shRNA TARGETING UBE3A-ATS TO RESTORE PATERNAL UBE3A GENE EXPRESSION IN ANGELMAN SYNDROME

Information

  • Patent Application
  • 20230332157
  • Publication Number
    20230332157
  • Date Filed
    March 07, 2023
    a year ago
  • Date Published
    October 19, 2023
    7 months ago
Abstract
Provided herein are compositions and methods for activating expression from the paternally-inherited allele of UBE3A in Angelman syndrome using viral vector delivery of short hairpin RNAs. Provided herein are compositions and methods for reducing or eliminating expression of UBE3A-ATS in Angelman syndrome using viral vector delivery of short hairpin RNAs.
Description
TECHNICAL FIELD

The present disclosure relates to compositions and methods for activating expression from the paternally-inherited allele of UBE3A in subjects having Angleman Syndrome using short hairpin RNAs.


REFERENCE TO SEQUENCE LISTING

The application contains a Sequence Listing which has been submitted electronically in .XML format and is hereby incorporated by reference in its entirety. Said .XML copy, created on Apr. 7, 2023, is named “2262-97.xml” and is 717,274 bytes in size. The sequence listing contained in this .XML file is part of the specification and is hereby incorporated by reference herein in its entirety.


BACKGROUND

Angelman syndrome (AS) is a neurodevelopmental disorder affecting ˜1/15,000 individuals. Individuals with AS have developmental delay, severe cognitive impairment, ataxic gait, frequent seizures, short attention span, absent speech, and characteristic happy demeanor. Neurons derived from induced pluripotent stem cells (iPSC) from AS patients exhibit a depolarized resting membrane potential, delayed action potential development, and reduced spontaneous synaptic activity. Fink, J. J., T. M. Robinson, N. D. Germain, C. L. Sirois, K. A. Bolduc, A. J. Ward, F. Rigo, S. J. Chamberlain and E. S. Levine (2017). “Disrupted neuronal maturation in Angelman syndrome-derived induced pluripotent stem cells.” Nat Commun 8: 15038. AS affects a relatively large patient population; a contact registry with >3,000 patients has been established and ˜250 new diagnoses of AS are made each year. Individuals with AS require life-long care.


AS is caused by loss of function from the maternal copy of UBE3A, a gene encoding an E3 ubiquitin ligase. This loss of function mutation can be caused by any type of gene mutation in the maternal allele. UBE3A is expressed exclusively from the maternal allele in neurons. All individuals with AS have a normal paternal UBE3A allele that is epigenetically silenced in neurons in cis by a long, non-coding RNA, called UBE3A antisense transcript (UBE3A-ATS) (Rougeulle et al., 1997, Nat Genet 17, 14-15; Chamberlain and Brannan, 2001, Genomics 73, 316-322). Reactivation of the paternal allele has been shown to restore UBE3A protein expression and alleviate behavioral deficits in an AS mouse model. The restoration of UBE3A expression in humans is expected to ameliorate the disease, especially if it is restored in infants.


SUMMARY

Provided herein is a novel treatment for Angelman syndrome by inhibiting the silencing of paternal UBE3A and enabling the expression of paternal UBE3A from its native regulatory elements, thus replacing or augmenting missing maternal UBE3A. Increased expression of UBE3A in neurons is accomplished by terminating transcription of UBE3A-ATS. Since the native regulatory elements control expression, overexpression of UBE3A is prevented. This approach can improve AS symptoms through a single treatment and eliminate the need for multiple treatments.


Provided herein is a polynucleotide sequence including: 5′-GATATCACCTTACAGAAATTACTCGAGTAATTTCTGTAAGGTGATATC-3′ (SEQ ID No: 2). Expression vectors including SEQ ID NO: 2 are provided. In embodiments, the expression vector is an adeno-associated viral (AAV) vector or a lentiviral vector. Pharmaceutical compositions including the foregoing are provided.


Provided herein is a polynucleotide encoding a shRNA including a nucleotide sequence that is at least 85%, at least 90%, at least 95%, or 100% complementary to a RNA encoded by any of SEQ ID NOs: 3-489. In embodiments, the polynucleotide is SEQ ID NO: 2. In embodiments, the shRNA causes activation of, or an increase in, expression of paternal UBE3A. In embodiments, the shRNA causes a reduction of expression of paternal UBE3A-ATS. Expression vectors including the shRNA are provided. In embodiments, the expression vector is an adeno-associated viral (AAV) vector or a lentiviral vector. Pharmaceutical compositions including the foregoing are provided.


Provided herein is a method of treating Angelman syndrome including administering to a patient in need thereof the polynucleotide of SEQ ID NO: 2. In embodiments, the polynucleotide of SEQ ID NO: 2 encodes a shRNA which causes a reduction of expression of paternal UBE3A-ATS. In embodiments, the polynucleotide of SEQ ID NO: 2 encodes a shRNA which causes activation of, or an increase in, expression of paternal UBE3A gene.


Provided herein is a method of treating Angelman syndrome including administering to a patient in need thereof a polynucleotide encoding a shRNA including a nucleotide sequence that is at least 85%, at least 90%, at least 95%, or 100% complementary to a RNA encoded by any of SEQ ID NOs: 3-489. In embodiments, the polynucleotide is SEQ ID NO: 2. In embodiments, the shRNA causes activation of, or an increase in, expression of paternal UBE3A. In embodiments, the shRNA causes a reduction of expression of paternal UBE3A-ATS.


In embodiments, SEQ ID NO: 2 encodes a shRNA capable of inhibiting the silencing of paternal UBE3A. In embodiments, the SEQ ID NO: 2 is contained within an expression vector. In embodiments, the expression vector is an adeno-associated viral (AAV) vector or a lentiviral vector. In embodiments, a method is provided of inhibiting the silencing of paternal UBE3A gene by the RNA antisense transcript encoded by SEQ ID NO: 1 which includes administering to a patient in need thereof an amount of SEQ ID NO: 2 which is effective to cut the RNA antisense transcript encoded by SEQ ID NO: 1.


In embodiments, a method is provided of inhibiting the silencing of paternal UBE3A gene by the RNA antisense transcript encoded by SEQ ID NO: 1 which includes administering to a patient in need thereof, an amount of a shRNA including a nucleotide sequence that is at least 85%, at least 90%, at least 95%, or 100% complementary to a RNA encoded by any of SEQ ID NOs: 3-489, which is effective to cut the RNA antisense transcript encoded by SEQ ID NO: 1.


In embodiments, a shRNA provided herein is encoded by a portion of SEQ ID NO: 2, e.g., having the bold nucleotides, which has been shortened by one, two, three or four nucleotides at either end of the bold nucleotides. Likewise, in embodiments, the shRNA provided herein can contain a portion of SEQ ID NO: 2, e.g., having the italicized nucleotides, which has been shortened by one, two or three nucleotides at either end of the italicized nucleotides.


In embodiments, a polynucleotide sequence is provided as follows:









(SEQ ID NO: 506)


5′-GATATCACCTTACAGAAATTAnnnnnnnnTAATTTCTGTAAGGTGA



TATC-3′, wherein nnnnnnnn can be






(SEQ ID NO: 490)


CTCGAG,





(SEQ ID NO: 491)


TCAAGAG,





(SEQ ID NO: 492)


TTCG


or





(SEQ ID NO: 493)


GAAGCTTG.






In embodiments, a polynucleotide sequence is provided which includes a first portion, a second portion and a third portion, the first portion comprising any of SEQ ID NOs: 3-489, the second portion comprising any of SEQ ID Nos: 490, 491, 492, or 493, and the third portion comprising respective nucleotide sequences complementary to those in SEQ ID NOs: 3-489.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows chromosomal mutations in Angelman Syndrome.



FIG. 2 shows a diagram of paternal UBE3A gene.



FIG. 3A and FIG. 3B show genomic locations of shRNA targets (solid callout). UCSC Genome Browser view of the 15q11-q13 region containing the imprinted SNHG14/UBE3A locus (dashed-line callout). Location of shRNA targets within the UBE3A ATS region (ATS-shRNA2) and the SNORD115 snoRNA cluster.



FIG. 4 is a bar graph showing qRT-PCR analysis of Angelman syndrome iPSC-derived neurons following treatment with either SNHG14-targeting shRNAs (551-2, ATS shRNA1-4, ATS shRNA2_3G) or non-targeting control shRNA (SCRAM). Two shRNAs, 551-2 and ATS shRNA2, knocked down UBE3A-ATS and activated paternal UBE3A.



FIG. 5 is a bar graph showing qRT-PCR analysis of Angelman syndrome iPSC-derived neurons following treatment with either SNHG14-targeting shRNAs (ATS shRNA 2), non-targeting control shRNA (SCRAM), or untreated (UTC). ATS shRNA2 knocked down UBE3A-ATS and activated paternal UBE3A.





DETAILED DESCRIPTION

UBE3A is a gene which encodes the E3 ubiquitin ligase. The genomic coordinates for UBE3A are hg19 chr15:25,582,381-25,684,175 on the minus strand. There are three normal isoforms of UBE3A: Isoform 1 (accession number X98032); Isoform 2 (accession number X98031); and isoform 3 (Accession number X98033). In neurons, UBE3A is expressed exclusively from the maternal allele. The paternal UBE3A allele is epigenetically silenced by the long, non-coding RNA UBE3A antisense transcript (UBE3A-ATS) encoded by SEQ ID NO: 1. The genomic coordinates for UBE3A ATS are hg19 chr15:25,223,730-25,664,609 on the plus strand. The following genomic coordinates are of particular interest: hg19 chr15:25,522,751-25,591,391 on the plus strand.


UBE3A-ATS/Ube3a-ATS (human/mouse) is the antisense DNA strand that is transcribed as part of a larger transcript called SNHG14 (SNORNA HOST GENE 14) at the UBE3A locus. Human UBE3A ATS is expressed as a part of SNHG14 exclusively from the paternal allele in the central nervous system (CNS). The transcript is about 600 kbs long, starts at SNRPN and extends through most of UBE3A. SNHG14 (Small Nucleolar RNA Host Gene 14) encodes a non-coding RNA and is affiliated with the lncRNA class. SNHG14 is located within the Prader-Willi critical region and produces a long, spliced maternally-imprinted RNA that initiates at one of several promoters of the SNRPN (small nuclear ribonucleoprotein polypeptide N) gene. This transcript serves as a host RNA for two clusters of C/D box small nucleolar RNAs, SNORD116 and SNORD115. See, Runte et al., 2001, Hum Mol Genet 10, 2687-2700. This RNA extends into the ubiquitin protein ligase E3A (UBE3A) gene and is thought to regulate imprinted expression of UBE3A in the brain. The promoter of SNRPN is the Prader-Willi syndrome Imprinting Center (PWS-IC) and about 35 kbs upstream of the PWS-IC is the Angelman syndrome Imprinting Center (AS-IC). These two regions are thought to control the expression of the entire SNHG14 transcript.


SNURF/SNRPN is a bicistronic gene that encodes two protein-coding transcripts, SNURF and SNRPN. Both SNURF and SNRPN proteins localize to the cell nucleus. SNRPN is a small nuclear ribonucleoprotein, and the function of SNURF is unknown. The transcript that initiates at SNRPN/SNURF also encodes the SNHG14 transcript. Within the introns of SNHG14 are sequences for several C/D box snoRNAs. Box C/D small nucleolar RNAs (SNORDs) represent a well-defined family of small non-coding RNAs that exert their regulatory functions via antisense-based mechanisms. Most C/D box snoRNAs function in non-mRNA methylation.


Many orphan snoRNAs are generated from two large, imprinted chromosomal domains at human 15q11q13 and 14q32. See, e.g., FIG. 3. As indicated above, the imprinted human 15q11q13 region—also known as the Prader-Willi Syndrome (PWS)/Angelman Syndrome (AS) locus or SNURF-SNRPN domain—contains several paternally expressed, protein coding genes as well as numerous paternally expressed, neuronal-specific snoRNA genes organized as two main repetitive DNA arrays: the SNORD116 and SNORD115 clusters composed of 29 and 47 related gene copies, respectively.


