The present invention is related to shredder maintenance material delivery systems, including cleaning and/or lubricating systems for shredders, such as paper shredders.
It is well known that mechanical apparatus employing moving parts that contact each other often require external lubrication and cleaning. For many such apparatus, specialized fittings or lubrication and cleaning conduit designs can be employed to facilitate periodic lubrication. However, certain apparatus or components thereof are difficult to lubricate or clean through specialized fittings or conduits, and require user intervention in combination with dexterity to accomplish critical lubrication or cleaning actions. For example, paper shredders frequently employ cutting elements that require periodic lubrication lest the apparatus fail through extended use without sufficient lubrication. Additionally, since these shedders are used to shred the gummed adhesive of labels and closures attached or part of paper envelopes, CDs or credit cards, etc. Cleaning of the resulting build up of adhesives and other residue is required in order to achieve the optimum lubrication. Current lubrication and cleaning regimens for conventional paper shredders require a user to carefully apply liquid lubricant or cleaner from an applicator to selected portions of the apparatus. This task is both tedious and inefficient.
There is, therefore, a need for a convenient and effective means for providing suitable cleaning and lubrication of apparatus such as a paper shredder that does not require significant user actions, and yet achieve desired levels of apparatus cleaning and lubrication.
Additionally, many such machines or shedders employ an electric eye sensor to start the blades in motion so that the items can be pulled through the shedder as the item is shredded. It is also optimum to the cleaning and lubrication process that these blades be in motion during cleaning and lubrication to more uniformly spread the lubricant or cleaning solution and achieve more complete coverage and best results.
One embodiment of the present invention provides an apparatus for applying a cleaning solution and/or a lubricant to a mechanical apparatus, such as a paper shredder. A brief summary of some embodiments and aspects of the invention are presented. Thereafter, a detailed description of the illustrated embodiments is presented, which will permit one skilled in the relevant art to understand, make, and use aspects of the invention. One skilled in the relevant art can obtain a full appreciation of aspects of the invention from the subsequent detailed description, read together with the figures, and from the claims, which follow the detailed description.
Shredder maintenance material delivery systems and related methods are described in detail herein in accordance with various embodiments of the present invention. In the following description, numerous specific details are discussed to provide a thorough and enabling description for embodiments of the invention. One skilled in the relevant art, however, will recognize that the invention can be practiced without one or more of the specific details. In other instances, well-known structures or operations are not shown or are not described in detail to avoid obscuring aspects of the invention.
The terminology used in the description presented below is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific embodiments of the invention. Certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section. Furthermore, unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense, i.e., in a sense of “including, but not limited to.” Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Use of the word “or” in reference to a list of items is intended to cover a) any of the items in the list, b) all of the items in the list, and c) any combination of the items in the list.
In one embodiment of the invention, a cleaning/lubricating system is provided that applies a lubricating material and/or a cleaning solution to a paper shredder. The cleaning/lubricating system can include a substantially flexible, generally planar envelope that contains a cleaning solution or lubricant. The planar envelope is passed through the shredder, and as the envelope is being shredded, the cleaning solution and/or lubricant is automatically delivered to the shredding mechanism in the shredder.
Under one aspect of the present invention, an embodiment includes a disposable, generally flexible and planar assembly 10 having at least one envelope 12, with an interior compartment 14, containing a cleaning solution and/or lubricant 16 (or other material to be delivered to the shredder or other mechanism). In one embodiment shown in
In another embodiment shown in
In another embodiment shown in
If the cleaning solution or lubricant is in liquid form, then the material forming the envelope 12 (e.g. the exterior sheets 18) is substantially fluid impervious. In one embodiment, the lubricant can be a biodegradable soy-based or other ‘vegetable based lubricant or can be a petroleum, graphite, Teflon or silicone based lubricant. The cleaning solution can be a citrus based, petroleum or other synthetic degreasing or de-gumming cleaner, wax remover and/or adhesive remover. In other embodiments, the lubricant can be dry carbon, graphite, Teflon, paraffin, carnauba wax or other slip coefficient increasing products or materials, in sheeted form, particulate, or pieces. The cleaning solution can be dry super fine abrasive or abrasive carried in a paste, liquid or semi liquid form, sheeted cleaning solvent or solvent and or cleaning material impregnated cloth, cellulose or other carrier. Same can be degreaser, or bleach or ammonia based product with or without scent added. In some embodiments, the lubricant is isolated (e.g. not mixed) with the cleaning solution when contained in the envelope 12. In other embodiments, the lubricant is combined with (e.g. mixed) with the cleaning solution. In other embodiments, the envelope 12 can contain only the lubricant or only the cleaning solution. In other embodiments, the envelope 12 contains a solution that is both a cleaner and lubricant (e.g., a single solution that is a de-greaser, cleaner, and lubricant).
