THE PRESENT INVENTION relates to a shredding machine and more particularly to a shredding machine for shredding sheet material. Most preferably, the present invention relates to a shredding machine in the form of a paper-shredder suitable for home or office use.
Over recent years it has been customary to provide shredding machines in domestic homes or work places such as offices, in order to provide a convenient method of securely disposing of confidential documentation or other sensitive papers.
Conventional paper shredders of the type mentioned above are provided with a paper feed-aperture, particularly in the form of a feed-slot of elongate form, through which a plurality of paper sheets or the like can be fed towards a pair or rotating cutters located below the feed-slot which serve to shred the paper sheets into a plurality of strips having a width of only a few millimeters, the resulting strips of paper being collected in a basket or bin located below the cutters. For reasons of space and economy, the cutting mechanisms used in conventional paper shredders of this type are only effective in shredding stacks of paper or card up to a relatively small predetermined thickness. If a stack of papers or cards exceeding this predetermined thickness is inserted into the feed-slot, for example by being force-fed into the slot by an over-enthusiastic user, it is possible to present the shredding mechanism with such a bulk of material so as to overload the mechanism and stall the driving motor or otherwise jam the mechanism. Not only can paper-jams of this type represent an annoyance to a person using the paper shredder, but they can serve to damage the cutting mechanism, for example by distorting the shafts of the cutters or damaging the cutting blades.
It is desirable to provide a simple and convenient mechanism to prevent overloading of a paper-shredder by inserting sheet material of too great a thickness in the manner described above.
It is therefore an object of the present invention to provide an improved shredding machine for shredding sheets of material.
Accordingly, the present invention provides a shredding machine for shredding sheet material, the machine comprising a feed-aperture and an electric cutting mechanism, the feed-aperture being configured to receive multiple sheets and direct said sheets towards the cutting mechanism for shredding, the machine being characterised by the provision an actuating element which is moveable between a first position in which the actuating element permits energisation of the cutting mechanism and a second position in which the actuating element prevents energisation of the cutting mechanism, wherein part of the actuating element extends into the feed-aperture, the actuating element being configured such that said part will be engaged by sheet material inserted into the feed-aperture, and moved from said first position to said second position as a result of said engagement, if the sheet material exceeds a predetermined thickness.
Preferably, said actuating element is biased towards said first position.
Conveniently, said bias is provided by a spring.
Advantageously, said actuating element is arranged to actuate a switch when in said second position, the switch being configured to cause a break in the circuit providing power to the cutting mechanism.
Conveniently, said switch comprises a non-contacting sensing means.
Preferably, said switch is a photo-switch.
Conveniently, said switch is a micro-switch.
Advantageously, said actuating element is provided in the form of an elongate arm mounted for pivotal movement between said first and second positions.
Preferably, the extent of the arm extending from the pivot axis of the arm into the feed-aperture is less than the extent of the arm extending from the pivot axis to the switch.
In a preferred embodiment, the actuating element is in the form of a pair of pivotally mounted arm members, the arm members being operably connected to one another by an intermediate gear arrangement for movement of the actuating element between said first and second position.
Conveniently, the shredding machine comprises at least one pair of rollers positioned in between the feed aperture and the cutting mechanism such that sheets being directed towards the cutting mechanism pass between the rollers, upstream of the cutting mechanism.
Conveniently, a pair of said rollers is located adjacent the feed aperture.
In an alternative preferred embodiment, the machine is further provided with a sheet material engaging member positioned downstream of the actuating element, the engaging member being operable to engage and press against the sheet material for preventing the sheet material from subsequently exceeding the predetermined intermediate threshold thickness, downstream of the actuating element.
Preferably, the engaging member is in the form of a motor driven trigger plate for pressing against the sheet material, the trigger plate being operably connected to the respective motor by means of a cam member for advancing the trigger plate towards the sheet material along a direction generally perpendicular to the plane of the sheet material.
Conveniently, the pivot axis is located substantially adjacent the feed-aperture.
Preferably, said switch is located remote from said pivot axis.
Advantageously, said predetermined thickness is less than or equal to the maximum thickness of sheet material which can be shredded by the cutting mechanism without the mechanism becoming jammed.