SNORD115 encodes a small nucleolar RNA (snoRNA) that is found clustered with dozens of other similar snoRNAs on chromosome 15. These genes are found mostly within introns of the SNHG14 transcript, which is paternally imprinted and from the PWS/AS region.


The compositions and methods described herein are drawn to targeting UBE3A ATS to unsilence the paternal UBE3A allele. Effective inhibition of UBE3A-ATS by short hairpin RNAs (shRNA) described herein result in a reduction in UBE3A-ATS expression levels and a concomitant increase in the expression levels of the paternal UBE3A allele.


In embodiments, compositions and methods herein relate to the treatment or prevention of AS. A patient in need of such treatment or prevention has AS or is at risk for developing AS. As used herein, the term “patient in need” includes any mammal in need of these methods of treatment or prophylaxis, including humans. The subject may be male or female. In certain aspects, the patient in need, having AS, treated according to the methods and compositions provided herein may show an improvement in anxiety, learning, balance, motor function, and/or seizures, or the method may return the neuronal resting membrane potential to about −70 mV, ameliorate the action potential development delay, increase spontaneous synaptic activity, and may ameliorate additional alterations in the neuronal phenotype relating to rheobase, action potential characteristics (e.g. shape), membrane current, synaptic potentials, and/or ion channel conductance.


In embodiments, a polynucleotide includes a first nucleotide sequence encoding a short hairpin RNA (shRNA) that results in decreased expression of the UBE3A-ATS sequence (SEQ ID NO: 1). For example, a portion of the shRNAs described herein may be complementary to the RNA sequence encoded by SEQ ID NO: 1 or a sequence contained therein. In embodiments, the shRNAs described herein are RNA polynucleotides encoded by a first nucleotide sequence. The polynucleotide encompassing the first nucleotide sequence may be a DNA polynucleotide suitable for cloning into an appropriate vector (e.g., a plasmid) for culturing and subsequent production of viral particles. In turn, viral particles may contain the DNA polynucleotide with the nucleotide coding sequence in a form suitable for infection. Thus, the first nucleotide sequence may be a DNA sequence cloned into a plasmid for viral particle production or encapsulated in a viral particle. As retroviruses carry nucleotide coding sequences in the form of RNA polynucleotides, retroviral particles (e.g., lentivirus) contain an RNA polynucleotide that includes the first nucleotide sequence as a corresponding RNA sequence.


Disclosed herein are novel shRNAs that cut UBE3A ATS thereby reducing UBE3A-ATS expression and, in turn activate, the paternally inherited copy of UBE3A in neurons. This provides the UBE3A gene product in a cell type that is missing the protein in Angelman syndrome. There is a potential search space of about −60 kb in the genomic LNCAT sequence which may provide potential shRNA targets. However, not every predicted sequence actually reduces UBE3A-ATS and restores UBE3A. Accordingly, as shown by the certain examples herein, it is difficult to predict which sequences will or will not work. See, e.g., FIG. 4.


The first nucleotide sequence encodes a shRNA. For example, the first nucleotide sequence may be SEQ ID NO: 2 (5′-GATATCACCTTACAGAAATTACTCGAGTAATTTCTGTAAGGTGATATC-3′). The first nucleotide sequence may also be a modified SEQ ID NO: 2 having the bold nucleotides in SEQ ID NO: 2 replaced by any of SEQ ID NOs: 4-489 and the italicized nucleotides in SEQ ID NO: 2 replaced by nucleotides complementary to those in SEQ ID NOs: 4-489 As used herein, “targets” means an operative RNA polynucleotide capable of undergoing hybridization to a nucleotide sequence through hydrogen bonding, such as to a nucleotide sequence transcribed from a nucleotide sequence within the larger genomic sequence of UBE3A-ATS. The hybridization of an operative RNA polynucleotide to a nucleotide sequence transcribed from a nucleotide sequence with the larger genomic sequence of UBE3A-ATS may result in the reduced expression of UBE3A-ATS levels in the presence of the operative RNA polynucleotide compared to the expression levels of UBE3A-ATS in the absence of the operative RNA polynucleotide. In embodiments, the operative RNA polynucleotide encompasses the nucleotide sequence of the shRNA that is complementary to the RNA sequence encoded within the larger genomic sequence of UBE3A-ATS. For example, the shRNA contains nucleotide sequences complementary to the RNA sequences encoded by SEQ ID NO: 3 and SEQ ID NOs: 4-489. The operative RNA polynucleotide thus refers to an operative portion of the shRNA following assimilation of the shRNA into a target organism and processing into a functional state.


“Reduce expression” refers to a reduction or blockade of the expression or activity of UBE3A ATS and does not necessarily indicate a total elimination of expression or activity. Mechanisms for reduced expression of the target include hybridization of an operative RNA polynucleotide with a target sequence or sequences transcribed from a sequence or sequences within the larger genomic UBE3A-ATS sequence (SEQ ID NO: 1), wherein the outcome or effect of the hybridization is either target degradation or target occupancy with concomitant stalling of the cellular machinery involving, for example, transcription or splicing.


Without wishing to be bound to a particular theory, the shRNA herein may inhibit the silencing of paternal UBE3A by: (1) cutting the RNA transcript encoded by SEQ ID NO: 1; (2) reducing steady-state levels (i.e., baseline levels at homeostasis) of the RNA transcript encoded by SEQ ID NO: 1; and (3) terminating transcription of SEQ ID NO: 1. For example, cutting and reduction of steady-state levels of the RNA transcript encoded by SEQ ID NO: 1 may occur via a mechanism involving a RNA-induced silencing complex (RISC). shRNA may utilize RISC. Once the vector carrying the genomic material for the shRNA is integrated into the host genome, the shRNA genomic material is transcribed in the host into pri-microRNA. The pri-microRNA is processed by a ribonuclease, such as Drosha, into pre-shRNA and exported from the nucleus. The pre-shRNA is processed by an endoribonuclease such as Dicer to form small interfering RNA (siRNA). The siRNA is loaded into the RISC where the sense strand is degraded and the antisense strand acts as a guide that directs RISC to the complementary sequence in the mRNA. RISC cleaves the mRNA when the sequence has perfect complementary and represses translation of the mRNA when the sequence has imperfect complementary. Thus, the shRNA encoded by the first nucleic acid sequence increases expression of paternal UBE3A by decreasing the steady-state levels of UBE3A-ATS RNA.


As used herein, the term “nucleic acid” refers to molecules composed of monomeric nucleotides. Examples of nucleic acids include ribonucleic acids (RNA), deoxyribonucleic acids (DNA), single-stranded nucleic acids, double-stranded nucleic acids, small interfering ribonucleic acids (siRNA), and short hairpin RNAs (shRNAs). “Nucleotide” means a nucleoside having a phosphate group covalently linked to the sugar portion of the nucleoside. “Oligonucleotide” or “polynucleotide” means a polymer of linked nucleotides each of which can be modified or unmodified, independent one from another.


As used herein, a “short hairpin RNA (shRNA)” includes a conventional stem-loop shRNA, which forms a precursor microRNA (pre-miRNA). “shRNA” also includes micro-RNA embedded shRNAs (miRNA-based shRNAs), wherein the guide strand and the passenger strand of the miRNA duplex are incorporated into an existing (or natural) miRNA or into a modified or synthetic (designed) miRNA. When transcribed, a conventional shRNA (i.e., not a miR-451 shRNA mimic) forms a primary miRNA (pri-miRNA) or a structure very similar to a natural pri-miRNA. The pri-miRNA is subsequently processed by Drosha and its cofactors into pre-shRNA. Therefore, the term “shRNA” includes pri-miRNA (shRNA-mir) molecules and pre-shRNA molecules.


A “stem-loop structure” refers to a nucleic acid having a secondary structure that includes a region of nucleotides which are known or predicted to form a double strand or duplex (stem portion) that is linked on one side by a region of predominantly single-stranded nucleotides (loop portion). It is known in the art that the loop portion is at least 4 nucleotides long, 6 nucleotides long (e.g., the underlined sequence in SEQ ID NO: 2), 8 nucleotides long, or more. The terms “hairpin” and “fold-back” structures are also used herein to refer to stem-loop structures. Such structures are well known in the art and the term is used consistently with its known meaning in the art. For example, CTCGAG (SEQ ID NO: 490), TCAAGAG (SEQ ID NO: 491), TTCG (SEQ ID NO: 492), and GAAGCTTG (SEQ ID NO: 493) are suitable stem-loop structures. As is known in the art, the secondary structure does not require exact base-pairing. Thus, the stem can include one or more base mismatches or bulges. Alternatively, the base-pairing can be exact, i.e., not include any mismatches. In embodiments, a polynucleotide sequence is provided as follows: 5′-GATATCACCTTACAGAAATTAnnnnnnnnTAATTTCTGTAAGGTGATATC-3′ (SEQ ID NO: 506), wherein nnnnnnnn can be CTCGAG (SEQ ID NO: 490), TCAAGAG (SEQ ID NO: 491), TTCG (SEQ ID NO: 492) or GAAGCTTG (SEQ ID NO: 493). In embodiments, a polynucleotide sequence is provided which includes a first portion, a second portion and a third portion, the first portion comprising any of SEQ ID NOs: 3-489, the second portion comprising any of SEQ ID Nos: 490, 491, 492, or 493, and the third portion comprising respective nucleotide sequences complementary to those in SEQ ID NOs: 3-489.


In embodiments, shRNAs can include, without limitation, modified shRNAs, including shRNAs with enhanced stability in vivo. Modified shRNAs include molecules containing nucleotide analogues, including those molecules having additions, deletions, and/or substitutions in the nucleobase, sugar, or backbone; and molecules that are cross-linked or otherwise chemically modified. The modified nucleotide(s) may be within portions of the shRNA molecule, or throughout it. For instance, the shRNA molecule may be modified, or contain modified nucleic acids in regions at its 5′ end, its 3′ end, or both, and/or within the guide strand, passenger strand, or both, and/or within nucleotides that overhang the 5′ end, the 3′ end, or both. (See Crooke, U.S. Pat. Nos. 6,107,094 and 5,898,031; Elmen et al., U.S. Publication Nos. 2008/0249039 and 2007/0191294; Manoharan et al., U.S. Publication No. 2008/0213891; MacLachlan et al., U.S. Publication No. 2007/0135372; and Rana, U.S. Publication No. 2005/0020521; all of which are hereby incorporated by reference.)


shRNAs herein include a nucleotide sequence complementary to a RNA nucleotide sequence transcribed from within the full genomic UBE3A ATS sequence (SEQ ID NO: 1) and inhibit the silencing of paternal UBE3A by UBE3A-ATS. In embodiments, shRNAs include a nucleotide sequence complementary to RNA sequences encoded by SEQ ID NOs: 4-489. In embodiments, a shRNA includes a nucleotide sequence complementary to a RNA sequence encoded by SEQ ID NO: 3 (5′-GATATCACCTTACAGAAATTA-3′, UBE3A-ATS artificial/synthetic target). In embodiments, the shRNA is encoded by the nucleotide sequence of SEQ ID NO: 2. In embodiments, the nucleotide sequence included in the shRNA and complementary to the RNA nucleotide sequence transcribed from the UBE3A-ATS gene is 17-21 nucleotides in length. The complementary nucleotides may be contiguous or may be interspersed with non-complementary nucleotides. In embodiments, the complementary nucleotide sequence is 21 nucleotides in length as indicated by the bold sequence in SEQ ID NO: 2. The shRNA may include a nucleotide sequence wherein 17, 18, 19, 20, or 21 nucleotides are complementary to the nucleotides in SEQ ID NOs: 3 or 4-489. The 17, 18, 19, 20, or 21 complementary nucleotides may be contiguous or may be interspersed with non-complementary nucleotides. The overall length of the shRNA, including the loop may be 40-50 nucleotides in length, e.g., 44-48 nucleotides, e.g., 48 nucleotides.


