The invention relates generally to shellfish processing and more particularly to apparatus and methods for deheading shrimp with hydrodynamic forces.
Deheading shrimp by hydrodynamic force is known from U.S. Pat. No. 5,195,921, “Apparatus for Deheading and Cleansing Shrimp,” issued Mar. 23, 1993. In that patent, a shrimp-laden fluid is pumped through conduit that abruptly narrows. The abrupt decrease in the cross-section of the conduit causes the flow to accelerate through the narrow cross section according to the Venturi Effect. Hydrodynamic forces caused by the change in cross section tend to detach heads from shrimp. The cross section of the conduit in the patent is circular along its entire length. When a pipe with a four-inch diameter is used as the main conduit, the diameter of the narrow region is even smaller. Shrimp, whose outer dimensions are greater than the diameter of the narrow region, tend to bump into the narrowing conduit. The collisions with the conduit walls can damage the shrimp, especially fragile cold-water shrimp. As shown in
This shortcoming in detaching heads from shrimp is addressed by apparatus embodying features of the invention. One such apparatus comprises a conduit enclosing a fluid channel and flow control means inducing a flow of shrimp-laden fluid in the conduit. The conduit has an open first end and an opposite open second end downstream of the first end along the fluid channel. An input portion of the conduit extends downstream along the fluid channel from the first end and defines the fluid channel with a first cross-sectional area. A venturi extends upstream along the fluid channel from the second end and defines a length of the fluid channel with a second cross-sectional area smaller than the first cross-sectional area. The second cross-sectional area has a major axis and a shorter minor axis. A transition portion of the conduit is disposed between the input portion and the venturi. The transition portion defines a length of the fluid channel with a cross-sectional area converging from the first cross-sectional area to the second cross-sectional area. The shrimp-laden fluid flows through the first end of the conduit, the fluid channel, and the second end. The speed of the fluid along the length of the fluid channel in the converging cross-sectional area of the transition portion increases to a speed in the venturi sufficient to detach heads from shrimp.
Another version of such an apparatus comprises a conduit system defining a fluid channel and venturis disposed in the conduit system in line with the fluid channel at spaced apart positions. Flow control means induce a flow of shrimp-laden fluid in the fluid channel to convey the shrimp-laden fluid through the conduit system. The venturis cause an increase in the speed of the shrimp-laden fluid in each of the venturis sufficient to detach heads from shrimp.
According to another aspect of the invention, a method for detaching the heads of shrimp comprises: (a) flowing a shrimp-laden fluid through a fluid channel in a conduit system; and (b) restricting the fluid channel in venturis at spaced apart locations along the conduit system to increase the speed of the shrimp-laden fluid in each of the venturis sufficient to detach heads from shrimp.
These aspects and features of the invention are described in more detail in the following description, appended claims, and accompanying drawings, in which:
A venturi tube, or venturi, usable in a deheading system embodying features of the invention is shown in
A transition portion 26 of the conduit extends downstream from the input portion 24 to the venturi 16. The transition portion 26 defines a length of the fluid channel with a converging cross-sectional area formed by two pairs of converging parabolic walls: large walls 25 and small walls 27. The venturi 16 has a cross-sectional area A2 that is less than that of the input portion 24. In the example of
As shown in
One version of a complete deheading system 40 is shown in
The deheading system shown in
Although the invention has been described in detail with respect to a few versions, other versions are possible. For example, if large-diameter conduit, such as ten-inch—diameter pipes instead of 4-inch—diameter pipes, the cross-sectional area of the venturis could be circular or square because the diameter of the circular opening or the lengths of the sides of the square opening would be large enough to allow shrimp through without damaging collisions with the walls of the conduit. As another example, a complete system using only a single venturi may be sufficient to detach heads from the shrimp in some situations. So, as these suggestions suggest, the claims are not meant to be limited to the details of the exemplary embodiments.
Number | Name | Date | Kind |
---|---|---|---|
2888709 | Lapeyre | Jun 1959 | A |
3209393 | Stephenson | Oct 1965 | A |
4307492 | Braginsky et al. | Dec 1981 | A |
4517707 | Braginsky et al. | May 1985 | A |
4692965 | Stephenson | Sep 1987 | A |
5112269 | Petersen et al. | May 1992 | A |
5195921 | Ledet | Mar 1993 | A |
5259809 | Rainey, Jr. | Nov 1993 | A |
6736716 | Sugiyama | May 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20140087641 A1 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
61706187 | Sep 2012 | US |