In other embodiments, the cleaning solution and/or lubricant 16 can include a fragrance that will be released when the envelope 12 containing the cleaning solution and/or lubricant is being shredded. The fragrance can be, as an example, oil-based compositions that provide the lubricating oil with a pleasant fragrance, such as sandalwood, lavender, lemongrass, peppermint, orange, peach, apricot, eucalyptus, spearmint, or other material that provides a desirable scent.
When the envelope 12 is placed into a paper shredder, the shredding mechanism will not start to shred unless an electric eye (or other mechanism) is activated, such as by interrupting an optical beam or the like. In the embodiment having a liquid in the envelope 12 with or without a carrier sheet, the envelope has several ways of triggering the electric eye on a shredder. The envelope 12 can be substantially opaque, partially opaque, and/or reflective in order to activate the electric eye on most machines. This can be achieved through coating or coloring the envelope 12 material, metalizing, strategic printing one or both surfaces and/or pattern(s) on the surface(s) to match the locations needed to interrupt an optical signal or activate the electric eye. For example, the exterior sheets can have an opaque strip 45 printed thereon and positioned to activate the electric eye.
If the cleaning solution or lubricant 16 is in solid form (such as a dry cleaner or lubricant or one that is carried in an encapsulated form), then the envelope 12 need only be capable of retaining such solid cleaning solution and/or lubricant prior to dispersal in the apparatus. In the embodiments with the lubricant or cleaning solution 16 and without a carrier sheet 30 in the compartment, the system will have a more effective delivery system for commonly owned shredders, as there can be more cleaner or lubricant available to accomplish the task.
Another embodiment comprises a disposable, generally flexible and planar carrier sheet 30 impregnated with or carrying a liquid or solid cleaner or lubricant. The planar carrier sheet 30 can be fully contained in the envelope 12. For example, the carrier sheet, such as a paper material similar to a paper towel, can be impregnated with a liquid oil that would be very messy to handle by itself. Accordingly, this liquid impregnated carrier sheet 30 could be sealed in an envelope 12. Alternatively, the carrier sheet 30 could be impregnated with a dry material. Accordingly, this dry carrier sheet could be used without the envelope 12. The dry carrier could, however, be enclosed in the envelope 12 for other reasons.
When the envelope 12 or the carrier sheet 30 are fed into an activated shredder, the shredding mechanism cuts or otherwise breaks apart the envelope 12 (or carrier) and releases the cleaning solution and/or lubricant. The cleaning solution and/or lubricant is transferred to the mechanical components of the apparatus, thus achieving the objective of component cleaning and/or lubrication. With respect to embodiments using an envelope 12, the shredder must be capable of breaching the envelope 12 to expose the cleaner or lubricant.
In the illustrated embodiments, at least one cleaner or lubricant-filled envelope 12 is created to carry a defined quantity of cleaner or lubricant to the target apparatus components. If the cleaner or lubricant is in a fluid phase, the envelope 12 may be constructed from any suitable paper or film such as liquid lubricant impervious foil, plastic, rubber, cellulose, PLA, synthetic dextrose, fabric (synthetic or natural), Mylar® or laminates of the above (i.e. our PLA coated paper sheets made into pouches to deliver cleaner or lubricant) to achieve a fluid impervious envelope 12.
It is desirable for the effective distribution on and coverage of the gears and shredding mechanisms to have the material forming the envelope 12 be of a somewhat brittle nature, and thereby shred or “break”, rather that simply tear or puncture in the process. This characteristic (which is demonstrated by the embodiment using PLA as the envelope material) dramatically increases the dispersal of the cleaner or lubricant to the shredding mechanisms. The use of a brittle material causes more liquid to be freed from envelope 12 because the carrier is disintegrating more fully and not merely being punctured. The selection of suitable envelope 12 material depends in part upon the apparatus and the final disposition of the envelope 12 (e.g., for paper shredder applications, paper-recycling guidelines may prevent the inclusion of the envelope 12 as a byproduct unless the same and the lubricant are biodegradable). In one embodiment the PLA materials and PLA coated paper are recyclable, biodegradable and compostable. These same materials or others may be used to create a suitable envelope 12 for carrying a solid phase lubricant. Moreover, the envelope 12 may carry special indicia printed on the exposed surface(s) thereof to differentiate the envelope 12 from other items that may be subject to processing by the apparatus. The envelope 12 may also carry special branding or advertising indicia, or other select markings.