Conveniently, the shredding machine is further provided with indicating means to provide a visual indication to a user of the machine that energisation of the cutting mechanism is prevented, when the actuating element is in said second position.
Preferably, the shredding machine is provided in the form of a paper-shredder suitable for home or office use.
So that the invention may be more readily understood, and so that further features thereof may be appreciated, an embodiment of the present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
Referring initially to
The shredding machine comprises a relatively large plastic container or bin 1, on top of-which sits a housing 2 inside which the operative parts of the paper shredder are located, as will be described in more detail hereinafter. The housing 2 is provided with a feed aperture 3 which takes the form of an elongate slot having a length sufficient to accommodate sheets of appropriate size to be shredded by the machine. During operation, sheet material to be shredded such as sheets of paper or card or the like, is inserted into the paper feed slot 3 whereupon the sheets are drawn into the shredding mechanism in a manner known per se and shredded into a plurality of strips which then exit the shredding mechanism from the bottom of the housing 2 so as to fall from the housing and be collected in the bin 1 located therebelow.
The features of the shredding machine described above with reference to
The feed slot 3 is defined, in the absence of the top part of the housing 2, by a pair of substantially parallel upstanding feed walls 5, 6. As can be seen from
As will be appreciated from a comparison of
Upon energisation of the electric motor 9, the two cutters 10, 11 are caused to rotate, such that the forwardmost cutter 10 rotates in a clockwise sense as viewed in
As also illustrated in
As illustrated most clearly in
The actuating arm 15 is provided with a pair of co-aligned outwardly-directed spigots 23 (visible most clearly in
By virtue of the rotatable manner in which each spigot 23 sits on its respective bearing 24, it should therefore be appreciated that the actuating arm 15 as a whole is thus pivotally mounted relative to the feed slot 3.
A biasing spring 28 is provided which comprises a pair of spaced-apart helically wound regions, connected by a bridge region 29. Each helically wound region receives a respective spigot 23 therein, and the connecting bridge region 29 bears against the upper surface of the rear finger 16. At the outermost end of each helically wound region of the spring, a respective free end 30 of the spring extends upwardly and forwardly towards the rear feed wall 6. Although not illustrated for the sake of clarity, each free end 30 of the spring serves to bear against a fixed part of the shredding machine's structure. The spring 28 thus serves to bias the actuating arm 15 in a counter-clockwise sense as viewed in
As illustrated most clearly in
As can be seen most clearly from
Returning again to
The actuating arm 15 is arranged relative to the feed slot 3 such that the spacing between the forwardmost bearing surface 20 of the actuating arm and the rearwardly-directed surfaces of the ribs 35 is slightly less than the maximum thickness of paper which the shredding mechanism located below the slot can comfortably shred without risking damage to the mechanism or causing the mechanism to jam.
Although not essential to the operation of the present invention, it will be seen from the accompanying drawings that the shredding machine is also provided with a pair of photo-sensors, indicated generally at 38 and 39 in
If a stack of paper sheets or the like is inserted into the feed slot so as to pass between the wedge projections 34 and the ribs 35, and that stack of papers has a thickness less than the predetermined spacing between the ribs 35 and the bearing surface 20 of the actuating arm, then the sheets can be passed freely through the slot for engagement by the cutting mechanism therebelow, the cutting mechanism being switched on and off in response to signals from the lower level photo-sensor 38. However, should a stack of papers be inserted into the feed slot which has a thickness greater than the predetermined thickness defined by the spacing between the ribs 35 and the front bearing surface 20 of the actuating arm 15, then the rearmost sheet in the stack will bear against the bearing surface 20 of the actuating arm, thereby urging the actuating arm to move against the bias imposed by the spring 28, thereby pivotally moving the actuating arm 15 from its first position in which the rearmost end of the finger 16 is clear from the photo-switch 31, to its second position in which the finger 16 passes between the light source 32 and the sensor 33 of the photo-switch 31. When this happens, the beam of light passing between the light source 32 and the sensor 33 is cut and this is effective to actuate the switch 31, which is arranged to break the electrical circuit providing power to the motor 9, thereby preventing energisation of the motor 9. This prevents operation of the cutting mechanism located below the feed slot, even when the leading edge of the stack passes the lower level photo-sensor 38 which would, if the actuating arm 15 remained in its first position, trigger operation of the cutting mechanism.
