | S |
5253670 | Perrott | Oct 1993 | A |
5253807 | Newbegin | Oct 1993 | A |
5254809 | Martin | Oct 1993 | A |
D341007 | Haug et al. | Nov 1993 | S |
D341191 | Klose | Nov 1993 | S |
D341220 | Eagan | Nov 1993 | S |
5263646 | McCauley | Nov 1993 | A |
5265833 | Heimann et al. | Nov 1993 | A |
5268826 | Greene | Dec 1993 | A |
5276596 | Krenzel | Jan 1994 | A |
5277391 | Haug et al. | Jan 1994 | A |
5286071 | Storage | Feb 1994 | A |
5288110 | Allread | Feb 1994 | A |
5294054 | Benedict et al. | Mar 1994 | A |
5297735 | Heimann et al. | Mar 1994 | A |
5297739 | Allen | Mar 1994 | A |
D345811 | Van Deursen et al. | Apr 1994 | S |
D346426 | Warshawsky | Apr 1994 | S |
D346428 | Warshawsky | Apr 1994 | S |
D346430 | Warshawsky | Apr 1994 | S |
D347262 | Black et al. | May 1994 | S |
D347265 | Gottwald | May 1994 | S |
5316216 | Cammack et al. | May 1994 | A |
D348720 | Haug et al. | Jul 1994 | S |
5329650 | Zaccai et al. | Jul 1994 | A |
D349947 | Hing-Wah | Aug 1994 | S |
5333787 | Smith et al. | Aug 1994 | A |
5333789 | Garneys | Aug 1994 | A |
5340064 | Heimann et al. | Aug 1994 | A |
5340165 | Sheppard | Aug 1994 | A |
D350808 | Warshawsky | Sep 1994 | S |
5344080 | Matsui | Sep 1994 | A |
5349987 | Shieh | Sep 1994 | A |
5356076 | Bishop | Oct 1994 | A |
5356077 | Shames | Oct 1994 | A |
D352092 | Warshawsky | Nov 1994 | S |
D352347 | Dannenberg | Nov 1994 | S |
D352766 | Hill et al. | Nov 1994 | S |
5368235 | Drozdoff et al. | Nov 1994 | A |
5369556 | Zeller | Nov 1994 | A |
5370427 | Hoelle et al. | Dec 1994 | A |
5385500 | Schmidt | Jan 1995 | A |
D355242 | Warshawsky | Feb 1995 | S |
D355703 | Duell | Feb 1995 | S |
D356626 | Wang | Mar 1995 | S |
5397064 | Heitzman | Mar 1995 | A |
5398872 | Joubran | Mar 1995 | A |
5398977 | Berger et al. | Mar 1995 | A |
5402812 | Moineau et al. | Apr 1995 | A |
5405089 | Heimann et al. | Apr 1995 | A |
5414879 | Hiraishi et al. | May 1995 | A |
5423348 | Jezek et al. | Jun 1995 | A |
5433384 | Chan et al. | Jul 1995 | A |
D361399 | Carbone et al. | Aug 1995 | S |
D361623 | Huen | Aug 1995 | S |
5441075 | Clare | Aug 1995 | A |
5449206 | Lockwood | Sep 1995 | A |
D363360 | Santarsiero | Oct 1995 | S |
5454809 | Janssen | Oct 1995 | A |
5468057 | Megerle et al. | Nov 1995 | A |
D364935 | deBlois | Dec 1995 | S |
D365625 | Bova | Dec 1995 | S |
D365646 | deBlois | Dec 1995 | S |
5476225 | Chan | Dec 1995 | A |
D366309 | Huang | Jan 1996 | S |
D366707 | Kaiser | Jan 1996 | S |
D366708 | Santarsiero | Jan 1996 | S |
D366709 | Szymanski | Jan 1996 | S |
D366710 | Szymanski | Jan 1996 | S |
5481765 | Wang | Jan 1996 | A |
D366948 | Carbone | Feb 1996 | S |
D367315 | Andrus | Feb 1996 | S |
D367333 | Swyst | Feb 1996 | S |
D367696 | Andrus | Mar 1996 | S |
D367934 | Carbone | Mar 1996 | S |
D368146 | Carbone | Mar 1996 | S |
D368317 | Swyst | Mar 1996 | S |
5499767 | Morand | Mar 1996 | A |
D368539 | Carbone et al. | Apr 1996 | S |
D368540 | Santarsiero | Apr 1996 | S |
D368541 | Kaiser et al. | Apr 1996 | S |
D368542 | deBlois et al. | Apr 1996 | S |
D369204 | Andrus | Apr 1996 | S |
D369205 | Andrus | Apr 1996 | S |
5507436 | Ruttenberg | Apr 1996 | A |