Methods of determining whether a sequence is specifically hybridizable to a target nucleic acid are well known in the art. In embodiments, the shRNA polynucleotides provided herein include a nucleic acid sequence specifically hybridizable with a RNA sequence transcribed from the UBE3A-ATS (SEQ ID NO: 1).


The shRNA may include an RNA polynucleotide containing a region of 17-21 linked nucleotides complementary to the RNA target sequence, wherein the RNA polynucleotide region is at least 85% complementary over its entire length to an equal length region of a UBE3A-ATS RNA nucleic acid sequence. In embodiments, the RNA polynucleotide region is at least 90%, at least 95%, or 100% complementary over its entire length to an equal length region of a UBE3A-ATS RNA nucleic acid sequence.


The shRNA may include a nucleotide sequence at least 85% complementary to, and of equal length as, a RNA sequence encoded by SEQ ID NO: 3 or any of SEQ ID NOs: 4-489. The shRNA may include a nucleotide sequence at least 90% complementary to, and of equal length as, a RNA sequence encoded by SEQ ID NO: 3 or any of SEQ ID NOs: 4-489. The shRNA may include a nucleotide at least 95% complementary to, and of equal length as, a RNA sequence encoded by SEQ ID NO: 3 or any of SEQ ID NOs: 4-489. The shRNA or microRNA may encompass a nucleotide sequence 100% complementary to, and of equal length as, a RNA sequence encoded by SEQ ID NO: 3 or any of SEQ ID NOs: 4-489.


In embodiments, the shRNA is a single-stranded RNA polynucleotide. In embodiments, the RNA polynucleotide is a modified RNA polynucleotide. A percent complementarity is used herein in the conventional sense to refer to base pairing between adenine and thymine, adenine and uracil (RNA), and guanine and cytosine.


Non-complementary nucleobases between a shRNA and an UBE3A-ATS nucleotide sequence may be tolerated provided that the shRNA remains able to specifically hybridize to a UBE3A-ATS nucleotide sequence. Moreover, a shRNA may hybridize over one or more segments of a UBE3A-ATS nucleotide sequence such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure, mismatch or hairpin structure).


In embodiments, the shRNA provided herein, or a specified portion thereof, are, or are at least, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% complementary to a UBE3A-ATS RNA nucleotide sequence, a UBE3A-ATS region, UBE3A-ATS segment, or specified portion thereof. Percent complementarity of a shRNA with an UBE3A-ATS nucleotide sequence can be determined using routine methods.


For example, a shRNA in which 18 of 20 nucleobases are complementary to a UBE3A-ATS region and would therefore specifically hybridize, would represent 90 percent complementarity. In this example, the remaining non-complementary nucleobases may be clustered or interspersed with complementary nucleobases and need not be contiguous to each other or to complementary nucleobases. As such, a shRNA which is 18 nucleobases in length having four non-complementary nucleobases which are flanked by two regions of complete complementarity with the target nucleotide sequence would have 77.8% overall complementarity with the target nucleotide sequence and would thus fall within the subject matter disclosed herein. Percent complementarity of a shRNA with a region of a UBE3A-ATS nucleotide sequence can be determined routinely using BLAST programs (basic local alignment search tools) and PowerBLAST programs known in the art (Altschul et al., J. Mol. Biol., 1990, 215, 403 410; Zhang and Madden, Genome Res., 1997, 7, 649 656). Percent homology, sequence identity or complementarity, can be determined by, for example, the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wis.), using default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482 489).


In embodiments, the shRNA provided herein, or specified portions thereof, are fully complementary (i.e., 100% complementary) to a UBE3A-ATS nucleotide sequence, or specified portion of the transcription product of SEQ ID NO: 1 thereof. For example, a shRNA may be fully complementary to a UBE3A-ATS nucleotide sequence, or a region, or a segment or sequence thereof. As used herein, “fully complementary” means each nucleobase of a shRNA is capable of precise base pairing with the corresponding RNA nucleobases transcribed from a UBE3A-ATS nucleotide sequence.


In embodiments, the shRNA provided herein can contain a portion of SEQ ID NO: 2, e.g., having the bold nucleotides, which has been shortened by one, two, three or four nucleotides at either end of the bold nucleotides. Likewise, in embodiments, the shRNA provided herein can contain a portion of SEQ ID NO: 2, e.g., having the italicized nucleotides, which has been shortened by one, two or three nucleotides at either end of the italicized nucleotides. For example,









(SEQ ID NO: 494)


5′-ATATCACCTTACAGAAATTACTCGAGTAATTTCTGTAAGGTGATA



T-3′






(SEQ ID NO: 495)


5′-TATCACCTTACAGAAATTACTCGAGTAATTTCTGTAAGGTGATA-3′





(SEQ ID NO: 496)


5′-ATCACCTTACAGAAATTACTCGAGTAATTTCTGTAAGGTGAT-3′





(SEQ ID NO: 497)


5′-TCACCTTACAGAAATTACTCGAGTAATTTCTGTAAGGTGA-3′





(SEQ ID NO: 498)


5′-GATATCACCTTACAGAAATTCTCGAGAATTTCTGTAAGGTGATA



TC-3′






(SEQ ID NO: 499)


5′-GATATCACCTTACAGAAATCTCGAGATTTCTGTAAGGTGATATC-3′





(SEQ ID NO: 500)


5′-GATATCACCTTACAGAACTCGAGTTCTGTAAGGTGATATC-3′





(SEQ ID NO: 501)


5′-GATATCACCTTACAGACTCGAGTCTGTAAGGTGATATC-3′.







Similarly, in embodiments, the sequences shown in any of SEQ ID NOs: 4-489 and/or their complements can be shortened by one, two, three or four nucleotides at either end and incorporated into shRNAs.


An effective concentration or dose of the shRNA may inhibit the silencing of paternal UBE3A by UBE3A ATS by at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 100%.


An effective concentration or dose of the shRNA may terminate transcription of UBE3A-ATS by at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 100%.


An effective concentration or dose of the shRNA may reduce steady-state levels of UBE3A-ATS by at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 100%.


An effective concentration or dose of the shRNA cut UBE3A-ATS and reduce it by at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 100%.


An effective concentration or dose of the shRNA may reduce expression of UBE3A-ATS by at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 100% and induce expression of paternal UBE3A by at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 100%.


As used herein, the terms “UBE3A-ATS” and “Ube3A-ATS” can be used interchangeably without capitalization of their spelling referring to any particular species or ortholog. “UBE3A” and “Ube3A” can be used interchangeably without capitalization of their spelling referring to any particular species or ortholog. Additionally, “UBE3A”, “UBE3A”, “Ube3A”, and “Ube3A” can be used interchangeably without italicization referring to nucleic acid or protein unless specifically indicated to the contrary.


Viral Vector

A “vector” is a replicon, such as a plasmid, phage, or cosmid, into which a DNA segment or an RNA segment may be inserted so as to bring about the replication of the inserted segment. Generally, a vector is capable of replication when associated with the proper control elements. Suitable vector backbones include, for example, those routinely used in the art such as plasmids, plasmids that contain a viral genome, viruses, or artificial chromosomes. The term “vector” includes cloning and expression vectors, as well as viral vectors and integrating vectors.


As will be evident to one of skill in the art, the term “viral vector” is widely used to refer to a nucleic acid molecule (e.g., a transfer plasmid) that includes viral nucleic acid elements that typically facilitate transfer of the nucleic acid molecule to a cell or to a viral particle that mediates nucleic acid sequence transfer and/or integration of the nucleic acid sequence into the genome of a cell.


Viral vectors contain structural and/or functional genetic elements that are primarily derived from a virus. The viral vector is desirably non-toxic, non-immunogenic, easy to produce, and efficient in protecting and delivering DNA or RNA into the target cells. According to the compositions and methods described herein a viral vector may contain the DNA that encodes one or more of the shRNAs described herein. In embodiments, the viral vector is a lentiviral vector or an adeno-associated viral (AAV) vector.


As used herein, the term “lentivirus” refers to a group (or genus) of complex retroviruses. Illustrative lentiviruses include, but are not limited to: HIV (human immunodeficiency virus; including HIV type 1, and HIV type 2); visna-maedi virus (VMV) virus; the caprine arthritis-encephalitis virus (CAEV); equine infectious anemia virus (EIAV); feline immunodeficiency virus (FIV); bovine immune deficiency virus (BIV); and simian immunodeficiency virus (SIV). As used herein, the term “lentivirus” includes lentivirus particles. Lentivirus will transduce dividing cells and postmitotic cells.


The term “lentiviral vector” refers to a viral vector (e.g., viral plasmid) containing structural and functional genetic elements, or portions thereof, including long terminal repeats (LTRs) that are primarily derived from a lentivirus. A lentiviral vector is a hybrid vector (e.g., in the form of a transfer plasmid) having retroviral, e.g., lentiviral, sequences for reverse transcription, replication, integration and/or packaging of nucleic acid sequences (e.g., coding sequences). The term “retroviral vector” refers to a viral vector (e.g., transfer plasmid) containing structural and functional genetic elements, or portions thereof, that are primarily derived from a retrovirus.


Adenoviral vectors are designed to be administered directly to a living subject. Unlike retroviral vectors, most of the adenoviral vector genomes do not integrate into the chromosome of the host cell. Instead, genes introduced into cells using adenoviral vectors are maintained in the nucleus as an extrachromosomal element (episome) that persists for an extended period of time. Adenoviral vectors will transduce dividing and non-dividing cells in many different tissues in vivo including airway epithelial cells, endothelial cells, hepatocytes, and various tumors (Trapnell, Advanced Drug Delivery, Reviews, 12 (1993) 185-199).


The term “adeno-associated virus” (AAV) refers to a small ssDNA virus which infects humans and some other primate species, not known to cause disease, and causes only a very mild immune response. As used herein, the term “AAV” is meant to include AAV particles. AAV can infect both dividing and non-dividing cells and may incorporate its genome into that of the host cell. These features make AAV an attractive candidate for creating viral vectors for gene therapy, although the cloning capacity of the vector is relatively limited. In embodiments, the vector used is derived from adeno-associated virus (i.e., AAV vector). More than 30 naturally occurring serotypes of AAV are available. Many natural variants in the AAV capsid exist, allowing identification and use of an AAV with properties specifically suited for specific types of target cells. AAV viruses may be engineered by conventional molecular biology techniques, making it possible to optimize these particles for cell specific delivery of shRNA DNA sequences, for minimizing immunogenicity, for tuning stability and particle lifetime, for efficient degradation, for accurate delivery to the nucleus, etc.


An “expression vector” is a vector that includes a regulatory region. Numerous vectors and expression systems are commercially available from such corporations as Novagen (Madison, Wis.), Clontech (Palo Alto, Calif), Stratagene (La Jolla, Calif.), and Invitrogen/Life Technologies (Carlsbad, Calif). An expression vector may be a viral expression vector derived from a particular virus.


The vectors provided herein also can include, for example, origins of replication, scaffold attachment regions (SARs), and/or markers. A marker gene can confer a selectable phenotype on a host cell. For example, a marker can confer biocide resistance, such as resistance to an antibiotic (e.g., kanamycin, G418, bleomycin, or hygromycin). An expression vector can include a tag sequence designed to facilitate manipulation or detection (e.g., purification or localization) of the expressed polypeptide. Tag sequences, such as green fluorescent protein (GFP), glutathione S-transferase (GST), polyhistidine, c-myc, hemagglutinin, or FIag™ tag (Kodak, New Haven, Conn.) sequences typically are expressed as a fusion with the encoded polypeptide. Such tags can be inserted anywhere within the polypeptide, including at either the carboxyl or amino terminus.


Additional expression vectors also can include, for example, segments of chromosomal, non-chromosomal and synthetic DNA sequences. Suitable vectors include derivatives of pLK0.1 puro, SV40 and, plasmids such as RP4; phage DNAs, e.g., the numerous derivatives of phage 1, e.g., NM989, and other phage DNA, e.g., M13 and filamentous single stranded phage DNA, vectors useful in eukaryotic cells, such as vectors useful in insect or mammalian cells, vectors derived from combinations of plasmids and phage DNAs, such as plasmids that have been modified to employ phage DNA or other expression control sequences.