The movement of the actuating arm 15 thus serves as a safety feature by preventing energisation of the cutting mechanism in the event that a user of the shredding machine attempts to insert a stack of papers of a thickness too great for the cutting mechanism to cope with. Providing papers are inserted into the feed slot in stacks having a thickness sufficiently narrow to prevent movement of the actuating arm 15 from its first position to its second position, then the shredding machine will operate normally.
It has been found through experimentation that the provision of an actuating arm 15 in the elongate form described above, whereby it is arranged for pivotal movement about an axis arranged relatively close to and generally adjacent the feed slot 3, and has a rearwardly-directing finger 16 extending a relatively large distance away from the feed slot, provides a significant degree of sensitivity to the arrangement because it allows for only a very small degree of movement of the downwardly-depending projection 19 to be amplified into a larger degree of movement at the rearmost end of the finger 16 which serves to actuate the photo-switch 31. This means that by careful arrangement of the length of the arm and the spring constant of the biasing spring 28, sufficient sensitivity can be imparted to the arrangement to detect the insertion of a stack of papers which might perhaps have only one or two sheets in excess of the maximum number which can be safely shredded by the shredding mechanism.
Referring now to
Setting aside merely aesthetic differences, the mechanism 100 shown in
The cutters 110, 111 extend between a pair of opposing mounting brackets 140, 141 and are driven by a motor 109 (as best seen in
In similar manner to the embodiment illustrated in
Referring principally to
However, in contrast to the arm 15 of the previous embodiment, the rear finger portion 143a of the arm member 143 is relatively short and terminates in an arcuate gear portion 143e centred on the pivot-axis of the arm member 143.
The arm member 144 is also pivotally mounted within the support housing 125, by means of outwardly directed spigots 144a (only one of which is visible in
It will be appreciated, referring to
The arm member 143 is biased clockwise under the action of a spring (not shown), and the arm member 144 is thus effectively biased anti-clockwise under the action of the spring (via arm member 143). The actuating element is therefore collectively biased towards a first position, in which the arm member 143 projects into the space between the feed walls 105, 106.
As best illustrated in
In addition, a second switch 146 is provided at a position above the switch 131. The switch 146 is in the form of a photo switch, similar to the switch 131, comprising a light source 147 and a photo sensor 148 mounted in spaced apart relation from one another to allow the rear end of the arm 143 to pass therebetween, thereby blocking the passage of light between the light source 147 and sensor 148, in the event that the arm member 143 is sufficiently rotated against the biasing action of the spring. The position adopted by both the arm member 143 and arm member 144 when the rear end of the arm member 144 passes between the light source 147 and sensor 148 collectively represents an intermediate position of the actuating element, between the first and second positions. The switch 146 is in the form of a “timer-switch”, the operation of which will be described in more detail below.
Referring again now to
As will best be appreciated from
Still referring primarily to
The trigger plate 151 is biased towards the retracted position by a suitable spring (not shown), and is moved to the advanced position, against the bias of the spring by means of a motor 154, which is operably connected to the trigger plate via a cam member 155 (
Energisation of the motor 154 (insofar as it is allowed by the actuating element) may be triggered in the same manner as energisation of the primary motor 109, for example using a pair of photo sensors such as the photo sensors 38 and 39 described in connection with the previous embodiment. Again, this specific form of trigger mechanism is not essential to the operation of the present invention, provided there is some means for energising the motor 154 in response to a stack of sheet material (of suitable thickness) being fed into the shredding machine.
It is to be appreciated that the mechanism 100 may be mounted within a shredding machine, such as an office shredder, essentially in the same manner as the “inner workings” of the previous embodiment Thus, the mechanism 100 may simply be mounted onto a large plastic container or bin, and a housing may then be positioned over the mechanism 100 in similar manner to the previous embodiment described.