D369873 | deBlois et al. | May 1996 | S |
D369874 | Santarsiero | May 1996 | S |
D369875 | Carbone | May 1996 | S |
D370052 | Chan et al. | May 1996 | S |
D370250 | Fawcett et al. | May 1996 | S |
D370277 | Kaiser | May 1996 | S |
D370278 | Nolan | May 1996 | S |
D370279 | deBlois | May 1996 | S |
D370280 | Kaiser | May 1996 | S |
D370281 | Johnstone et al. | May 1996 | S |
5517392 | Rousso et al. | May 1996 | A |
5521803 | Eckert et al. | May 1996 | A |
D370542 | Santarsiero | Jun 1996 | S |
D370735 | deBlois | Jun 1996 | S |
D370987 | Santarsiero | Jun 1996 | S |
D370988 | Santarsiero | Jun 1996 | S |
D371448 | Santarsiero | Jul 1996 | S |
D371618 | Nolan | Jul 1996 | S |
D371619 | Szymanski | Jul 1996 | S |
D371856 | Carbone | Jul 1996 | S |
D372318 | Szymanski | Jul 1996 | S |
D372319 | Carbone | Jul 1996 | S |
5531625 | Zhong | Jul 1996 | A |
5539624 | Dougherty | Jul 1996 | A |
D372548 | Carbone | Aug 1996 | S |
D372998 | Carbone | Aug 1996 | S |
D373210 | Santarsiero | Aug 1996 | S |
5547132 | Grogran | Aug 1996 | A |
5547374 | Coleman | Aug 1996 | A |
D373434 | Nolan | Sep 1996 | S |
D373435 | Nolan | Sep 1996 | S |
D373645 | Johnstone et al. | Sep 1996 | S |
D373646 | Szymanski et al. | Sep 1996 | S |
D373647 | Kaiser | Sep 1996 | S |
D373648 | Kaiser | Sep 1996 | S |
D373649 | Carbone | Sep 1996 | S |
D373651 | Szymanski | Sep 1996 | S |
D373652 | Kaiser | Sep 1996 | S |
5551637 | Lo | Sep 1996 | A |
5552973 | Hsu | Sep 1996 | A |
5558278 | Gallorini | Sep 1996 | A |
D374271 | Fleischmann | Oct 1996 | S |
D374297 | Kaiser | Oct 1996 | S |
D374298 | Swyst | Oct 1996 | S |
D374299 | Carbone | Oct 1996 | S |
D374493 | Szymanski | Oct 1996 | S |
D374494 | Santarsiero | Oct 1996 | S |
D374732 | Kaiser | Oct 1996 | S |
D374733 | Santasiero | Oct 1996 | S |
5560548 | Mueller et al. | Oct 1996 | A |
5567115 | Carbone | Oct 1996 | A |
D375541 | Michaluk | Nov 1996 | S |
5577664 | Heitzman | Nov 1996 | A |
D376217 | Kaiser | Dec 1996 | S |
D376860 | Santarsiero | Dec 1996 | S |
D376861 | Johnstone et al. | Dec 1996 | S |
D376862 | Carbone | Dec 1996 | S |
5605173 | Arnaud | Feb 1997 | A |
D378401 | Neufeld et al. | Mar 1997 | S |
5613638 | Blessing | Mar 1997 | A |
5613639 | Storm et al. | Mar 1997 | A |
5615837 | Roman | Apr 1997 | A |
5624074 | Parisi | Apr 1997 | A |
5624498 | Lee et al. | Apr 1997 | A |
D379212 | Chan | May 1997 | S |
D379404 | Spelts | May 1997 | S |
5632049 | Chen | May 1997 | A |
D381405 | Waidele et al. | Jul 1997 | S |
D381737 | Chan | Jul 1997 | S |
D382936 | Shfaram | Aug 1997 | S |
5653260 | Huber | Aug 1997 | A |
5667146 | Pimentel et al. | Sep 1997 | A |
D385332 | Andrus | Oct 1997 | S |
D385333 | Caroen et al. | Oct 1997 | S |
D385334 | Caroen et al. | Oct 1997 | S |
D385616 | Dow et al. | Oct 1997 | S |
D385947 | Dow et al. | Nov 1997 | S |
D387230 | von Buelow et al. | Dec 1997 | S |
5697557 | Blessing et al. | Dec 1997 | A |
5699964 | Bergmann et al. | Dec 1997 | A |
5702057 | Huber | Dec 1997 | A |
D389558 | Andrus | Jan 1998 | S |
5704080 | Kuhne | Jan 1998 | A |
5707011 | Bosio | Jan 1998 | A |
5718380 | Schorn et al. | Feb 1998 | A |
D392369 | Chan | Mar 1998 | S |