The vector can also include a regulatory region. The term “regulatory region” refers to nucleotide sequences that influence transcription or translation initiation and rate, and stability and/or mobility of a transcription or translation product. Regulatory regions include, without limitation, promoter sequences, enhancer sequences, response elements, protein recognition sites, inducible elements, protein binding sequences, 5′ and 3′ untranslated regions (UTRs), transcriptional start sites, termination sequences, polyadenylation sequences, nuclear localization signals, and introns.


As used herein, the term “operably linked” refers to positioning of a regulatory region and a sequence to be transcribed in a nucleic acid so as to influence transcription or translation of such a sequence. For example, to bring a coding sequence under the control of a promoter, the translation initiation site of the translational reading frame of the polypeptide is typically positioned between one and about fifty nucleotides downstream of the promoter. A promoter can, however, be positioned as much as about 5,000 nucleotides upstream of the translation initiation site or about 2,000 nucleotides upstream of the transcription start site. A promoter typically includes at least a core (basal) promoter. A promoter also may include at least one control element, such as an enhancer sequence, an upstream element or an upstream activation region (UAR). The choice of promoters to be included depends upon several factors, including, but not limited to, efficiency, selectability, inducibility, desired expression level, and cell- or tissue-preferential expression. Modulation of the expression of a coding sequence can be accomplished by appropriately selecting and positioning promoters and other regulatory regions relative to the coding sequence.


Vectors can also include other components or functionalities that further modulate gene delivery and/or gene expression, or that otherwise provide beneficial properties to the targeted cells. As described and illustrated in more detail below, such other components include, for example, components that influence binding or targeting to cells (including components that mediate cell-type or tissue-specific binding); components that influence uptake of the vector nucleic acid by the cell; components that influence localization of the polynucleotide within the cell after uptake (such as agents mediating nuclear localization); and components that influence expression of the polynucleotide. Such components also might include markers, such as detectable and/or selectable markers that can be used to detect or select for cells that have taken up and are expressing the nucleic acid delivered by the vector. Such components can be provided as a natural feature of the vector (such as the use of certain viral vectors which have components or functionalities mediating binding and uptake), or vectors can be modified to provide such functionalities. Other vectors include those described by Chen et al; BioTechniques, 34: 167-171 (2003). A large variety of such vectors are known in the art and are generally available.


A “recombinant viral vector” refers to a viral vector including one or more heterologous gene products or sequences. Since many viral vectors exhibit size-constraints associated with packaging, the heterologous gene products or sequences are typically introduced by replacing one or more portions of the viral genome. Such viruses may become replication-defective, requiring the deleted function(s) to be provided in trans during viral replication and encapsidation (by using, e.g., a helper virus or a packaging cell line carrying gene products necessary for replication and/or encapsidation).


In embodiments, the viral vector used herein will be used, e.g., at a concentration of at least 105 viral genomes per cell.


The selection of appropriate promoters can readily be accomplished. Examples of suitable promoters include RNA polymerase II or III promoters. For example, candidate shRNA sequences may be expressed under control of RNA polymerase III promoters U6 or H1, or neuron-specific RNA polymerase II promoters including neuron-specific enolase (NSE), synapsin I (Syn), or the Ca2+/CaM-activated protein kinase II alpha (CaMKIIalpha).


Other suitable promoters which may be used for gene expression include, but are not limited to, the 763-base-pair cytomegalovirus (CMV) promoter, the Rous sarcoma virus (RSV) (Davis, et al., Hum Gene Ther 4:151 (1993)), the SV40 early promoter region, the herpes thymidine kinase promoter, the regulatory sequences of the metallothionein (MMT) gene, PGK (phosphoglycerol kinase) promoter, alkaline phosphatase promoter; and the animal transcriptional control regions, which exhibit tissue specificity and have been utilized in transgenic animals: myelin basic protein gene control region which is active in oligodendrocyte cells in the brain, and gonadotropic releasing hormone gene control region which is active in the hypothalamus. Certain proteins can be expressed using their native promoter. Other elements that can enhance expression can also be included such as an enhancer or a system that results in high levels of expression such as a tat gene and tar element. The assembly or cassette can then be inserted into a vector, e.g., a plasmid vector such as, pLK0.1, pUC19, pUC118, pBR322, or other known plasmid vectors. See, Sambrook, et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory press, (1989). The plasmid vector may also include a selectable marker such as the β-lactamase gene for ampicillin resistance, provided that the marker polypeptide does not adversely affect the metabolism of the organism being treated. The cassette can also be bound to a nucleic acid binding moiety in a synthetic delivery system, such as the system disclosed in WO 95/22618.


Coding sequences for shRNA can be cloned into viral vectors using any suitable genetic engineering technique well known in the art, including, without limitation, the standard techniques of PCR, polynucleotide synthesis, restriction endonuclease digestion, ligation, transformation, plasmid purification, and DNA sequencing, as described in Sambrook et al. (Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, N.Y. (1989)), Coffin et al. (Retroviruses. Cold Spring Harbor Laboratory Press, N.Y. (1997)) and “RNA Viruses: A Practical Approach” (Alan J. Cann, Ed., Oxford University Press, (2000)). In embodiments, the shRNA DNA sequences contain flanking sequences on the 5′ and 3′ ends that are complementary with sequences on the plasmid and/or vector that is cut by a restriction endonuclease. As is well known in the art, the flanking sequences depend on the restriction endonucleases used during the restriction digest of the plasmid and/or vector. Thus, one of skill in the art can select the flanking sequences on the 5′ and 3′ ends of the shRNA DNA sequences accordingly. In embodiments, the target sites can be cloned into vectors by nucleic acid fusion and exchange technologies currently known in the art, including, Gateway, PCR in fusion, Cre-lox P, and Creator.


In embodiments, an expression vector includes a promoter and a polynucleotide including a first nucleotide sequence encoding a shRNA described herein. In embodiments, the promoter and the polynucleotide including the first nucleotide sequence are operably linked. In embodiments, the promoter is a U6 promoter. In embodiments, the first nucleotide sequence included in the expression vector may be SEQ ID NO: 2. In embodiments, the first nucleotide sequence included in the expression vector may also be a modified SEQ ID NO: 2 having the bold nucleotides in SEQ ID NO: 2 replaced by any of SEQ ID NOs: 4-489 and the italicized nucleotides in SEQ ID NO: 2 replaced by nucleotides complementary to those in SEQ ID NOs: 4-489. In embodiments, the first nucleotide sequence included in the expression vector may be any of SEQ ID Nos: 490-497. In embodiments, the polynucleotide including the first nucleotide sequence in the expression vector is a DNA polynucleotide. In embodiments, the first nucleotide sequence of the expression vector is a DNA nucleotide sequence. The shRNA encoded by the first nucleotide sequence of the expression vector may be as described in any of the variations disclosed herein.


As discussed below, recombinant viral vectors are transfected into packaging cells or cell lines, along with elements required for the packaging of recombinant viral particles. Recombinant viral particles collected from transfected cell supernatant are used to infect target cells or organisms for the expression of shRNAs. The transduced cells or organisms are used for transient expression or selected for stable expression.


Virus/Viral Particle

Viral particles are used to deliver coding nucleotide sequences for the shRNAs which target UBE3A-ATS RNA. The terms virus and viral particles are used interchangeably herein. Viral particles will typically include various viral components and sometimes also host cell components in addition to nucleic acid(s). Nucleic acid sequences may be packaged into a viral particle that is capable of delivering the shRNA nucleic acid sequences into the target cells in the patient in need.


The viral particles may be produced by (a) introducing a viral expression vector into a suitable cell line; (b) culturing the cell line under suitable conditions so as to allow the production of the viral particle; (c) recovering the produced viral particle; and (d) optionally purifying the recovered infectious viral particle.


An expression vector containing the nucleotide sequence encoding one or more of the shRNAs herein may be introduced into an appropriate cell line for propagation or expression using well-known techniques readily available to the person of ordinary skill in the art. These include, but are not limited to, microinjection of minute amounts of DNA into the nucleus of a cell (Capechi et al., 1980, Cell 22, 479-488), CaPO4-mediated transfection (Chen and Okayama, 1987, Mol. Cell Biol. 7, 2745-2752), DEAE-dextran-mediated transfection, electroporation (Chu et al., 1987, Nucleic Acid Res. 15, 1311-1326), lipofection/liposome fusion (Feigner et al., 1987, Proc. Natl. Acad. Sci. USA 84, 7413-7417), particle bombardment (Yang et al., 1990, Proc. Natl. Acad. Sci. USA 87, 9568-9572), gene guns, transduction, infection (e.g. with an infective viral particle), and other techniques such as those found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001).


In embodiments, where an expression vector is defective, infectious particles can be produced in a complementation cell line or via the use of a helper virus, which supplies in trans the non-functional viral genes. For example, suitable cell lines for complementing adenoviral vectors include the 293 cells (Graham et al., 1997, J. Gen. Virol. 36, 59-72) as well as the PER-C6 cells (Fallaux et al., 1998, Human Gene Ther. 9, 1909-1917) commonly used to complement the E1 function. Other cell lines have been engineered to complement doubly defective adenoviral vectors (Yeh et al., 1996, J. Virol. 70, 559-565; Krougliak and Graham, 1995, Human Gene Ther. 6, 1575-1586; Wang et al., 1995, Gene Ther. 2, 775-783; Lusky et al., 1998, J. Virol. 72, 2022-2033; WO94/28152 and WO97/04119). The infectious viral particles may be recovered from the culture supernatant but also from the cells after lysis and optionally are further purified according to standard techniques (chromatography, ultracentrifugation in a cesium chloride gradient as described for example in WO 96/27677, WO 98/00524, WO 98/22588, WO 98/26048, WO 00/40702, EP 1016700 and WO 00/50573).


In embodiments, provided herein are host cells which include the nucleic acid molecules, vectors, or infectious viral particles described herein. The term “host cell” should be understood broadly without any limitation concerning particular organization in tissue, organ, or isolated cells. Such cells may be of a unique type of cells or a group of different types of cells and encompass cultured cell lines, primary cells, and proliferative cells.


Host cells therefore include prokaryotic cells, lower eukaryotic cells such as yeast, and other eukaryotic cells such as insect cells, plant and higher eukaryotic cells, such as vertebrate cells and, with a special preference, mammalian (e.g., human or non-human) cells. Suitable mammalian cells include but are not limited to hematopoietic cells (totipotent, stem cells, leukocytes, lymphocytes, monocytes, macrophages, APC, dendritic cells, non-human cells and the like), pulmonary cells, tracheal cells, hepatic cells, epithelial cells, endothelial cells, muscle cells (e.g., skeletal muscle, cardiac muscle or smooth muscle) or fibroblasts. For example, host cells can include Escherichia coli, Bacillus, Listeria, Saccharomyces, BHK (baby hamster kidney) cells, MDCK cells (Madin-Darby canine kidney cell line), CRFK cells (Crandell feline kidney cell line), CV-1 cells (African monkey kidney cell line), COS (e.g., COS-7) cells, chinese hamster ovary (CHO) cells, mouse NIH/3T3 cells, HeLa cells and Vero cells. Host cells also encompass complementing cells capable of complementing at least one defective function of a replication-defective vector utilizable herein (e.g., a defective adenoviral vector) such as those cited above.


In embodiments, the host cell may be encapsulated. Cell encapsulation technology has been previously described (Tresco et al., 1992, ASAJO J. 38, 17-23; Aebischer et al., 1996, Human Gene Ther. 7, 851-860). For example, transfected or infected eukaryotic host cells can be encapsulated with compounds which form a microporous membrane and said encapsulated cells may further be implanted in vivo. Capsules containing the cells of interest may be prepared employing hollow microporous membranes (e.g. Akzo Nobel Faser AG, Wuppertal, Germany; Deglon et al. 1996, Human Gene Ther. 7, 2135-2146) having a molecular weight cutoff appropriate to permit the free passage of proteins and nutrients between the capsule interior and exterior, while preventing the contact of transplanted cells with host cells


Viral particles suitable for use herein include AAV particles and lentiviral particles. AAV particles carry the coding sequences for shRNAs herein in the form of genomic DNA. Lentiviral particles, on the other hand, belong to the class of retroviruses and carry the coding sequences for shRNAs herein in the form of RNA.