A suitable envelope 12 may be constructed from sheets of the aforementioned materials that are combined through heat sealing, adhesives, mechanical fasteners or interlocks (such as slide fasteners, e.g., Ziploc®). While at least one envelope 12 containing a cleaning solution or lubricant can be used for operation of some embodiments regardless of the cleaner or lubricant phase, a plurality of envelopes 12 may be created within a single application material to assist in lubricant dispersal or manufacturing steps. The plurality of envelopes 12 may be established concurrently with or after creation of a single envelope 12, or may be independently created to form a plurality of lubricant filled compartments. Moreover, the plurality of envelopes or compartments, which may be within the primary envelope boundaries, may or may not be in fluid communication with each other, depending upon dispersal and manufacturing objectives. The plurality of envelopes 12 or compartments 14 may have a regular orientation or may be generally randomly oriented. Moreover, the envelopes 12 or compartments 14 may be of any geometric shape; the envelopes or compartments may be homogeneous or heterogeneous with respect to each other.
In another embodiment, the carrier sheet 30 impregnated with or containing a cleaner or lubricant. The cleaner or lubricant may be in liquid or solid phase, which will also affect the selection of a suitable carrier for the cleaner or lubricant. Particularly if the cleaner or lubricant is in liquid form, it is desirable to surround the carrier with cleaner or lubricant impervious material. In one embodiment, the carrier sheet impregnated or containing the cleaning solution and/or lubricant is contained in a sealed envelope 12. The envelope 12 with the carrier sheet 30 can be placed into the shredder. Accordingly, envelope 12 may be used to isolate the carrier sheet 30 from exposure to the environment prior to engagement with the shredder and its components.
In the embodiment with the carrier sheet in the envelope's compartment, the carrier is necessarily smaller than the inside dimensions of the envelope 12. The resultant difference when added to the dimension from the extreme outside of the envelope 12 to the seal, plus the thickness of the seal, can easily add up to a width that keeps the interior carrier from contact with the electric eye. Dispensing with the carrier in embodiments provides more consistent results, and it has less material costs to produce.
In use, an envelope 12 in accordance with the embodiments discussed above is introduced into the shredder. As the shredding mechanisms are activated, the mechanisms breach the envelope(s), thus exposing the components to the lubricant, or directly interacts with the carrier sheet 30 after its exposure to the carrier sheet. The envelope 12 (and carrier sheet if in the envelope) is fully shredded and the cleaning solution and/or lubricant is automatically delivered to the shredding mechanism, and then automatically shredded and disposed of with the other shredded material.
In other embodiments (
In another embodiment, a time delay or “gap” 40 can be created by providing a break in a portion of the envelope 12 that activates the electric eye of the shredder. As an example, the envelope 12 can have an opaque strip 45 positioned to activate the electric eye, and the opaque strip 45 can have a break so that the shredder will temporarily turn off when the break in the strip gets to the electric eye. As the shredder shuts off, a pause occurs before the shredder reaches the next compartment in the envelope 12. In one embodiment, the break may be sized so that the shredder will remain off until a user re-feeds the rest of the envelope 12 through the shredder. Other breaks can be used from other timing purposes to control the shredder. In another embodiment shown in
The compartment(s) in the envelope 12 are sealed so the material (e.g. fluid or solid) is fully contained until the compartment 14 is breached. In one embodiment shown in
Other embodiments of the invention are directed generally toward a shredder maintenance material delivery system for applying maintenance material (e.g., cleaning and/or lubricant materials) to a mechanical apparatus, such as a paper shredder, by passing a containment vessel and/or a leader through a portion of the shredder. In selected embodiments, the containment vessel and/or the leader can be substantially flexible. For example, the containment vessel and/or the leader can be made of any number of flexible materials. In certain embodiments the leader can be connected, attached, or coupled to the vessel. In other embodiments, the vessel and leader can be substantially a single unit. In various embodiments, the containment vessel and/or the leader can contain or is made of maintenance material. For example, in selected embodiments, the containment vessel can be configured to contain or carry maintenance material, such as a cleaning solution or powdered lubricant configured to be applied to the shredder. In other embodiments, the leader and/or vessel can be made of the maintenance material and does not carry other materials.