5730361 | Thonnes | Mar 1998 | A |
5730362 | Cordes | Mar 1998 | A |
5730363 | Kress | Mar 1998 | A |
5742961 | Casperson et al. | Apr 1998 | A |
D394490 | Andrus et al. | May 1998 | S |
5746375 | Guo | May 1998 | A |
5749552 | Fan | May 1998 | A |
5749602 | Delaney et al. | May 1998 | A |
D394899 | Caroen et al. | Jun 1998 | S |
D395074 | Neibrook et al. | Jun 1998 | S |
D395075 | Kolada | Jun 1998 | S |
D395142 | Neibrook | Jun 1998 | S |
5764760 | Grandbert et al. | Jun 1998 | A |
5765760 | Kuo | Jun 1998 | A |
5769802 | Wang | Jun 1998 | A |
5772120 | Huber | Jun 1998 | A |
5778939 | Hok-Yin | Jul 1998 | A |
5788157 | Kress | Aug 1998 | A |
D398370 | Purdy | Sep 1998 | S |
5806771 | Loschelder et al. | Sep 1998 | A |
5819791 | Chronister et al. | Oct 1998 | A |
5820574 | Henkin et al. | Oct 1998 | A |
5823431 | Pierce | Oct 1998 | A |
5823442 | Guo | Oct 1998 | A |
5826803 | Cooper | Oct 1998 | A |
5833138 | Crane et al. | Nov 1998 | A |
5839666 | Heimann et al. | Nov 1998 | A |
D402350 | Andrus | Dec 1998 | S |
D403754 | Gottwald | Jan 1999 | S |
D404116 | Bosio | Jan 1999 | S |
5855348 | Fornara | Jan 1999 | A |
5860599 | Lin | Jan 1999 | A |
5862543 | Reynoso et al. | Jan 1999 | A |
5862985 | Neibrook et al. | Jan 1999 | A |
D405502 | Tse | Feb 1999 | S |
5865375 | Hsu | Feb 1999 | A |
5865378 | Hollinshead et al. | Feb 1999 | A |
5873647 | Kurtz et al. | Feb 1999 | A |
D408893 | Tse | Apr 1999 | S |
D409276 | Ratzlaff | May 1999 | S |
D410276 | Ben-Tsur | May 1999 | S |
5918809 | Simmons | Jul 1999 | A |
5918811 | Denham et al. | Jul 1999 | A |
D413157 | Ratzlaff | Aug 1999 | S |
5937905 | Santos | Aug 1999 | A |
5938123 | Heitzman | Aug 1999 | A |
5941462 | Sandor | Aug 1999 | A |
5947388 | Woodruff | Sep 1999 | A |
D415247 | Haverstraw et al. | Oct 1999 | S |
5961046 | Joubran | Oct 1999 | A |
5967417 | Mantel | Oct 1999 | A |
5979776 | Williams | Nov 1999 | A |
5992762 | Wang | Nov 1999 | A |
D418200 | Ben-Tsur | Dec 1999 | S |
5997047 | Pimentel et al. | Dec 1999 | A |
6003165 | Loyd | Dec 1999 | A |
D418902 | Haverstraw et al. | Jan 2000 | S |
D418903 | Haverstraw et al. | Jan 2000 | S |
D418904 | Milrud | Jan 2000 | S |
6016975 | Amaduzzi | Jan 2000 | A |
D421099 | Mullenmeister | Feb 2000 | S |
6021960 | Kehat | Feb 2000 | A |
D422053 | Brenner et al. | Mar 2000 | S |
6042027 | Sandvik | Mar 2000 | A |
6042155 | Lockwood | Mar 2000 | A |
D422336 | Haverstraw et al. | Apr 2000 | S |
D422337 | Chan | Apr 2000 | S |
D423083 | Haug et al. | Apr 2000 | S |
D423110 | Cipkowski | Apr 2000 | S |
D424160 | Haug et al. | May 2000 | S |
D424161 | Haug et al. | May 2000 | S |
D424162 | Haug et al. | May 2000 | S |
D424163 | Haug et al. | May 2000 | S |
D426290 | Haug et al. | Jun 2000 | S |
D427661 | Haverstraw et al. | Jul 2000 | S |
D428110 | Haug et al. | Jul 2000 | S |
D428125 | Chan | Jul 2000 | S |
6085780 | Morris | Jul 2000 | A |
D430267 | Milrud et al. | Aug 2000 | S |
6095801 | Spiewak | Aug 2000 | A |
D430643 | Tse | Sep 2000 | S |
6113002 | Finkbeiner | Sep 2000 | A |
6123272 | Havican et al. | Sep 2000 | A |
6123308 | Faisst | Sep 2000 | A |
D432624 | Chan | Oct 2000 | S |
D432625 | Chan | Oct 2000 | S |
