The present invention relates to a showerhead and more particularly pertains to a showerhead with mode switching member.
Showerheads are one of the most commonly used devices in daily life, such as for showers. A traditional showerhead generally comprises a body and a cover plate. Water passageways run through the body. The body comprises a handle portion and a head portion. Water passageways run from a rear end of the handle portion to the head portion. The handle portion is mainly for users to grip. The cover plate is rotatably mounted on the head portion. When the cover plate rotates in relation to the head portion, the water discharge pathways and water discharge directions between the cover plate and the head portion are changed, thereby forming different water discharge sprays. During shower, water sprays of different force levels from the showerhead could perform specialized massages to different body parts. Depending on different discharge sprays, the massage modes of a showerhead may be classified as powerful, soft and moderate.
Existing showerheads could only maintain single water discharge mode during use but fail to automatically switch water discharge modes continuously or to combine different water discharge modes, thus incapable of offering the comfortable shower experience of having various sprays directing to the user's body alternatively. Users thus fail to enjoy the massage experience brought by different sprays. Besides, water discharge of traditional showerheads is continuous, thus users fail to adjust force levels of the water sprays by sensing the impact of the water sprays on the body.
In view of the aforesaid disadvantages now present in the prior art, the present invention provides a showerhead with mode switching member which achieves automatic switching of spray modes continuously or combining spray modes.
To attain this, the present invention generally comprises:
a water inlet;
a water passage member with a plurality of water passage orifices which are in water communication with the water inlet;
a primary water diverting member with a plurality of primary water diverting orifices;
a mode switching member rotatably disposed between the water passage member and the primary water diverting member to selectively block water from the water passage orifices of the water passage member from passing through at least one of the primary water diverting orifices of the primary water diverting member;
a secondary water diverting member with a plurality of secondary water diverting orifices, each of which is in water communication with a different one of the primary water diverting orifices of the primary water diverting member respectively; and
a cover plate divided into a plurality of water discharge areas, each of which is disposed with a plurality of nozzles and is in water communication with a different one of the secondary water diverting orifices of the secondary water diverting member.
The water passage orifices are each slanted to a same angle, so that water from the water inlet enters a mode switching member receiving space defined between the water passage member and the primary water diverting member as a slanted water jet to effect rotation of the mode switching member.
A water chamber headed by a primary water diverting orifice is defined by space occupied by water flowing from the primary water diverting orifices to the corresponding secondary water diverting orifice to the corresponding water discharge area, and all water chambers, each headed by one of the plurality of the primary water diverting orifices, have same volume.
In one embodiment, the mode switching member comprises a turbine and an eccentric wheel securely engaged and configured to rotate with the turbine relative to the water passage member and the primary water diverting member; a bottom side of the eccentric wheel abuts against and rotates relative to the primary water diverting member; the eccentric wheel is disposed with an arc-shaped slot which allows water flow from the water passage orifices to one or more of the primary water diverting orifices of the primary water diverting member. The turbine is disposed with a connecting portion, and the eccentric wheel is disposed with a connecting hole for receiving the connecting portion of the turbine; a pin is disposed inside the connecting portion for connecting the turbine and the eccentric wheel. The eccentric wheel is an eccentric gear wheel; the eccentric gear wheel is partially engaged with an internal gear so as to regulate rotation speed of the eccentric wheel. The eccentric gear wheel and the internal gear have same gear ratio.
In one embodiment, the mode switching member comprises an arc-shaped water stopping plastic member movable along an annular slot defined between the water passage member and the first water diverting member.
In one embodiment, there are three water passage orifices arranged annually and evenly distributed on the water passage member. The primary water diverting member is annually and evenly disposed with a first primary water diverting orifice, a second primary water diverting orifice and a third primary water diverting orifice; the secondary water diverting member is disposed with a first secondary water diverting orifice, a second secondary water diverting orifice and a third secondary water diverting orifice; the first primary water diverting orifice is in water communication with the first secondary water diverting orifice; the second primary water diverting orifice is in water communication with the second secondary water diverting orifice; the third primary water diverting orifice is in water communication with the third secondary water diverting orifice; the cover plate is disposed with a first water discharge area, a second water discharge area and a third water discharge area; the nozzles in the first water discharge area are all in water communication with the first secondary water diverting orifice of the secondary water diverting member; the nozzles in the second water discharge area are all in water communication with the second secondary water diverting orifice of the secondary water diverting member; the nozzles in the third water discharge area are all in water communication with the third secondary water diverting orifice of the secondary water diverting member. The arc-shaped slot of the eccentric wheel or the arc-shaped water stopping plastic member is sized sufficient to cover two of the three primary water diverting orifices.
In one embodiment, the water passage member is disposed with a sealing ring at its outer periphery.
In one embodiment, the secondary water diverting member is disposed with a sealing ring at its outer periphery.
The present invention essentially separates the space in the showerhead into a plurality of separate water chambers. As an example, the first water chamber corresponds to the water path from the first water passage orifice to the first primary water diverting orifice to the first secondary water diverting orifice to the first water discharge area. By means of the mode switching member, at least one of the water chambers is deactivated (i.e. by blocking water from passing through the water passage orifice to the primary water diverting orifice of the relevant water chamber). In the case when the mode switching member is driven by water flow from the water passage orifices to rotate rapidly and continuously, even though only at least one of the water chambers is deactivated at a particular moment, the deactivation is shortly shifted to another water chamber and thus user feels a rich spray as if there is no deactivation of any water chamber. As the deactivated water chamber substantially does not consume any water, the present invention can achieve water saving effects while maintaining the same rich spray experience for users. On the other hand, in the case when the mode switching member is driven by water flow from the water passage orifices to rotate continuously and less rapidly, users could enjoy comfortable shower experience brought by various alternating sprays and adjust force level of water sprays; massage experience brought by sprays impacting the body could be enhanced.
As illustrated in
The present embodiment operates as follows: water enters the showerhead via the water inlet 1 and then passes through the water passage orifices 21 as three slanted water jets. The three slanted water jets pushes the arc-shaped water stopping plastic member 41 to rotate continuously, so that the arc-shaped water stopping plastic member 41 blocks water from the water passage orifices 21 from passing through one of the primary water diverting orifices 31, 32, 33 at any given moment. The secondary water diverting orifice and the water discharge area which correspond to the blocked primary water diverting orifice 31, 32, 33 therefore do not receive any water input and thus there would be no water discharging from the nozzles of that water discharge area.
The above embodiments are preferred embodiments of the present invention. The present invention is capable of other embodiments and is not limited by the above embodiments. Any other variation, decoration, substitution, combination or simplification, whether in substance or in principle, not deviated from the spirit of the present invention, is replacement or substitution of equivalent effect and falls within the scope of protection of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2014 2 0285488 U | May 2014 | CN | national |
2014 2 0285644 U | May 2014 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
5316216 | Cammack | May 1994 | A |
5518181 | Shames | May 1996 | A |
8708257 | Gautschi | Apr 2014 | B2 |
8881993 | Lev | Nov 2014 | B2 |
20140110502 | Yu | Apr 2014 | A1 |
20140319247 | Zhou | Oct 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20150343463 A1 | Dec 2015 | US |