In selected embodiments, the leader is inserted into the shredder so as to activate the blades, for example, via an electronic eye. The blades engage the leader and pull the leader into the shedder. In doing so, a downward pulling force is created on the leader and the vessel is pulled toward the blades. This pulling force and/or the blades can cause the vessel to rupture, thereby delivering maintenance material to the shredder blades from above. For example, “bathing” the blades and/or other shredder components in the maintenance material.
In certain embodiments, the shredder maintenance material delivery system can comprises a disposable, generally flexible material defining a containment vessel having at least one interior area containing maintenance material, for example, in liquid or solid form (e.g., a powder, an encapsulant, a paste, and/or a hydrogenised material). In other embodiments, the containment vessels can include multiple compartments configured to deliver various different types of maintenance materials, separately or together. For example, in selected embodiments one or more compartments can carry or be comprised of a cleaning material and other compartment(s) can carry or be comprised of a lubricant. In one embodiment, the compartments can be arranged so that as the delivery system is pulled into the shredder the cleaning material is delivered prior to the lubricant. In another embodiment, the compartments can be arranged so that the cleaning material and lubricant are delivered simultaneously or in an overlapping manner.
In embodiments where the maintenance material is carried by the containment vessel in liquid form, the containment vessel can be substantially fluid impervious or impervious to the type of maintenance material being carried. Additionally, in selected embodiments the containment vessel can be opaque, semi-opaque, and/or reflective in order to activate the electric eye that is used on many shredder machines. This can be achieved through coating or coloring at least portions of the material that makes up the vessel and leader. For example, in certain embodiments one or more portions of the vessel and/or leader can be metalized or include a printed pattern to match the locations needed to activate an electric eye. In other embodiments where the cleaning solution or lubricant is opaque or semi-opaque, then portions of the vessel and/or leader may only need to be capable of retaining such lubricant prior to dispersal in the apparatus.
In selected embodiments, at least one cleaner or lubricant filled containment vessel is created to carry a defined quantity of maintenance material to targeted shredder apparatus components. In certain embodiments, if the cleaner or lubricant is in a fluid phase, form, or state, the containment vessel may be constructed from any suitable paper or film such as liquid lubricant impervious foil, plastic, rubber, cellulose, PLA, synthetic dextrose, fabric (e.g., synthetic or natural), Mylar® or laminates of the above (e.g., PLA coated paper sheets made into pouches, envelopes, tubes or oblique containments to deliver maintenance, cleaner or lubricant) to achieve a fluid impervious containment vessel. In certain embodiments, it can be desirable to have the containment vessel material be of a somewhat brittle nature and thereby shred or “break” or easily. In other embodiments, the containment vessel can include tear through perforations, strategically placed scores, dividers, breaking points or lines, and/or other arrangements that tear or puncture in the process of shredding. In some cases, this characteristic can dramatically increase the dispersal of the maintenance, cleaner or lubricant material to the targeted shredder components.
In certain embodiments, the selection of suitable containment vessel material depends in part upon the targeted shredder components and the final disposition of the containment vessel. For example, with paper shredders, paper-recycling guidelines may prevent the inclusion of the containment vessel as a byproduct unless the containment vessel and the maintenance materials are biodegradable. Accordingly, in selected embodiments the containment vessel and maintenance materials are made from biodegradable materials or materials that meet other environmental requirements. For example, in selected embodiments the vessel can be made from a water soluble material that is configured to hold an environmentally friendly compound (e.g., certain types of oils) without breaking down. In further embodiments, the containment vessel may carry special indicia printed on the exposed surface(s) thereof to differentiate the containment vessel from other items that may be subject to processing by the shredder. For example, in a selected embodiment, the leader is biodegradable and configured to rupture the vessel as the leader is shredded. After the vessel is ruptured, maintenance material is dispensed above the blades of the shredder, providing the desired maintenance effect (e.g., cleaning and/or lubricating). During this process, the leader detaches and the vessel does not go through the shredder. Instead, the vessel can be lifted away from the shredder and disposed of separately.