D433096 | Tse | Oct 2000 | S |
D433097 | Tse | Oct 2000 | S |
6126091 | Heitzman | Oct 2000 | A |
6126290 | Veigel | Oct 2000 | A |
D434109 | Ko | Nov 2000 | S |
6164569 | Hollinshead et al. | Dec 2000 | A |
6164570 | Smeltzer | Dec 2000 | A |
D435889 | Ben-Tsur et al. | Jan 2001 | S |
D439305 | Slothower | Mar 2001 | S |
6199580 | Morris | Mar 2001 | B1 |
6202679 | Titus | Mar 2001 | B1 |
D440276 | Slothower | Apr 2001 | S |
D440277 | Slothower | Apr 2001 | S |
D440278 | Slothower | Apr 2001 | S |
D441059 | Fleischmann | Apr 2001 | S |
6209799 | Finkbeiner | Apr 2001 | B1 |
D443025 | Kollmann et al. | May 2001 | S |
D443026 | Kollmann et al. | May 2001 | S |
D443027 | Kollmann et al. | May 2001 | S |
D443029 | Kollmann et al. | May 2001 | S |
6223998 | Heitzman | May 2001 | B1 |
6230984 | Jager | May 2001 | B1 |
6230988 | Chao et al. | May 2001 | B1 |
6230989 | Haverstraw et al. | May 2001 | B1 |
D443335 | Andrus | Jun 2001 | S |
D443336 | Kollmann et al. | Jun 2001 | S |
D443347 | Gottwald | Jun 2001 | S |
6241166 | Overington et al. | Jun 2001 | B1 |
6250572 | Chen | Jun 2001 | B1 |
D444846 | Cross | Jul 2001 | S |
D444865 | Gottwald | Jul 2001 | S |
D445871 | Fan | Jul 2001 | S |
6254014 | Clearman et al. | Jul 2001 | B1 |
6270278 | Mauro | Aug 2001 | B1 |
6276004 | Bertrand et al. | Aug 2001 | B1 |
6283447 | Fleet | Sep 2001 | B1 |
6286764 | Garvey et al. | Sep 2001 | B1 |
D449673 | Kollmann et al. | Oct 2001 | S |
D450370 | Wales et al. | Nov 2001 | S |
D450805 | Lindholm et al. | Nov 2001 | S |
D450806 | Lindholm et al. | Nov 2001 | S |
D450807 | Lindholm et al. | Nov 2001 | S |
D451169 | Lindholm et al. | Nov 2001 | S |
D451170 | Lindholm et al. | Nov 2001 | S |
D451171 | Lindholm et al. | Nov 2001 | S |
D451172 | Lindholm et al. | Nov 2001 | S |
6321777 | Wu | Nov 2001 | B1 |
6322006 | Guo | Nov 2001 | B1 |
D451583 | Lindholm et al. | Dec 2001 | S |
D451980 | Lindholm et al. | Dec 2001 | S |
D452553 | Lindholm et al. | Dec 2001 | S |
D452725 | Lindholm et al. | Jan 2002 | S |
D452897 | Gillette et al. | Jan 2002 | S |
6336764 | Liu | Jan 2002 | B1 |
6338170 | De Simone | Jan 2002 | B1 |
D453369 | Lobermeier | Feb 2002 | S |
D453370 | Lindholm et al. | Feb 2002 | S |
D453551 | Lindholm et al. | Feb 2002 | S |
6349735 | Gul | Feb 2002 | B2 |
D454617 | Curbbun et al. | Mar 2002 | S |
D454938 | Lord | Mar 2002 | S |
6375342 | Koren et al. | Apr 2002 | B1 |
D457937 | Lindholm et al. | May 2002 | S |
6382531 | Tracy | May 2002 | B1 |
D458348 | Mullenmeister | Jun 2002 | S |
6412711 | Fan | Jul 2002 | B1 |
D461224 | Lobermeier | Aug 2002 | S |
D461878 | Green et al. | Aug 2002 | S |
6450425 | Chen | Sep 2002 | B1 |
6454186 | Haverstraw et al. | Sep 2002 | B2 |
6463658 | Larsson | Oct 2002 | B1 |
6464265 | Mikol | Oct 2002 | B1 |
D465552 | Tse | Nov 2002 | S |
D465553 | Singtoroj | Nov 2002 | S |
6484952 | Koren | Nov 2002 | B2 |
D468800 | Tse | Jan 2003 | S |
D469165 | Lim | Jan 2003 | S |
6502796 | Wales | Jan 2003 | B1 |
6508415 | Wang | Jan 2003 | B2 |
6511001 | Huang | Jan 2003 | B1 |
D470219 | Schweitzer | Feb 2003 | S |
6516070 | Macey | Feb 2003 | B2 |
D471253 | Tse | Mar 2003 | S |