Recombinantly engineered viral particles such as AAV particles, artificial AAV particles, self-complementary AAV particles, and lentiviral particles that contain the DNA (or RNA in the case of lentiviral particles) encoding the shRNAs targeting UBE3A ATS RNA may be delivered to target cells to inhibit the silencing of UBE3A by UBE3A-ATS. The use of AAVs is a common mode of delivery of DNA as it is relatively non-toxic, provides efficient gene transfer, and can be easily optimized for specific purposes. In embodiments, the selected AAV serotype has native neurotropisms. In embodiments, the AAV serotype is AAV9 or AAV10.


A suitable recombinant AAV can be generated by culturing a host cell which contains a nucleotide sequence encoding an AAV serotype capsid protein, or fragment thereof, as defined herein; a functional rep gene; a minigene composed of, at a minimum, AAV inverted terminal repeats (ITRs) and a coding nucleotide sequence; and sufficient helper functions to permit packaging of the minigene into the AAV capsid protein. The components required to be cultured in the host cell to package an AAV minigene in an AAV capsid may be provided to the host cell in trans. Alternatively, any one or more of the required components (e.g., minigene, rep sequences, cap sequences, and/or helper functions) may be provided by a stable host cell which has been engineered to contain one or more of the required components using methods known to those of skill in the art.


Unless otherwise specified, the AAV inverted terminal repeats (ITRs), and other selected AAV components described herein, may be readily selected from among any AAV serotype, including, without limitation, AAV1, AAV2, AAV3, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAVRec3 or other known and unknown AAV serotypes. These ITRs or other AAV components may be readily isolated using techniques available to those of skill in the art from an AAV serotype. Such AAV may be isolated or obtained from academic, commercial, or public sources (e.g., the American Type Culture Collection, Manassas, Va.). Alternatively, the AAV sequences may be obtained through synthetic or other suitable means by reference to published sequences such as are available in the literature or in databases such as, e.g., GenBank, PubMed, or the like.


The minigene, rep sequences, cap sequences, and helper functions required for producing a rAAV herein may be delivered to the packaging host cell in the form of any genetic element which transfers the sequences carried thereon. The selected genetic element may be delivered by any suitable method. The methods used to construct embodiments herein are known to those with skill in nucleic acid manipulation and include genetic engineering, recombinant engineering, and synthetic techniques. See, e.g., Sambrook et al, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. Similarly, methods of generating rAAV virions are well known and the selection of a suitable method is not a limitation. See, e.g., K. Fisher et al, 1993 J. Viral., 70:520-532 and U.S. Pat. No. 5,478,745, among others. All citations herein are incorporated by reference herein.


Selection of these and other common vector and regulatory elements are conventional and many such sequences are available. See, e.g., Sambrook et al, and references cited therein at, for example, pages 3.18-3.26 and 16.17-16.27 and Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, 1989). Of course, not all vectors and expression control sequences will function equally well to express all of the transgenes herein. However, one of skill in the art may make a selection among these, and other, expression control sequences.


Pharmaceutical Compositions and Therapeutic Treatment

The virus including the desired coding sequences for the shRNA, can be formulated for administration to a patient or human in need by any means suitable for administration. Such formulation involves the use of a pharmaceutically and/or physiologically acceptable vehicle or carrier, particularly one suitable for administration to the brain, e.g., by subcranial or spinal injection. Further, more than one shRNA herein may be administered in a combination treatment. In a combination treatment, the different shRNAs may be administered simultaneously, separately, sequentially, and in any order.


Pharmaceutical compositions herein include a carrier and/or diluent appropriate for its delivering by injection to a human or animal organism. Such carrier and/or diluent should be generally non-toxic at the dosage and concentration employed. It can be selected from those usually employed to formulate compositions for parental administration in either unit dosage or multi-dose form or for direct infusion by continuous or periodic infusion. In embodiments, it is isotonic, hypotonic or weakly hypertonic and has a relatively low ionic strength, such as provided by sugars, polyalcohols and isotonic saline solutions. Representative examples include sterile water, physiological saline (e.g., sodium chloride), bacteriostatic water, Ringer's solution, glucose or saccharose solutions, Hank's solution, and other aqueous physiologically balanced salt solutions (see for example the most current edition of Remington: The Science and Practice of Pharmacy, A. Gennaro, Lippincott, Williams & Wilkins). The pH of the composition is suitably adjusted and buffered in order to be appropriate for use in humans or animals, e.g., at a physiological or slightly basic pH (between about pH 8 to about pH 9, with a special preference for pH 8.5). Suitable buffers include phosphate buffer (e.g., PBS), bicarbonate buffer and/or Tris buffer. In embodiments, e.g., a composition is formulated in 1M saccharose, 150 mM NaCl, 1 mM MgCl2, 54 mg/l Tween 80, 10 mM Tris pH 8.5. In embodiments, e.g., a composition is formulated in 10 mg/ml mannitol, 1 mg/ml HSA, 20 mM Tris, pH 7.2, and 150 mM NaCl. These compositions are stable at −70° C. for at least six months.


Pharmaceutical compositions herein may be in various forms, e.g., in solid (e.g. powder, lyophilized form), or liquid (e.g. aqueous). In the case of solid compositions, methods of preparation are, e.g., vacuum drying and freeze-drying which yields a powder of the active agent plus any additional desired ingredient from a previously sterile-filtered solution thereof. Such solutions can, if desired, be stored in a sterile ampoule ready for reconstitution by the addition of sterile water for ready injection.


Nebulized or aerosolized formulations are also suitable. Methods of intranasal administration are well known in the art, including the administration of a droplet, spray, or dry powdered form of the composition into the nasopharynx of the individual to be treated from a pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer (see for example WO 95/11664). Enteric formulations such as gastroresistant capsules and granules for oral administration, suppositories for rectal or vaginal administration may also be suitable. For non-parental administration, the compositions can also include absorption enhancers which increase the pore size of the mucosal membrane. Such absorption enhancers include sodium deoxycholate, sodium glycocholate, dimethyl-beta-cyclodextrin, lauroyl-1-lysophosphatidylcholine and other substances having structural similarities to the phospholipid domains of the mucosal membrane.


The composition can also contain other pharmaceutically acceptable excipients for providing desirable pharmaceutical or pharmacodynamic properties, including for example modifying or maintaining the pH, osmolarity, viscosity, clarity, color, sterility, stability, rate of dissolution of the formulation, modifying or maintaining release or absorption into an the human or animal organism. For example, polymers such as polyethylene glycol may be used to obtain desirable properties of solubility, stability, half-life and other pharmaceutically advantageous properties (Davis et al., 1978, Enzyme Eng. 4, 169-173; Burnham et al., 1994, Am. J. Hosp. Pharm. 51, 210-218). Representative examples of stabilizing components include polysorbate 80, L-arginine, polyvinylpyrrolidone, trehalose, and combinations thereof. Other stabilizing components especially suitable in plasmid-based compositions include hyaluronidase (which is thought to destabilize the extra cellular matrix of the host cells as described in WO 98/53853), chloroquine, protic compounds such as propylene glycol, polyethylene glycol, glycerol, ethanol, 1-methyl L-2-pyrrolidone or derivatives thereof, aprotic compounds such as dimethylsulfoxide (DMSO), diethylsulfoxide, di-n-propylsulfoxide, dimethylsulfone, sulfolane, dimethyl-formamide, dimethylacetamide, tetramethylurea, acetonitrile (see EP 890 362), nuclease inhibitors such as actin G (WO 99/56784) and cationic salts such as magnesium (Mg2+) (EP 998 945) and lithium (Lit) (WO 01/47563) and any of their derivatives. The amount of cationic salt in the composition herein preferably ranges from about 0.1 mM to about 100 mM, and still more preferably from about 0.1 mM to about 10 mM. Viscosity enhancing agents include sodium carboxymethylcellulose, sorbitol, and dextran. The composition can also contain substances known in the art to promote penetration or transport across the blood barrier or membrane of a particular organ (e.g., antibody to transferrin receptor; Friden et al., 1993, Science 259, 373-377). A gel complex of poly-lysine and lactose (Midoux et al., 1993, Nucleic Acid Res. 21, 871-878) or poloxamer 407 (Pastore, 1994, Circulation 90, 1-517) may be used to facilitate administration in arterial cells.


The viral particles and pharmaceutical compositions may be administered to patients in therapeutically effective amounts. As used herein, the term “therapeutically effective amount” refers to an amount sufficient to realize a desired biological effect. For example, a therapeutically effective amount for treating Angelman's syndrome is an amount sufficient to ameliorate one or more symptoms of Angelman's syndrome, as described herein (e.g., developmental delay, severe cognitive impairment, ataxic gait, frequent seizures, short attention span, absent speech, and characteristic happy demeanor). Further, AS iPSC-derived neurons exhibit a depolarized resting membrane potential, delayed action potential development, and reduced spontaneous synaptic activity. Thus, a therapeutically effective amount for treating AS may return the neuronal resting membrane potential to about −70 mV, ameliorate the action potential development delay, increase spontaneous synaptic activity, or ameliorate additional alterations in the neuronal phenotype relating to rheobase, action potential characteristics (e.g., shape), membrane current, synaptic potentials, ion channel conductance, etc.


The appropriate dosage may vary depending upon known factors such as the pharmacodynamic characteristics of the particular active agent, age, health, and weight of the host organism; the condition(s) to be treated, nature and extent of symptoms, kind of concurrent treatment, frequency of treatment, the need for prevention or therapy and/or the effect desired. The dosage will also be calculated dependent upon the particular route of administration selected. Further refinement of the calculations necessary to determine the appropriate dosage for treatment can be made by a practitioner, in the light of the relevant circumstances. For general guidance, a composition based on viral particles may be formulated in the form of doses of, e.g., at least 105 viral genomes per cell. The titer may be determined by conventional techniques. A composition based on vector plasmids may be formulated in the form of doses of between 1 μg to 100 mg, e.g., between 10 μg and 10 mg, e.g., between 100 μg and 1 mg. The administration may take place in a single dose or a dose repeated one or several times after a certain time interval.


Pharmaceutical compositions herein can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic. In all cases, the composition should be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and preserved against the contaminating action of microorganisms such as bacteria and fungi. Sterile injectable solutions can be prepared by incorporating the active agent (e.g., infectious particles) in the required amount with one or a combination of ingredients enumerated above, followed by filtered sterilization.


The viral particles and pharmaceutical compositions herein may be administered by a parenteral route including intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion, intrathecal or intracranial, e.g., intracerebral or intraventricular, administration. In embodiments, viral particles or pharmaceutical compositions are administered intracerebrally or intracerebroventricularly. In embodiments, the viral particles or pharmaceutical compositions herein are administered intrathecally.


In embodiments, the viral particles and a pharmaceutical composition described above are administered to the subject by subcranial injection into the brain or into the spinal cord of the patient or human in need. In embodiments, the use of subcranial administration into the brain results in the administration of the encoding nucleotide sequences described herein directly to brain cells, including glia and neurons. As used herein, the term “neuron” refers to any cell in, or associated with, the function of the brain. The term may refer to any one the types of neurons, including unipolar, bipolar, multipolar and pseudo-unipolar.