If a stack of paper sheets or the like is inserted into the feed slot of a shredding machine containing the mechanism 100, and that stack of papers has a thickness less than the predetermined spacing between the forward most surface of the arm member 143 and the opposite feed wall 105, then the sheets can be passed freely through the slot without those sheets bearing against the arm 143 so as to rotate the arm 143 against the bias of the spring. In this case, the sheets can be passed freely through the slot for eventual engagement by the cutting mechanism in similar manner to the previous embodiment. However, in contrast to the previous embodiment, as the leading edge of the stack of papers passes between the photo sensor 156, the secondary motor 154 will be energised, which will in turn rotate the cam member 155 on the motor shaft 154 so as to advance the trigger plate 151 laterally towards the advanced position. In this manner, the trigger plate will eventually engage and press against the sheet material so as to prevent any excessive movement of the sheet material towards the arm 143, for example as a result of “waving” of the sheet material as might otherwise occur (particularly once the leading edge of the sheet material has engaged the cutters 110, 111 below).
It will also be appreciated, referring in particular to
In the case where, despite the rollers 149, 150 and the trigger plate 151, “waving” or flapping of the sheet material occurs (or in the case where the mechanism does not include the rollers 149, 150 and trigger plate 151), the degree of “waving” or flapping may be such as to unacceptably increase the effective thickness of the sheet material beyond a predetermined intermediate thickness threshold thickness, whereby the sheet material will engage the arm member 143 so as to pivot the arm member 143 and consequently move the rear portion of the arm member 144 so that it obstructs the passage of light between the light source 147 and light sensor 143. In this position (the intermediate position of the actuating element) the timer switch 146 will be actuated. Once actuated, the timer switch 146 will operate to cut power to the primary motor 109 (driving the cutting mechanism), after a predetermined period of time, unless the arm 144 is subsequently rotated back to a position whereby it no longer blocks the light source 147, during that predetermined period of time period. In the latter case, the photo switch 146 will instead be deactivated and cutting may continue in the normal manner.
Thus, the timer switch 146 (and the actuating element) allow the thickness of the sheet material to exceed a predetermined intermediate threshold thickness for a certain predetermined period of time (chosen to correspond to the period of time which the mechanism 100 can tolerate such a thickness of sheet material), but unless the thickness of the sheet material is reduced within this time period, then the power to the motor 109 will be cut. The timer switch 146 thus reduces the risk of a jam occurring due to “waving” or flapping of the sheet material, whilst nevertheless tolerating a certain degree of such “waving” or flapping, within acceptable limits and for an acceptable period of time.
On the other hand, should a stack of papers be inserted into the feed slot having a thickness which sufficiently exceeds a predetermined maximum threshold thickness (above the intermediate threshold thickness), the arm member 143 will be rotated, against the bias of the spring, so as to consequently move the rear portion of the arm member 144 sufficiently to block the passage of light between the light source 132 and photo sensor 133. The actuating element thus adopts the second position and, in this case, the photo switch 131 is activated and the electrical circuit providing power to the motor 9 is broken, thereby preventing energisation of the motor 9 almost immediately, in a similar manner to the previously described embodiment.
Of course, if the initial (inherent) thickness of the sheet material exceeds the intermediate threshold thickness, but not the maximum thickness threshold, so that the actuating element adopts an intermediate position (with the arm member 144 positioned between the light source 147 and sensor 148) then the motor 109 will be energised initially, but will then be cut off by the timer switch in the manner described above.
It will be appreciated that by selecting an appropriate gear ratio for the intermediate gear arrangement between arm member 143 and arm member 144, one can vary the sensitivity of the actuating element without having to increase the length of either the arm member 143 or arm member 144. In this manner, the required sensitivity can be achieved whilst using a relatively compact actuating element,
Whilst the present invention has been described above with reference to a specific embodiment, certain modifications could be made to the arrangement described above without departing from the scope of the invention as defined by the appended claims. For example, it is envisaged that in variants of the invention, the above-described photo switch 31 could be replaced by some other convenient form of switch such as, for example, a micro switch arranged to be actuated by contact with the rear end of the finger 16 of the actuating arm.