D471953 | Colligan et al. | Mar 2003 | S |
6533194 | Marsh et al. | Mar 2003 | B2 |
6537455 | Farley | Mar 2003 | B2 |
D472958 | Ouyoung | Apr 2003 | S |
6550697 | Lai | Apr 2003 | B2 |
6585174 | Huang | Jul 2003 | B1 |
6595439 | Chen | Jul 2003 | B1 |
6607148 | Marsh et al. | Aug 2003 | B1 |
6611971 | Antoniello et al. | Sep 2003 | B1 |
6637676 | Zieger et al. | Oct 2003 | B2 |
6641057 | Thomas et al. | Nov 2003 | B2 |
D483837 | Fan | Dec 2003 | S |
6659117 | Gilmore | Dec 2003 | B2 |
6659372 | Marsh et al. | Dec 2003 | B2 |
D485887 | Luettgen et al. | Jan 2004 | S |
D486888 | Lobermeier | Feb 2004 | S |
6691338 | Zieger | Feb 2004 | B2 |
6691933 | Bosio | Feb 2004 | B1 |
D487301 | Haug et al. | Mar 2004 | S |
D487498 | Blomstrom | Mar 2004 | S |
6701953 | Agosta | Mar 2004 | B2 |
6715699 | Greenberg et al. | Apr 2004 | B1 |
6719218 | Cool et al. | Apr 2004 | B2 |
D489798 | Hunt | May 2004 | S |
D490498 | Golichowski | May 2004 | S |
6736336 | Wong | May 2004 | B2 |
6739523 | Haverstraw et al. | May 2004 | B2 |
6739527 | Chung | May 2004 | B1 |
D492004 | Haug et al. | Jun 2004 | S |
6742725 | Fan | Jun 2004 | B1 |
D494655 | Lin | Aug 2004 | S |
D494661 | Zieger et al. | Aug 2004 | S |
D495027 | Mazzola | Aug 2004 | S |
6776357 | Naito | Aug 2004 | B1 |
6789751 | Fan | Sep 2004 | B1 |
D496987 | Glunk | Oct 2004 | S |
D497974 | Haug et al. | Nov 2004 | S |
D498514 | Haug et al. | Nov 2004 | S |
D500121 | Blomstrom | Dec 2004 | S |
6827039 | Nelson | Dec 2004 | B1 |
D500549 | Blomstrom | Jan 2005 | S |
D501242 | Blomstrom | Jan 2005 | S |
D502760 | Zieger et al. | Mar 2005 | S |
D502761 | Zieger et al. | Mar 2005 | S |
D503211 | Lin | Mar 2005 | S |
D503463 | Hughes et al. | Mar 2005 | S |
6863227 | Wollenberg et al. | Mar 2005 | B2 |
6869030 | Blessing et al. | Mar 2005 | B2 |
D503774 | Zieger | Apr 2005 | S |
D503775 | Zieger | Apr 2005 | S |
D503966 | Zieger | Apr 2005 | S |
6899292 | Titinet | May 2005 | B2 |
D506243 | Wu | Jun 2005 | S |
D507037 | Wu | Jul 2005 | S |
6935581 | Titinet | Aug 2005 | B2 |
D509280 | Bailey et al. | Sep 2005 | S |
D509563 | Bailey et al. | Sep 2005 | S |
D510123 | Tsai | Sep 2005 | S |
D511809 | Haug et al. | Nov 2005 | S |
D512119 | Haug et al. | Nov 2005 | S |
6981661 | Chen | Jan 2006 | B1 |
7000854 | Malek et al. | Feb 2006 | B2 |
7004409 | Okubo | Feb 2006 | B2 |
7004410 | Li | Feb 2006 | B2 |
D520109 | Wu | May 2006 | S |
7040554 | Drennow | May 2006 | B2 |
7048210 | Clark | May 2006 | B2 |
7055767 | Ko | Jun 2006 | B1 |
D525341 | Bossini | Jul 2006 | S |
7070125 | Williams et al. | Jul 2006 | B2 |
7077342 | Lee | Jul 2006 | B2 |
D527440 | Macan | Aug 2006 | S |
7093780 | Chung | Aug 2006 | B1 |
7097122 | Farley | Aug 2006 | B1 |
D527790 | Hughes et al. | Sep 2006 | S |
D528631 | Gillette et al. | Sep 2006 | S |
7100845 | Hsieh | Sep 2006 | B1 |
7111795 | Thong | Sep 2006 | B2 |
7111798 | Thomas et al. | Sep 2006 | B2 |
D530389 | Glenslak et al. | Oct 2006 | S |
D530392 | Tse | Oct 2006 | S |
D531259 | Hsieh | Oct 2006 | S |
7114666 | Luettgen et al. | Oct 2006 | B2 |
D533253 | Luettgen et al. | Dec 2006 | S |
D534239 | Dingler et al. | Dec 2006 | S |
D535354 | Wu | Jan 2007 | S |