EXAMPLES
shRNA Vector Generation and Lentiviral Preparation

Oligonucleotides encoding shRNAs were cloned into the pLKO.1-puro vector, which drives expression of the small RNA by the U6 promoter (Addgene plasmid #8453). Specifically, the polynucleotides to generate shRNAs encompassed the specific 21-nucleotide sequence to be targeted and its reverse complement, separated by a loop sequence of CTCGAG, and with a 5′ flank sequence of CCGG and a 3′ flank sequence of TTTTTG added for cloning into the plasmid vector. The following oligonucleotides encoding shRNAs as well as a scrambled shRNA control were utilized:









551 shRNA 2 (“551-2”) (SEQ ID NO: 502):


(5′-TGCTCTTCTTTCTACTTTATTCTCGAGAATAAAGTAGAAAGAAGA



GCA-3′);






ATS-shRNA1 (SEQ ID NO: 503):


(5′-CTCAATCCAATAACCTAATTTCTCGAGAAATTAGGTTATTGGATT



GAG-3′);






ATS-shRNA2 (SEQ ID NO: 2):


(5′-GATATCACCTTACAGAAATTACTCGAGTAATTTCTGTAAGGTGAT



ATC-3′);






ATS-shRNA3 (SEQ ID NO: 504):


(5′-TTAGTCACATCCCACAAATTTCTCGAGAAATTTGTGGGATGTGAC



TAA-3′);






ATS-shRNA4 (SEQ ID NO: 505):


(5′-TCCTAGGTCATAATGATAATTCTCGAGAATTATCATTATGACCTA



GGA-3′).








Cloning was verified by Sanger sequencing. Lentiviral particles were produced from cloned shRNAs in HEK293T cells using second generation lentiviral packaging plasmids (psPAX2, Addgene plasmid #12260; pMD2.G, Addgene plasmid #12259) and concentrated using the Lenti-X Concentrator Kit (Takara). Lentiviral titer was estimated using a qPCR kit detecting the 5′LTR (Applied Biological Materials).


Stem Cell Culture and Neuronal Differentiation

Angelman syndrome (AS) induced pluripotent stem cells (iPSCs) and human embryonic stem cells (hESCs) were maintained under feeder-free conditions on Matrigel-coated substrates (Corning) in mTeSR-plus medium (Stem Cell Technologies). iPSCs/hESCs were cultured in at 37° C. in a humid incubator at 5% CO2. Cells were fed daily and passaged using 0.5 mM EDTA every four-five days. Glutamatergic neurons were generated from iPSCs/hESCs by doxycycline inducible expression of the human neurogenin2 (NGN2) transgene (Fernandopulle et al., 2018, Curr Protoc Cell Biol. 79(1): e51). Briefly, the doxycycline-inducible NGN2 construct was stably integrated into the safe-harbor AAVS1 locus of AS iPSCs/hESCs using a pair of AAVS1 targeting TALENS and clonal cell lines were subsequently derived. Neuronal induction was then carried out by culturing these iPSCs/hESCs in Neural Induction Media consisting of DMEM/F12, N2 Supplement, Non-essential amino acids (NEAA), L-glutamine (all Gibco products), and 2 ug/mL doxycycline for three days. Neurons were then plated for terminal maturation in Cortical Neuron Medium consisting of DMEM/F12, Neurobasal Medium, B27 Supplement, Penicillin/Streptomycin (all Gibco products), BDNF (long/mL), GDNF (long/mL), NT-3 (long/mL), and Laminin (1 ug/mL). Human iPSC/ESC-derived NGN2-induced neurons (7-10 days post-induction) were transduced with lentiviral particles at an MOI of 10.


Quantitative RT-PCR (qRT-PCR) Analysis

Neurons were collected for RNA isolation and qRT-PCR 7 days after viral transduction. Total RNA was isolated from iPSC-derived neurons using RNA-STAT60 (AMS Biotechnology) according to the manufacturer's protocol. cDNA was produced using the High Capacity cDNA Reverse Transcription Kit (Life Technologies). Gene expression analysis was performed at least in triplicate. All qPCR assays used were TaqMan Gene Expression Assays (Life Technologies). Ct values for each gene were normalized to the house keeping gene GAPDH. Relative expression was quantified as 2{circumflex over ( )}−ΔΔCt relative to the calibrator sample.


Data Summary and Results

AS iPSC-derived neurons were transduced with lentiviral particles to express the selected shRNA sequences targeting the SNHG14 long non-coding RNA. qRT-PCR was used to determine the expression of UBE3A-ATS, the SNORD115 host gene, and UBE3A in SNHG14-shRNA-treated neurons relative to neurons treated with a non-targeting control shRNA (SCRAM). FIGS. 4 and 5 reflect qRT-PCR analysis of AS iPSC-derived neurons following treatment with either SNHG14-targeting shRNAs (551-2, ATS shRNA1-4, ATS shRNA2_3G) or non-targeting control shRNA (SCRAM). Expression of UBE3A-ATS, UBE3A, and SNORD115 were normalized to the housekeeping gene GAPDH, and expression is presented relative to SCRAM-shRNA treated neurons. Error bars represent standard error of the mean, n=3 biological replicates. As shown in FIGS. 4 and 5, select SNHG14 shRNAs effectively reduced RNA levels of UBE3A ATS (55%-60% reduction) and SNORD115 (45%-50% reduction) compared to SCRAM controls. This reduction in SNHG14 transcript levels was associated with a robust increase in UBE3A RNA (5- to 9-fold increase over SCRAM controls). Although ATS shRNA-1, ATS shRNA-3 and ATS shRNA-4 were predicted to reduce RNA levels of UBE3A ATS and SNORD115 and increase UBE3A expression, they did not have that effect.


It is understood that the foregoing detailed description and accompanying examples are merely illustrative and are not to be taken as limitations upon the scope of the subject matter described herein, which is defined solely by the appended claims and their equivalents. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art. Such changes and modifications, including without limitation those relating to the chemical structures, substituents, derivatives, intermediates, syntheses, compositions, formulations, or methods of use, may be made without departing from the spirit and scope thereof.












Sequences















SEQ ID NO: 1


Human UBE3A-ATS genomic sequence.