When used in this specification and claims, the terms “comprises” and “comprising” and variations thereof mean that the specified features, steps or integers are included. The terms are not to be interpreted to exclude the presence of other features, steps or components.
The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse forms thereof.
Number | Date | Country | Kind |
---|---|---|---|
0608072.5 | Apr 2006 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
3619537 | Nara et al. | Nov 1971 | A |
3724766 | Bosland | Apr 1973 | A |
3764819 | Muller | Oct 1973 | A |
3829850 | Guetersloh | Aug 1974 | A |
3947734 | Fyler | Mar 1976 | A |
4352980 | Hibari | Oct 1982 | A |
4489897 | Turner et al. | Dec 1984 | A |
4497478 | Reschenhofer et al. | Feb 1985 | A |
4683381 | Dufoug | Jul 1987 | A |
4707704 | Allen et al. | Nov 1987 | A |
4842205 | Araki | Jun 1989 | A |
5017972 | Daughton et al. | May 1991 | A |
5081406 | Hughes et al. | Jan 1992 | A |
5166679 | Vranish et al. | Nov 1992 | A |
5186398 | Vigneau, Jr. | Feb 1993 | A |
5342033 | Iwata et al. | Aug 1994 | A |
5345138 | Mukaidono et al. | Sep 1994 | A |
5397890 | Schueler et al. | Mar 1995 | A |
5415355 | Gollwitzer | May 1995 | A |
5429313 | Schwelling et al. | Jul 1995 | A |
5494229 | Rokos | Feb 1996 | A |
5775605 | Tsai | Jul 1998 | A |
5823529 | Mandel et al. | Oct 1998 | A |
5850342 | Nakamura et al. | Dec 1998 | A |
5924637 | Niederholtmeyer | Jul 1999 | A |
D412716 | Kroger | Aug 1999 | S |
5942975 | Sorenson | Aug 1999 | A |
6065696 | Tsai | May 2000 | A |
6079645 | Henreckson | Jun 2000 | A |
6265682 | Lee | Jul 2001 | B1 |
6376939 | Suzuki et al. | Apr 2002 | B1 |
6418004 | Mather et al. | Jul 2002 | B1 |
6550701 | Chang | Apr 2003 | B1 |
6601787 | Langenecker | Aug 2003 | B1 |
6655943 | Peterson | Dec 2003 | B1 |
6676460 | Motsenbocker | Jan 2004 | B1 |
6698640 | Hakozaki et al. | Mar 2004 | B2 |
6724324 | Lambert | Apr 2004 | B1 |
6813983 | Gass et al. | Nov 2004 | B2 |
6826988 | Gass | Dec 2004 | B2 |
6857345 | Gass | Feb 2005 | B2 |
6877410 | Gass et al. | Apr 2005 | B2 |
6880440 | Gass et al. | Apr 2005 | B2 |
6920814 | Gass et al. | Jul 2005 | B2 |
6979813 | Avril | Dec 2005 | B2 |
7040559 | Matlin | May 2006 | B2 |
7325757 | Allen et al. | Feb 2008 | B2 |
20020017175 | Gass et al. | Feb 2002 | A1 |
20020017176 | Gass et al. | Feb 2002 | A1 |
20020017178 | Gass et al. | Feb 2002 | A1 |
20020017179 | Gass et al. | Feb 2002 | A1 |
20020017180 | Gass et al. | Feb 2002 | A1 |
20020017181 | Gass et al. | Feb 2002 | A1 |
20020017182 | Gass et al. | Feb 2002 | A1 |
20020017184 | Gass et al. | Feb 2002 | A1 |
20020017336 | Gass et al. | Feb 2002 | A1 |
20020020261 | Gass et al. | Feb 2002 | A1 |
20020020262 | Gass et al. | Feb 2002 | A1 |
20020020263 | Gass et al. | Feb 2002 | A1 |
20020020265 | Gass et al. | Feb 2002 | A1 |
20020020271 | Gass et al. | Feb 2002 | A1 |