D536060 | Sadler | Jan 2007 | S |
7156325 | Chen | Jan 2007 | B1 |
7182043 | Nelson | Feb 2007 | B1 |
D538391 | Mazzola | Mar 2007 | S |
D540424 | Kirar | Apr 2007 | S |
D540425 | Endo et al. | Apr 2007 | S |
D540426 | Cropelli | Apr 2007 | S |
D540427 | Bouroullec et al. | Apr 2007 | S |
D542391 | Gilbert | May 2007 | S |
D542393 | Haug et al. | May 2007 | S |
D544573 | Dingier et al. | Jun 2007 | S |
7229031 | Schmidt | Jun 2007 | B2 |
7243863 | Glunk | Jul 2007 | B2 |
7246760 | Marty et al. | Jul 2007 | B2 |
D552713 | Rexach | Oct 2007 | S |
7278591 | Clearman et al. | Oct 2007 | B2 |
D556295 | Genord et al. | Nov 2007 | S |
7299510 | Tsai | Nov 2007 | B2 |
D557763 | Schonherr et al. | Dec 2007 | S |
D557764 | Schonherr et al. | Dec 2007 | S |
D557765 | Schonherr et al. | Dec 2007 | S |
D558301 | Hoernig | Dec 2007 | S |
7303151 | Wu | Dec 2007 | B2 |
D559357 | Wang et al. | Jan 2008 | S |
D559945 | Patterson et al. | Jan 2008 | S |
D560269 | Tse | Jan 2008 | S |
D562937 | Schonherr et al. | Feb 2008 | S |
D562938 | Blessing | Feb 2008 | S |
D562941 | Pan | Feb 2008 | S |
7331536 | Zhen et al. | Feb 2008 | B1 |
7347388 | Chung | Mar 2008 | B2 |
D565699 | Berberet | Apr 2008 | S |
D565702 | Daunter et al. | Apr 2008 | S |
D565703 | Lammel et al. | Apr 2008 | S |
D566228 | Neagoe | Apr 2008 | S |
D566229 | Rexach | Apr 2008 | S |
D567328 | Spangler et al. | Apr 2008 | S |
D567335 | Huang | Apr 2008 | S |
7360723 | Lev | Apr 2008 | B2 |
7364097 | Okuma | Apr 2008 | B2 |
7374112 | Bulan et al. | May 2008 | B1 |
7384007 | Ho | Jun 2008 | B2 |
D577099 | Leber | Sep 2008 | S |
D577793 | Leber | Sep 2008 | S |
D578604 | Wu et al. | Oct 2008 | S |
D578605 | Wu et al. | Oct 2008 | S |
D578608 | Wu et al. | Oct 2008 | S |
D580012 | Quinn et al. | Nov 2008 | S |
D580513 | Quinn et al. | Nov 2008 | S |
D581013 | Citterio | Nov 2008 | S |
D581014 | Quinn et al. | Nov 2008 | S |
D516169 | Wu | Feb 2009 | S |
D586426 | Schoenherr et al. | Feb 2009 | S |
7503345 | Paterson et al. | Mar 2009 | B2 |
D590048 | Leber et al. | Apr 2009 | S |
7520448 | Luettgen et al. | Apr 2009 | B2 |
D592276 | Shoenherr et al. | May 2009 | S |
D592278 | Leber | May 2009 | S |
7537175 | Miura et al. | May 2009 | B2 |
D600777 | Whitaker et al. | Sep 2009 | S |
D603935 | Leber | Nov 2009 | S |
7617990 | Huffman | Nov 2009 | B2 |
D605731 | Leber | Dec 2009 | S |
D606623 | Whitaker et al. | Dec 2009 | S |
D606626 | Zore | Dec 2009 | S |
D608412 | Barnard et al. | Jan 2010 | S |
D608413 | Barnard et al. | Jan 2010 | S |
D616061 | Whitaker et al. | May 2010 | S |
7721363 | Huang | May 2010 | B2 |
7721979 | Mazzola | May 2010 | B2 |
D617419 | Lee | Jun 2010 | S |
D617873 | Lee | Jun 2010 | S |
7740186 | Macan et al. | Jun 2010 | B2 |
D621904 | Yoo et al. | Aug 2010 | S |
D621905 | Yoo et al. | Aug 2010 | S |
7770820 | Clearman et al. | Aug 2010 | B2 |
7770822 | Leber | Aug 2010 | B2 |
D624156 | Leber | Sep 2010 | S |
7789326 | Luettgen et al. | Sep 2010 | B2 |
D625776 | Williams | Oct 2010 | S |
7832662 | Gallo | Nov 2010 | B2 |
D628676 | Lee | Dec 2010 | S |
D629867 | Rexach et al. | Dec 2010 | S |
7871020 | Nelson et al. | Jan 2011 | B2 |