TGAGATGACCTAAACAACTGTGGAGAATCATTGATATATTTCCTTTTTTCACTGTTCATGTTGG


GTGAAAATAATCTTGTAGTGAAATTCACATGTTCTAAATATTGTTTTTTTACATCTTTATCTGG


CACATTCATAACATAGATGTTTCTATACATATTAGTACTGTAATCATACCATATATTATTCTGT


TACCCCACTTACTCCTTAAACTTTTAGTTAATTAAAGAGTTTTTATAAAGTCCCCCAATAGATT


TTTTTTTTTTGAGACATAGTCTCACTCTGTTGCCCAGGCTGGAGTGCAGTGGCGTGATTTTGGC


TCACTGCAACCTCCCCATCCTGGGTTCAAGCAATTCTCCTGCCTCAGCCTGCCAAGTAGCTGGG


ATTACAGGTGCCTGCCACCACGCCCGACTAATTTTTGTATTTTCAGTAGTGACAGGGTTTCACC


ATCTTGGCCAGGCTGGTCTTGAACTCCTGACCTCGTGATCCACCCGCCTTGGCCTCTCAGAGTG


CTAGGATTACAGGCTTGAGCCACTGCACCCGGCCAGATTTTAATCTAATTTTATTAGAACAATT


CAGTCATATGTTTTTTCATGCTATGTATATGAGAGTTCCATTATTCAGATACTAAACAAATGTC


TACTGTACATTTACTGTTCTCACTGATGATGCATTAGATAACCATGCACAAAATAAGCCTGGCT


GTGGAAACGCTTATTTGTTGGGAGGGTGCTTGTTTGGATCGATGATGAGAATAATTGTCTGAGG


ATGCTGAGGGACTCATTCCAGATGTCAATCTGAGGTCCAGATGTGCGGCCCTCCAATAGGACAA


ATAAGACTCTCAGAGCCTGGCTCTATTTGGGGATCCCTCAGTGACAACATAGTACCCCTGTGAG


CGTGCCTTTTCTATCTCTTCGAAGAGGGCAGTGGCATCCTGTCTTATGAGTCAGTGTGCACTTT


AGTGTGCCTAGTGACCCAAGACTTGCTTTAATTGTAGATAGATACTTACATATAGGAAATATTT


CTTAAGTAACAAATGAAAAACTTTAGAAGATTGAATTAAGGGTCAAGCAACTGTGATATGTCTG


AAAATCTCATTAGTGTTGTGCTGAAAGAAGGAAATATGGCATGCCTCTATTAAATAATGACAGT


GGAACCAAGTTTATTGCTTTGTTATTTTTACTGTGGAGTATTTTCTAAGATTATTTTTGCTTTT


TTTTTCTTTCATGTTTTGCTGAGATAGAAGGCCTGGAATCTGATCCTCCACTTCAGAGAACAGG


GGTGAGTAGCTAAGCCATTATCTTTTGAAATTCATATGTCATGTGCTCTTTGCTAGGTCTTTAG


GTCGTTTTGTACATCTTTTCAGAAGCTTATTGGAGGACATTTTCATGATATGTCCTTTTCCTCA


TTGAGACCCTCACCATGTCACCTACACTATTGAATCCTTATCATTTCTCTTTTAATTTTAACTC


TCTTTTGCTTTTATGGAAAAATGTAGAATTTAAGAGAATTTTTGGCAATTTCATATTGGATCAA


AATGTATTGTAGTGAAATCCAGGTGTGCCAAAATATTAACAGATTTTCCCCATCTGTTTAATTA


TTGGGGTTTCAGAATAGAGACTCCATGGTTCATAATATCTTTGTGGTCATACTACATTATATTT


CTGCTTCTAATTTAATTATTAAATATTGACTTGAATTAGTCTTTTCCTCATTGTTGCAACAAGG


TAAGTTATATAGGAAATTTTCTTCTCTTGATGGCATGTCTGAGATAATCATAGATATAAGACAC


CTGGCTGGTTTCTAGAATGCATGTAATTTTTATTTCTTGATCTGTGTGTTGAGTACTTGCTGTG


ATTGCATCATGCAAATACATTGAGCTTTACAATTTTAGTGTATGCACTTTTCTACATGTATATT


ATTCTTCGATAGAAAGTAAAAAAAACTTATCGAACTAGTCAAAATATTGGTTAATACATAAAAA


AAGTCTCAAGTAGATTGTGTATTACATGGTGCTTGTTGATTGATGCCCTCATAATAGATCAAGT


GGGTTCTCTCTTTAGCACAGGGCTTTTTAGCAAATCATGTCATGAGTAGTTACTCAAGTATTTT


TATTTTAACACATTTATATTTTTTCTATGTATATTCTTAAATTCTCTTATACTTTTTTCTCTGT


TATAAAAACATGCTGAACAATCTCAAGTCTTAAGGATTGCAGTATTGTCCCCACATATTCATGT


ATTTTGGTACTCAATTCTTTATACTTTCTTTGACAGATCACTTGAACTGGCACATGTCTCTTGT


TTTGCAGAGAGGGAATTAATGTGATACCTTCATGCTTTTCTATTCTATGTGCTACATAATTGAA


TATACAAGCAAATATAGTTGTTAAGATTTAGTGTGATTATTTCTACACCACATGCAAAGAAGTT


TCTCATAGATCTTAATAGAGGCCCACATGCATTGTACAGTTTAGAATTTGGGGAAATATTGATG


AAGTTGGGTAAAGTATAAAGCCAAAAGTCAGAACAGTGAACTCCTTGCTTAAGGATTTCCTTGG


AGATTACTTAGTCAATACACAACTGATAAATTTAAGTGCTTTTCACCTTTTGAGTTCTCGACAT


ACTAAAGCTAAAATGTGTTTCAACTTTTAATCCTGCTTCCCTGATTTTCCCTTTTTTAGTCTGA


GATCAAAGAGTTTCAGCCATAAATTACTGCCAAGAGTAATCACTTCATTTTAAGAAAGCTTAAC


AATATAGAAGAATATAAAATTATTTATGACAGATGTATTTTTAACCTTTTCCCCATGCTTTCCA


GAGGAAATATGTTTAATCATCTGCCCTATATTAGGGAAAAACTTTCTATGCTAATACAAGTATC


TATCAATCCATTTATCTTTCTATATAAGATGTATTGATCATAACCAATTAACTTTACTGTAAAT


GAGCTTTAGATTTGACATTTTGGTAGTAATATATGTTGTACAATCTCCTGAGGTCCTATAGGTC


TTGAGGTCTCTATGTCAAAAACTATAGATGTGCCAGTGTCCTCAGTGAATGTGAAGGACACCAC


ATTTTCCTTAGCCATTTCTTGTTTTCAGAATAATGGTTATCAACATTTTGCTACTGCAAGATAC


CATACATTTATAATCGGAATATGCCAGTTTTTATGCACTCATGCCTCTGTTTCTGTAGAGCATT


CCCAGAATGAGTAATGCTTGAAAATTAGGTCCATGTGATTTCTTTAATGAGTTATAGTCAAATC


ATGAAATATTCAGGTTACCATTATTTCAGTAATGTATTAGAATGTCAAGGTAAAGTTATCTACA


TTGTATATATACACACAACATAGATATAATTTATACAACATCTATATTTATACAACAGATATAT


ATTTATGTATATATTTATACAACATAAAATATATTTTATTATTTAAACATAAAATATATTTTAT


TATTTAATATAGATTCTTAAGTGATAAATATGTTTAATATTATTAAAATAGGTTAAAATAGGTT


ATAGTTAGTACAGTGAAAATTGGCAGCCCTTTTACAAAACATATGCCATAACTATAGCATTTAT


CACTGACAGTCATACCAGGATAGTCTTTTATTTCCAATCACTTAAATATTCCTAATTGCAAAAG


AAATTTGAAGACTAAAATTCAGAAGTTTTGAAAGAGCCATTGCCTGGGTAAACTATACAGGTTT


CAGTTTTATTTATAATAATTATGAGGCCAGGCGCAGTGGCTCACACCTGTAATCCCAACACTTT


GGGAGGCCGAGGCGGGTGGATCACGAGGTCAGGAGATCGAGACCATCCTGGCTAACACGGTGAA


ACCCCATCTCTACTAAAAATACAAAAAATTAGCCGGGCGTGGTGGCGGGCGCCTGTAGTCCCAG


CTACTCGGGAGGCTGAGGCAGGAGAATGGCGTGAACCTGGTAGGCGGAGCTTGCAGTGAGCCGA


GATCGCGCCACTGCCCTCCAGCCTGGGAGACAGTGCGAGACTCCGTCTCAAAAAAAAAAATTAT


GTATATATTTATAAATTAATACTTAATAAATTAATAACTTGTGATAGGCAATGCAAAGATGACA


GTAAAAGGACAAAATTGATTAGATTGATAAAGTCCTGTTAACATGAAGAAATTGACCAGGATAC


CATCCACACTATAAAGTTAGAGAAATTTATCAGGACAATTCCCTAAAATACTCTTCTCAATTTT


AACATTGTAACAGGAATTTTTAAAATTTTGGTATTATGTGTGTTTCCTTCCAGATAATTTGAAC


AGATTCATATTTGGTATTTTTAAAAGCCATATCTTTGTCCTTAGTGCTGGCAATGTATTCTTGA


GAATGAACAAATAAGAGATACGTAAAAGCATAAGAGAAGGTATCAGGTTGAAGTAGTCAATCAG


TTATACAGAACACAAAGAATTTTATCTTGTATAATGITTATATAGCTTTATAGAAGTGTGCTGA


AAGGGCTATAAAACATGGACATTATTATCTCATTGAAAGGTCCAATACGTACTGAAATACATGC


TTTTATTTTGAACCAACCACCCTATAAACGTTGTATGGCTTATTTAGATGAGAGCCCAGGTTGT


GTGTGTCTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTACCTGACAGGGA


AGCAAGAACATCGAGTTGCCAATGCACTCTGTCTATGGTTAGAATCATGCTGAAAACATGGCTC


CCCCAGTTCTGGAATGAGCCCACAGATCAAGCATTCCCCAAAGACATAGCAGGCTCAAATCCCT


GTGTACACAATATTTTATGATTATCTTATGTCAGTACTTTCAAAGTATACAGTTTGTGTGAAGA


CAAATCCAATGTCATTTTTCTTGGCTAGCCTATATGTGTGGTAAATCCATTATTTACTTACTTG


CTTCCTGAAAATTACAATTAGATTAACAAACTGCAGCAAAGTGGGCATGATGAGATAGAGATTG


AAGTGTAAGCTTATGTTAATGATGCCCTTGGTTTGGATAAACACATCTAAGAGAAAAATGGAAA


AACACACATGGCAGGGAAGCCTTGATAGAGCCAAAATATAGGATTGTATGTAGTAATGCAATCC


ATAGATGAGCATTTGGCAGTAATATTATTTTTCAGATATGGATAAAAATTGCTTAGGAGAGTAA


AGAGAGACAAAGTTGAAAGCAGGTTTATAGTAGGTGTTGTTTTAGTGTTGATCCCTTTTTGCTC


CAATAATCAAAGTGATAAATATTGAAAATTGATTCATGCAGCATTACTTACTCCATTCTAATTT


TTATATATGTCAAAAGTGCCATCTCCCAAACTGTGCTATCCCCTTCAGGAGAAGAGACTCTGCT


GAAGTTTATAAGGTTGACATATTGCCAGCTTCAATAATGTAAAGATGAAGTGTATACTGAATTC


TTAATGCAAATAACAACTCTATTGGAAAGTAACCCAGTTATAGAAGTGCTAATTTGTCAGGAGC


TGCCTTACCAAGATCATGATGAGTACAGTTATCTCAGGATTCTGAAAGATTGTTTTCCGATTTC


AACTAGTCTAGCTGAATGTTCCTTGATAGAAAGAGAGGACTTTTAGAATTGGTTCAATATGATG


ACCTCCTGAATTATCTCACATAGCCCGTTTGTACATGCCTTTCTTTTCTCTCAGAAAATGGCAC


TATCATAATAGCTTTCTTACACAGACTTCACCTTAGGGTTTTACATTAAGGGAGGGGTCTGGTG


TTTCATTTATTTTGAAGTATTTGTTGTTGATTGTGTACAGTGCTTGAGTAAAAAATTGAATATA


GAAACATCTAGAATATTTTTTTAAAGGATCAGTGTTTATAAAGTGAATTATTAGTGTCAATAAT


GTTGGGAAAGTTTTAAGAGAATATAGGAAACTTGAACATTACACAACTACAATGGGACCAAATT


GTGGGGTCTCATTATAGTTAATATTTATGTATTTTTTTCCAATTGATTTGTGTGCTTTTTTTCT


GCATGTTTTTGGCAGATAGAATGGCTATAACAAGTAACAGCATGTCAGGTAATAAAAATAAGCA


GAGCCCTATTCCTTTAAAAATCTTCACTGATGGGAGGGCCATAAAATAAGTCTTAATACATTTA


AAGAATTAAATTCATGTAAACCATGTTAATTTAATTCCACAATGATATTGAATTAGAAATAAGA


GGAATATCTCTTGAACATCTCCTAAATGTTTGGAAATTTAAATTAGCATTTCTGACCTATTTAT


TGGTTAAAAAAGATACAAAGAAAGGAAAATTGAAAAGTCTTTTGAACTGAATAAAAATAAAAAT


ATAGAATCTAAAACTTTATGGGATACTGACAAAACAGGATATAGGGAATAATTTATAGCACTGA


AATGCCTATATTAGAAAAGAAAAAAGGTTTTAAATCAGTAAATTTGTATTTTACCTTAAGAAAC


TTAGAAAAGAACAAATTAACCCAGACTTAAGTAAAATAAAGGCACTAATAAAGATAAGAGCAGA


AATCAATGAAATATAAAACAACAAAACACAGAGAAAAATTGAGAAAATTTAAAAATAGCCTAGT


GAGAAGATATTGATAAACTTGTAACCAGACCAATTTAAGAAAAAAAGTCAAAACACAAATACCA


ATATTTGAAAATGTAGGAGGGCAAATCATTACAGATTCTATGAATACTAAAATGATAATAAGGA


AAAATTATTTAAAAGGGGCATGTCAGCCAGGCATGGTGGCTTACCCCTGTAATCCCAGCACTTT


GGCAGGCCGAGGTGGGAGGATTGCTAGAGCTCAGGCATTCGAGACCAGCCTGGGCAACATGTTG


AAACCTTGTCTACACAAAAAGTACAAAAATTAGCTGGGTGTGGTGTTGCACACTTGTAGTCCCA


GTCACTTGGGAGGCTGAGGCGAGAGGATCACTTGAGCCCAGGAGGTTGAGGCTGCAGTGAGCCA


TGTTTGTACCACTGCCCTCCAGCCTGGGTGACAAAGTAAGACCCTATGTAAAAAAAAAAAAATG


TATGCCAACATTTTTCAATAACTTAAATGAAATGGAAAAATTCCTTGAAAGACACGAACTACAA


AAACTCAGTGAACAAGTAAATAACCTGAATAGCCCTGTATCAAGTAAATTGAATTTGTAGTTAA


AAGCCTTCCAACAGAGAAAACTTCAGGTACCTATAGCTTCATATGAAATGAAAAAAAAAATACC


AATCCTCTACAAGATTCCAGAACATTTAAAAGAAGGGAATATTTCCCAACTTATTCCATTTGGA


CAGCAATACCCAGGTAAGAAAAAGAGACACAGAAATTTAAAAAGAAGAATATACATTATTCCTT


AGGAACATAAATGCAAAGAAATCTAATCAAAATTTTGGCAAATGAAATGTAGAAATACTTTATG


ACCAAGTGAGAGTTACCCAAAGAATTTAAGGTTGGTTTTATATGTAAAGATCAACCAATATAGG


AAAATCACTTCTGGAAAGTCAGAGTAAGAAACTCCAAAAATCTACTCCTCCATAAAACCAATAA


CAGCCTTGATAGAAATAGTTGAAATTAATTTTCCAAAACTTTGGAAATTAACCAAAGGCTTACA


AAATTCCAGAGAACATTAATTCAAGAAAAATGGCTGAATCAGTAAGAACAGCCAGCTTTGTGGC


ATTTTAATATGACCCCTTCCCATGCTTTTCTCCCTAGTGCTGAGATAGTCTTAAAAATTAGCAG


GATAGCAACCACTGGAGAAGAAAGGTTTGGAAATTTCCCAAAAAGTTCCATCCCCATAGAATTA


TCACTATTTGACCTCTAAAGCCCAATCTATAGGATTTATATTCATTTGGACTGACTCAGAGCTC


ACTCAGTAAGGAAATCTCAATTTCAAGGTATTGGTCAAAAAGAATCCATGGCAATTGTTGACTA


TCACAACTGCCTGAAGTCTTGGTAACAGTTGGGATAAACAAGAAGCTGATCAAAAACTGAAAAC


TAAAATCTTGGGAATGAGATATCTACAGGATGCTTCAAAAAGCTTTGATACATTCCTGTTTATC


TAGAAAGCTACATGCAGGCTGGGTGCAGTGGCTCACACCTGTAATCCCAGCACTTTGGGAGGCC


GAGGCGTGCGGATCATGAGGTCAGGAGTTTGAGGCCAGCCTGACCAACATGGTCTCTACTAAAA


ACACAAAAATTAGCCAGGCGTGGTGGCGTGCATCTGTAATCCTAGCTACTCAGGAGGCTGAGAC


AGGAGAATCGCTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCCAAGATTGTGCCACTGCACTCC