In selected embodiments, a suitable containment vessel may be constructed by joining sheets of material via heat sealing, adhesives, mechanical fasteners, interlocks (such as slide fasteners, e.g., Ziploc®), or the like. In selected embodiments, the delivery system can include a plurality of containment vessels. For example, in certain embodiments the plurality of containment vessels may be established concurrently with or after creation of a single containment vessel, or may be independently created to form a plurality of lubricant filled compartments. Additionally, in selected embodiments, the plurality of containment vessels or compartments, which may be within the primary containment vessel boundaries if one exists, may or may not be in fluid communication with each other, depending upon dispersal and manufacturing objectives. In other embodiments, the plurality of containment vessels can be in fluid communication with one another. In still other embodiments, the plurality of containment vessels may have a regular orientation or may be generally randomly oriented. Moreover, in yet other embodiments the containment vessels may be of any geometric shape and/or the containment vessels may be homogeneous or heterogeneous with respect to each other.
In certain embodiments, the leader and/or vessel can be made of a material that contains or is impregnated with the maintenance material. In some embodiments where the leader and/or vessel is impregnated by a liquid maintenance material, it can be desirable to cover at least a portion of the leader and/or vessel with material that is impervious to the maintenance material prior to use (e.g., during transit and/or storage). In certain embodiments, this covering can be removed prior to use of the delivery system. In other embodiments, the delivery system can be fed to a shredder with the covering in place.
In various embodiments, the delivery system is introduced into a shredder apparatus whereupon mechanical interaction of the apparatus components breaches the containment vessel(s), thus exposing the components to the maintenance material, as an after delivery process incidental to the original delivery of material to the shredder blades. In other embodiments the maintenance material is delivered to the components as the leader and/or vessel contact the components (e.g., when the leader and/or vessel are, at least in part, made from the maintenance material). As discussed above, in selected embodiments the delivery system can first deliver one type of maintenance material and then deliver a second maintenance material. For example, in one embodiment the leader can be made from a cleaning material and the vessel can carry a lubricant that is dispersed when the vessel is breached. In other embodiments, multiple vessels and/or a vessel with multiple compartments or envelopes can be used to deliver different types of maintenance materials.
In still other embodiments, the dispensing of maintenance material can be timed, sequenced, and/or coordinated using various methods. For example, in certain embodiments the timely application of a cleaning fluid, followed by a lubricant can be accomplished via a gap between compartments in the containment vessel between compartments carrying the cleaning fluid and the lubricant or a portion of leader positioned between separate containment vessels. In other embodiments, a printed, embedded or affixed electric sensor strip or other device or method (e.g., RFID chip, magnetic stripe, barcode, etc.) can be used to coordinate the operation of the shredder and the release of various maintenance materials from the delivery system.
In selected embodiments, different types of maintenance materials can be spaced apart from one another in the containment vessel by one or more sheets or pieces of material (e.g., paper, cellulose, spun plastic, cloth or PLA ingeo® fabric). For example, in certain embodiments where a first maintenance material includes a cleaner and a second maintenance material includes a lubricant, a cloth can be used to space the solutions from one another. The cloth can also serve to provide a wiping of loosened adhesive particulate from the shredder as well as a drying function after the application of the cleaner and before the application of the lubricant. In certain instances, this arrangement can be desirable because the lubricant will attain more uniform coverage with a reduced presence of the solvent or surfactant residue of the cleaner. In other embodiments, the cloth (or other material) can be carried in the same compartment as the cleaner to achieve a “wet scrub” action through the first cleaning cycle. In this embodiment, a space or gap can then be used between the compartments carrying the cleaner and the lubricant to allow the shredder components to at least partially air dry before application of the lubricant. In still other embodiments, the cloth or other material can be carried in a dedicated compartment.
In another embodiment, the space between the fluids in the containment vessel is occupied by a sheet of material (e.g., paper, cellulose, spun plastic, cloth or PLA Ingeo fabric), which can either be in a separate (dry if required) compartment of the pouch/vessel (to provide a wiping of loosened adhesive particulate as well as a drying function before the following application of lubricant. This can be desirable as the lubricant can obtain a more uniform coverage with a reduced presence of the solvent or surfactant residue of the cleaning fluid) or in the same compartment as the cleaning fluid to achieve a “wet scrub” action through the first cleaning fluid cycle. The same space or gap can then be inserted as desired to allow for a pause in shredding for air drying before lubrication.
In another embodiment, the leader can be a “cleaner” or scrubber material prior to the containment vessel. The leader can be made of an abrasive or other material that wipes or scrubs the blades prior to the delivery of a maintenance material (e.g., a cleaning or lubricating fluid, paste, or solid).