20020056348 | Gass et al. | May 2002 | A1 |
20020056349 | Gass et al. | May 2002 | A1 |
20020056350 | Gass et al. | May 2002 | A1 |
20020059853 | Gass et al. | May 2002 | A1 |
20020059854 | Gass et al. | May 2002 | A1 |
20020059855 | Gass et al. | May 2002 | A1 |
20020066346 | Gass et al. | Jun 2002 | A1 |
20020069734 | Gass et al. | Jun 2002 | A1 |
20020170399 | Gass et al. | Nov 2002 | A1 |
20020170400 | Gass | Nov 2002 | A1 |
20020190581 | Gass et al. | Dec 2002 | A1 |
20030002942 | Gass et al. | Jan 2003 | A1 |
20030005588 | Gass et al. | Jan 2003 | A1 |
20030015253 | Gass et al. | Jan 2003 | A1 |
20030019341 | Gass et al. | Jan 2003 | A1 |
20030020336 | Gass et al. | Jan 2003 | A1 |
20030037651 | Gass et al. | Feb 2003 | A1 |
20030056853 | Gass et al. | Mar 2003 | A1 |
20030058121 | Gass et al. | Mar 2003 | A1 |
20030090224 | Gass et al. | May 2003 | A1 |
20030131703 | Gass et al. | Jul 2003 | A1 |
20030140749 | Gass et al. | Jul 2003 | A1 |
20030196824 | Gass et al. | Oct 2003 | A1 |
20040008122 | Michael | Jan 2004 | A1 |
20040040426 | Gass et al. | Mar 2004 | A1 |
20040163514 | Gass et al. | Aug 2004 | A1 |
20040173430 | Gass | Sep 2004 | A1 |
20040194594 | Dils et al. | Oct 2004 | A1 |
20040226800 | Pierga et al. | Nov 2004 | A1 |
20050039586 | Gass et al. | Feb 2005 | A1 |
20050039822 | Gass et al. | Feb 2005 | A1 |
20050041359 | Gass | Feb 2005 | A1 |
20050066784 | Gass | Mar 2005 | A1 |
20050103510 | Gass et al. | May 2005 | A1 |
20050139051 | Gass et al. | Jun 2005 | A1 |
20050139056 | Gass et al. | Jun 2005 | A1 |
20050139057 | Gass et al. | Jun 2005 | A1 |
20050139058 | Gass et al. | Jun 2005 | A1 |
20050139459 | Gass et al. | Jun 2005 | A1 |
20050150986 | Castronovo | Jul 2005 | A1 |
20050155473 | Gass | Jul 2005 | A1 |
20050166736 | Gass et al. | Aug 2005 | A1 |
20050263630 | Zhang et al. | Dec 2005 | A1 |
20060016919 | Castronovo | Jan 2006 | A1 |
20060054724 | Matlin et al. | Mar 2006 | A1 |
20060054725 | Matlin | Mar 2006 | A1 |
20060091247 | Matlin | May 2006 | A1 |
20060219827 | Matlin et al. | Oct 2006 | A1 |
20070164135 | Zhong | Jul 2007 | A1 |
20070215728 | Priester | Sep 2007 | A1 |
20070221767 | Matlin | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
3313232 | Oct 1984 | DE |
8619856.4 | Sep 1988 | DE |
4121330 | Jan 1993 | DE |
19835093 | Feb 1999 | DE |
102006036136 | Jan 2008 | DE |
855221 | Jul 1988 | EP |
1199903 | Jul 1970 | GB |
2171029 | Aug 1986 | GB |
2440651 | Jun 2008 | GB |
5211691 | Jan 1977 | JP |
5776734 | Jan 1982 | JP |
4157093 | May 1992 | JP |
4180852 | Jun 1992 | JP |
6277548 | Oct 1994 | JP |
7299377 | Nov 1995 | JP |
9262491 | Oct 1997 | JP |
11216383 | Aug 1999 | JP |
20000346288 | Dec 2000 | JP |
2002239405 | Aug 2002 | JP |
2004321993 | Nov 2004 | JP |
2005070553 | Aug 2005 | WO |
WO 2006031324 | Mar 2006 | WO |
2007109753 | Sep 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20070246582 A1 | Oct 2007 | US |