D641830 | Alexander | Jul 2011 | S |
D641831 | Williams | Jul 2011 | S |
8020787 | Leber | Sep 2011 | B2 |
8020788 | Luettgen et al. | Sep 2011 | B2 |
8028935 | Leber | Oct 2011 | B2 |
D652108 | Eads | Jan 2012 | S |
D652110 | Nichols | Jan 2012 | S |
D652114 | Yoo | Jan 2012 | S |
D652894 | Nichols | Jan 2012 | S |
8109450 | Luettgen et al. | Feb 2012 | B2 |
D656582 | Flowers et al. | Mar 2012 | S |
8132745 | Leber et al. | Mar 2012 | B2 |
8146838 | Luettgen et al. | Apr 2012 | B2 |
8220726 | Qui et al. | Jul 2012 | B2 |
D667531 | Romero et al. | Sep 2012 | S |
D669158 | Flowers et al. | Oct 2012 | S |
8292200 | Macan et al. | Oct 2012 | B2 |
8297534 | Li et al. | Oct 2012 | B2 |
D672433 | Yoo et al. | Dec 2012 | S |
D673649 | Quinn et al. | Jan 2013 | S |
D674047 | Yoo et al. | Jan 2013 | S |
D674050 | Quinn et al. | Jan 2013 | S |
8348181 | Whitaker | Jan 2013 | B2 |
8366024 | Leber | Feb 2013 | B2 |
D678463 | Quinn et al. | Mar 2013 | S |
D678467 | Quinn et al. | Mar 2013 | S |
8640973 | Gansebom | Feb 2014 | B2 |
9295997 | Harwanko et al. | Mar 2016 | B2 |
9387493 | Lev | Jul 2016 | B2 |
9399860 | Lev | Jul 2016 | B2 |
10266777 | Quinn | Mar 2019 | B2 |
20010042797 | Shrigley | Nov 2001 | A1 |
20020109023 | Thomas et al. | Aug 2002 | A1 |
20030042332 | Lai | Mar 2003 | A1 |
20030062426 | Gregory et al. | Apr 2003 | A1 |
20030121993 | Haverstraw et al. | Jul 2003 | A1 |
20040074993 | Thomas et al. | Apr 2004 | A1 |
20040118949 | Marks | Jun 2004 | A1 |
20040217209 | Bui | Nov 2004 | A1 |
20040244105 | Tsai | Dec 2004 | A1 |
20050001072 | Bolus et al. | Jan 2005 | A1 |
20050284967 | Korb | Dec 2005 | A1 |
20060016913 | Lo | Jan 2006 | A1 |
20060102747 | Ho | May 2006 | A1 |
20060163391 | Schorn | Jul 2006 | A1 |
20060219822 | Miller et al. | Oct 2006 | A1 |
20060272086 | Mesa | Dec 2006 | A1 |
20070040054 | Farzan | Feb 2007 | A1 |
20070200013 | Hsiao | Aug 2007 | A1 |
20070246577 | Leber | Oct 2007 | A1 |
20070252021 | Cristina | Nov 2007 | A1 |
20070272770 | Leber et al. | Nov 2007 | A1 |
20080073449 | Haynes et al. | Mar 2008 | A1 |
20080083844 | Leber et al. | Apr 2008 | A1 |
20080121293 | Leber et al. | May 2008 | A1 |
20080121771 | Sen | May 2008 | A1 |
20080156897 | Leber | Jul 2008 | A1 |
20080223957 | Schorn | Sep 2008 | A1 |
20080272591 | Leber | Nov 2008 | A1 |
20090039181 | Auer, Jr. | Feb 2009 | A1 |
20090200404 | Cristina | Aug 2009 | A1 |
20090218420 | Mazzola | Sep 2009 | A1 |
20090307836 | Blattner et al. | Dec 2009 | A1 |
20100127096 | Leber | May 2010 | A1 |
20100258695 | Wu | Oct 2010 | A1 |
20110000983 | Chang | Jan 2011 | A1 |
20110011953 | Macan et al. | Jan 2011 | A1 |
20110073678 | Oiu et al. | Mar 2011 | A1 |
20110121098 | Luettgen et al. | May 2011 | A1 |
20110179566 | Yang | Jul 2011 | A1 |
20120048968 | Williams | Mar 2012 | A1 |
20120222207 | Slothower et al. | Sep 2012 | A1 |
20130126646 | Wu | May 2013 | A1 |
20130147186 | Leber | Jun 2013 | A1 |
20140252138 | Wischstadt et al. | Sep 2014 | A1 |
20150165452 | Luettgen et al. | Jun 2015 | A1 |
20150233101 | Andersen | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
659510 | Mar 1963 | CA |
2341041 | Aug 1999 | CA |