In selected embodiments, the delivery system can be placed in an envelope. In certain embodiments, the envelope can be opaque or semi-opaque facilitating the operation of an electric eye, used in many shredders, to initiate shredder operation. Additionally, in certain embodiments the pouch may have bands of cohesive material that meet when folded together and provide a seal creating a pouch (e.g., enclosing the delivery system in the envelope). In selected embodiments, the envelope can be open at the top allowing the lubricant to “squeegee” up and out of the envelope and further enhance the “bath” of the blades as the delivery system passes into the shredder. In still other embodiments, the delivery can be low profile if no pouch is used to avoid contact with the electric eye and paper can be fed after the application to clean the deliver slot and/or to activate the electric eye.
In still other embodiments, the maintenance material can be a paste or cream dispensed from either a squeeze or compression tube (toothpaste types) or a pressurized can. The lubricating material can be hydrogenised or treated in a manner to have a paste or cream-like consistency. In selected embodiments, this can allow the material to stay on the blades longer, as it is less likely to run off the blades via gravity since it is less viscous than liquid oil, etc. resulting in better lubrication.
In
The vessel 260 is attached to a leader 270 that is configured to be fed into a shredder feeder trough 299 and blades 298 of a shredder 297. As shown in
In
In other embodiments, the delivery system 200 can have other configurations. For example, in selected embodiments the delivery system does not include a scored or perforated region 264. Instead, a portion of the containment vessel is configured to extend downwardly into the shredder so that the portion of the containment vessel is ruptured by a portion of the shredder (e.g., the blades), thereby releasing the maintenance material. In still other embodiments, the delivery system can include multiple containment vessels carrying one or more types of maintenance material. In yet other embodiments, the containment vessel does not include a maintenance material. Instead, the leader and/or the containment vessel is made from one or more maintenance materials. In still other embodiments, the system only includes a leader or a containment vessel.
In
As the maintenance material 580 exits the containment vessel 560, the float 568 move (e.g., via gravity) toward the shredder 597 and the electric eye beam path 595. As shown in
In other embodiments, the delivery system 500 can have other arrangements. For example, in selected embodiments the system 500 can include more, fewer, and/or different dwell portions. For example, as discussed above, in other embodiments the dwell portion can include an electronic device such as a chip that causes the shredder to stop or pause for a period of time. In still other embodiments, the system 500 does not include a float and the containment vessel is lifted off the shredder after the vessel is ruptured or breached and the maintenance material has been dispensed.
In
In other embodiments, the shredder maintenance delivery system can have other arrangements. For example,
The first containment vessel 760a carries a float and is similar to the containment vessel discussed above with reference
Accordingly, in the illustrated embodiment, as the system 700 is fed into a shredder, the first dwell portion causes the shredder to pause while maintenance material is dispensed from the first containment vessel 760a. The first containment vessel 760a is then shredded. The second dwell portion causes the shredder to pause while maintenance material is dispensed from the second containment vessel 760b. The second containment vessel 760b is then shredded. Finally, the third containment vessel 760c is ruptured, releasing maintenance material. The third containment vessel 760c is then shredded.
In other embodiments, instead of multiple containment vessels the maintenance material delivery system can include a single containment vessel with multiple compartments. For example,
In
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the invention. For example, aspects of the invention described in the context of particular embodiments may be combined or eliminated in other embodiments. Although advantages associated with certain embodiments of the invention have been described in the context of those embodiments, other embodiments may also exhibit such advantages. Additionally, not all embodiments need necessarily exhibit such advantages to fall within the scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
This application is a continuation in part of PCT Application No. PCT/US2005/029558, entitled LUBRICATING SYSTEM FOR SHREDDERS, filed Aug. 19, 2005, which designated, inter alia, the U.S., which was published in English, and which is hereby incorporated herein by reference in its entirety. Additionally, this application claims priority to and the benefit of U.S. Provisional Patent Application No. 60/713,965 entitled SHREDDER MAINTENANCE MATERIAL DELIVERY SYSTEM, filed Sep. 2, 2005, and U.S. Provisional Patent Application No. 60/715,317 entitled SHREDDER MAINTENANCE MATERIAL DELIVERY SYSTEM, filed Sep. 8, 2005, each of which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60713965 | Sep 2005 | US | |
60715317 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US05/29558 | Aug 2005 | US |
Child | 11516684 | Sep 2006 | US |