234284 | Mar 1963 | CH |
201260999 | Jun 2009 | CN |
200920182881 | Sep 2009 | CN |
101628263 | Jan 2010 | CN |
101773880 | Jul 2010 | CN |
201940296 | Aug 2011 | CN |
201230021930 | Feb 2012 | CN |
201530310992 | Aug 2015 | CN |
352813 | May 1922 | DE |
848627 | Sep 1952 | DE |
854100 | Oct 1952 | DE |
2360534 | Jun 1974 | DE |
2806093 | Aug 1979 | DE |
3107808 | Sep 1982 | DE |
3246327 | Jun 1984 | DE |
3440901 | Jul 1985 | DE |
3706320 | Mar 1988 | DE |
8804236 | Jun 1988 | DE |
4034695 | May 1991 | DE |
19608085 | Sep 1996 | DE |
10034818 | Jan 2002 | DE |
202005000881 | Mar 2005 | DE |
102006032017 | Jan 2008 | DE |
202008009530 | Sep 2008 | DE |
202013101201 | Mar 2013 | DE |
0167063 | Jun 1985 | EP |
0478999 | Apr 1992 | EP |
0514753 | Nov 1992 | EP |
0435030 | Jul 1993 | EP |
0617644 | Oct 1994 | EP |
0683354 | Nov 1995 | EP |
0687851 | Dec 1995 | EP |
0695907 | Feb 1996 | EP |
0700729 | Mar 1996 | EP |
0719588 | Jul 1996 | EP |
0721082 | Jul 1996 | EP |
0733747 | Sep 1996 | EP |
0808661 | Nov 1997 | EP |
0726811 | Jan 1998 | EP |
1921214 | May 2008 | EP |
2164642 | Oct 2010 | EP |
2260945 | Dec 2010 | EP |
538538 | Jun 1922 | FR |
873808 | Jul 1942 | FR |
1039750 | Oct 1953 | FR |
1098836 | Aug 1955 | FR |
2591099 | Jun 1987 | FR |
2596492 | Oct 1987 | FR |
2695452 | Mar 1994 | FR |
10086 | Apr 1894 | GB |
3314 | Dec 1914 | GB |
129812 | Jul 1919 | GB |
204600 | Oct 1923 | GB |
634483 | Mar 1950 | GB |
971866 | Oct 1964 | GB |
1111126 | Apr 1968 | GB |
2066074 | Jan 1980 | GB |
2066704 | Jul 1981 | GB |
2068778 | Aug 1981 | GB |
2121319 | Dec 1983 | GB |
2155984 | Oct 1985 | GB |
2156932 | Oct 1985 | GB |
2199771 | Jul 1988 | GB |
2298595 | Nov 1996 | GB |
2337471 | Nov 1999 | GB |
327400 | Jul 1935 | IT |
350359 | Jul 1937 | IT |
563459 | May 1957 | IT |
S63-181459 | Nov 1988 | JP |
H2-78660 | Jun 1990 | JP |
4062238 | Feb 1992 | JP |
4146708 | May 1992 | JP |
2004278194 | Oct 2004 | JP |
8902957 | Jun 1991 | NL |
WO9312894 | Jul 1993 | WO |
WO9325839 | Dec 1993 | WO |
WO9600617 | Jan 1996 | WO |
WO9830336 | Jul 1998 | WO |
WO9959726 | Nov 1999 | WO |
WO0010720 | Mar 2000 | WO |
WO08082699 | Jul 2008 | WO |
WO1004593 | Jan 2010 | WO |
Entry |
---|
Author Unknown, “Flipside: The Bold Look of Kohler,” 1 page, at least as early as Jun. 2011. |
Color Copy, Labeled 1A, Gemlo, available at least as early as Dec. 2, 1998. |
Color Copy, Labeled 1B, Gemlo, available at least as early as Dec. 2, 1998. |
International Search Report, PCT/US07/88962, 9 pages, dated Jun. 10, 2008. |
International Search Report, PCT/US07/67141, 8 pages, dated Jul. 2, 2008. |
EZ Wash Wand, accessed at least as early as Feb. 2016, http://www.ezwashwand.com. |
WashWands, accessed at least as early as Feb. 2016, http://www.washwand.com. |
Woof Washer, accessed at least as early as Feb. 2016, http://www.woofwasher.com. |
Number | Date | Country | |
---|---|---|---|
20190151867 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
61663385 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13924265 | Jun 2013 | US |
Child | 15162107 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15162107 | May 2016 | US |
Child | 16256781 | US |