AGCCTGGGCGACAGAGCAAGGCTCTGTCTCAAAAAAAAAAAAAAAAAAAGCCACATGCATGTAA


TTGTTTACCTCTGGCTTTCCTTTTATGCTCTGGGCAAGCTAAGGAAGAGTTGTGAACTACCTAA


GTGCTGAATGGGAACCATAACACACACACACACACACACACACACACACACAGCACCTTAGTAA


AGGGTGAGAGGCATGTTAGTTAGAAGCATTAAAGGAAATCTCTTTCTAGTCATTATCTGTGCAC


TAACCTAACTGAGCAGAGACTTCAGTATCCACATACTACAGGGCATATAAACTTTACAGAATTA


GTCCAGGAAAATCATATCTAAAAAAAAAAAAAAGCAGTAACAAAAATAAACTCTGGGAAAGGGG


AGAATATGATTTAAAGAGTTGCCACATTATACATAATATGTCTAGTGTTCAACAAAAAATTACG


AGACATGCAAAGAAATAGAAAAATATGGCACAAAGAGGATAAGATGAAGTCAGTGAAACTATCC


TCGAGGAAGACCAGATGTTGGTCTTACTAGACACAGACATTGAACCAGCTATTAAAAATACGTA


CACAGAACTAAGAAAAACATGTCAAAAGGGTTAAAGAAAGGTATAAAAATAGTGTCTTACCAAA


TATAGACTACCAATAAAGAGATAGAAATTATAAGAAAAGACAACATGAAAAAATATAAAGCAAA


AAAATTAGACAATTGAAACAAGAGGGCCTCTATTCGCAGATTTGAGCAGGCAGAAGAAAGAATC


AGTGAACTTGAAGATATGTCAACTGAGATTATCCAGTCTGAGCAACAAAGGTGGGAAAAAATGA


AGAAAACTGAGCAACAAAGAACTGTAGAACAGCATCTCTCATACCAATGGATACATAAACTGGA


GCCCTAGAAGGATGAAAAAAGGAGAAGGAAAGAAAACTTCCCAAATTTTAAGAAAAACATTAAT


TTATATACCCGAGATGACCAATAAAATCCAATTAAGATAATCTCAAAGAGACCAACACCTATAC


ACATCATAGTCAGCGTGTCAAAAGACAAACATAAGGAGAGAATTCTTGAAGATAGTAAGAAAAA


AATTATTCATAACATACACACCATCCTCAATAAGTCTGACAATTGACTTCTCACTGTAAACCAT


GCAGGCTAAAAAGGCAATGTACATAACCAAAGTGATGAAATAAAAACCTTCAACCAATCATTCT


AGATCCAACAAAACTATTGTTCAAAAAGAAGAAATGAAGACATTCCTAAACAAAATCTCAGAGA


AATGTTCTCTATAAGACTTGTCCTAATAGAAATGCTAAAGGAACTCCTTCGGTCTGAAATAGAA


AGGCACTGGAGAGTAAATCAAATCCACGAGAAGAAATAAAGAGAACCAGTATAAGTAACTACAT


GTGTAAGTTTAAAACAAAGTATAAATTTATTTTGTTTGTAACATTTGTCTTTTCCTATTTGATT


TAAAATATAATCTCAATTATAAACTTGTGTTGATGGTATTATATAAAGATGTAATTTTGGGTTA


TAGCACCAAAATGGCAGAATAGGAATTTTCTGTAGGTGTTTCCCACATAAGTATCAATTTTGAC


AACCATCCATGGGCAAGAGTACCTTGTGGGAGTTCAGGAGTTGACAGTAAAACTTCAGCACACC


AGAGGAGTAAAGAAATCTAAGAATAGATTCATTGGAAAGGGTATAAACAGTTTCACTTTACCTG


CATCACCAACCCCCAAAAGTGGCACAGCTCAGTAACAAGAGCCCATTATTTCTTCCACAGAGGA


AAAGGAGAGTATAATAAGTAAGTGTCCAGTTTCTCAAGACATACAGGCCCCTGCCCAAGAGATC


CACTTTATTTTCATCTCACCCAGAATATTGAGGTGATCAGCAAGGTGGAGTGGTTGGGAGAGGG


TAAAAGCAGGAAAGAGAGATGGGGACTCAAACAGCAGCCCATACTTGGAACTGCCATAGATCCT


ACCAGTTACTTCATGGACTCCATCAGGAACCCACCTATAAGCCACAGGGGATGCATCCCTCCCA


TCTTGCCAACAAAACCCCGAATGCTCCAAATGCCTCACCCACTCTTTGGCTGGCTCCCAAGTGC


GCTCCTGTGAAAAGCGAGTGAGTATCTCTGCAGATGGCTTGCAAGCACATGTTGACAGCTGGCT


CCACTCTGTAGAACTGGAAAAAAGCTCACATACATGAGAATTTCAGGACACTACCCTAAAAAAA


AAAATGAGACTTCAGCACCTGGCCTGGCTTTATGCAACCTAGAGAAGGTGATATGATTTGGCTC


TGTGTCCCCACGTAAATCTCATGTCAAATTGTAATCCCCACGTGTTGGACAAGGGACTTGGTGG


GAGGTGATTGAATCATGCGGGTGGACTTCCCTCTTGCTGTTCTTGTGATAGAGTTGTTATGAGA


TCCAGTTATTTGAAAGTATGTAGCATGTCCCCCTTCACTCTCTTGCACTCCTGCTCCACCTTGG


TAAGACTTGCTTGCTACCCCTTTGCCTTCTGCCATGATTGTAAGTTTCCTGAGGCCTCCCAGCT


ATGCTTCCTGTATGGCCTGCAGAACTGAACTGTGAGCCAATTAAACCTCTTTTCTTCATAAATT


ATCCAGTCTTAGGTAGTTCTTTATAGCAGTGTGAGAATGGACTAATGCAGAAGGCATACAACCT


TTAGAATTTGCCCCCTTGAGGGAACAAGATGTGTGAAGCAGGTTCATCCATAGAAAATGTCTGA


GAGAACCTCAAAATCCCTAACCTGACTAACTGATGAAAGTGTTTCTCTCCTAAGGCCAGTCAGT


AAAGACCAGAGGGGGTGACTGTTTCTTTAAATGCAAAGGCAGCAGCACAATAATTCAAGAAACA


TGAAAAATCAAGAAAACATGACACCACCAGAAGAACACAATCATTTTCCAATAACCAACTCCCC


AAAAATGGAGATTTACAAATTGGTTTATAATGAATTCAGAACAATTATGTTAAGGAAGCTCAGC


AAACTAAAAGGAACACCAATAGACTACTCTGTGAAGTCAGGCAAACAATTCATGAACAAAACTA


GAAATTCAAAAAAGAGAAAAATTATCTTAAAAGAAAACCCAGAAGTTATGGAGCTAAAGAATAC


AATGCATGAAATGAAGGAGCGTATCAACAGCAAAGTTGATCAAGCATAAGAAAAAAAAAATCTG


TGAAACTGAAGACTGGCTATTTGAAATTATTCATCAGAGGATTAAAAAAAAAAGAATGAAAAGA


AATAAAGAAAGCCTACAGGATGTATAAAACACCATCAAGAGAACTAATATAAGGATTATTGGAG


TCATAAAGGAGAAGAGAGAAAAGGGTAGAAAACTTATTTAAGAAATAATGGCTGAAAACTCTCC


AAATCTAGGAAAAGATATGAGCATCCAGGTATATGAAGCTCAAAGATCCCCGTACAGGATACAT


TCCAAAAAGACTTCACCAAAACACATGATAATCAAACTGTCAAAAGCAAAATCAAGACGATGAA


TAAACCACCAATCACTAAGAGGGAGACAGGATTCTTATGTTGTCATTATTATTTACATATAATT


TCAGTAAATGTTATTGGAAAATTTATAATGTTTTAAAAAAAGAAATTTGAAAGCACCGAAAGAA


AAGAGACTCATCACATACAGGGAACCCTTTTAAGGCATTCAAGAGATTTCTCAGTAGAAACCTT


ACAAAATAGGAGAGAGTGGGATGAACTATACAAGTGCTGCAAGGAAAAAAATGCCAACCAACGC


TTTACCTGGCAAATCTGTTCCTCAGAAATGAAGGAGAGAGAAGAACTTTCCTAGACAAACAAAA


GCTGAGGCAGTTCATCACCACTAGACCTGCCTTACAAGACATACTAAGGGGAGTTCTTCAAGCT


GAAATGATATGGCAATAGTTAGTAATATGAAATGATAAACCTCACTGGTAAAGGAAAGTACATA


GTCAAATTTAGAACACTTTGATACTATAATGATGGTGTATAAATAATTTTACTGTGCTATGAAG


GTTAAAAGACAAAAGTATTAAAAAAAACCCATAGCTGCAATAGCTTGTCAATGCATACTACAGT


ATAAAAAGATGTAAATTAGAACATTAAAAACATAGCATGCAAGGGTAGGGAAGTAAAAGTGTAG


TTTTCATATGTAATCAAATTTAATTTGTTATCAGCTTAAAATAAATTGTTATACCTATGTTTTA


TGTAAGTGTCATGGTAACTATAAAGGAAAAACCTCTAGTAGATACACAAAAGAAAAAGAGAAAG


GAATCAAAACATAACACTACAGAAAATTATCAAATTACAAAGGAAGACAGCAAGGGAGGAACAA


AGTAAAAAGAGCAAGAAAAAATTTAACATAATGAAAACAGTAAGTCCTTACGTGTCAATAATTA


CTTTAAATGTAAATGGATTAAATTATCCAAACAAAAAAACAGACTGGACAAATGGATTTTAGAA


ACAACAACAACAACAAACACCGCACACACACACACACACACACAAACCACCCAGCCCCAACTAT


GTGCTGCCTACAAGAGATTTACTTCCACTTTAAGGACACATACAGGCTGAAATTAAAAGAACAG


AAAAAGATATTGCATGCAGATAGAAACCAGAAGAGAGGAGAGGCATCTATACTTACAGCATACA


GAAAAGATTTTAAGTTAAAAACTATATCAAAAGGCTAAGAAGGTCAAAATGGTGAAGCAGTTAA


TTGTTCAAGAAGACATAAAAATTGTAAATATTTATACACCCAATATTGAAGCACCTAAATATAT


AAGGCAAATATTAATACATATAAAAGGAGAAATATACAGCAATACAGTAATAGTAGTGAACTTC


AGTGCCTCCCTTTCAAAAATGGATAATCCAGACATAAAATCAATAAGGAAACATTTAACTTAAA


CTTCACTTTAGACCAAATGGATCTAACAGACATTATACTGAACATTTCATCCAACAGTGGTAGA


ATTCACATTCTTCTCAAGCACACATGGAACATTCTCCAGGATAGATTATATGTTAGCTCACAAA


ATAATATTACAAAATTTAATAAAGCTGAAATATCAATTATTTTGCACCACAATAGTATAACACT


AGAAATCAATAACAAGATGGAAACTGGAAATTTACAAATATATAGCATTAACATATTCCTGAAC


AACCAATGGGTCAAAGAAAAAAATCAAAATAATTTTGTGACAGCAAAGTAGAAACACAACATAC


CAAAACATACAGGACACAGCAAAAGCAGTTCTATGAGGTAAGCTTATATTGATAAACACATTTA


AAAAAAGATTTTAAATAAACAACATTACACCTCAAGGAACTACAAGGAAGAAAAAAAAACAAGC


CCCATGTTATCAAAGGGAAGGAACTAACAAAGATCAGACAGAAATAAATGAAACATAGACTAGA


AAAACAATAGAGACTATTAATAAAACTTAGAGTTAGTTTTTTAAAAAATAAAATCAACAAACCT


TTAGCTAGACTAAAAAAAGAGAAGACTCAAATAAAATAAAAAATGAAAGAGGAGACATTACAAC


TGATACCACAGACATACAAATTAAGAGAAAACTATATGCCAACATATTAGTTAACTTGCAATGG


GTAAATCCCTAGAAACATACAACCTACAAAAACTGAATCATGAAGAAATGGAAGATCTGAACAG


ATCAATAATGAATAAGGGAATTGAATCAATATTCAAAAATCTCACAAAAAGAAAAGCTCAGGAT


CAGATGGCTTCACTGGTGAAGACTGCCAACCATTTAAAAAAATTAATACCACTCTTTATTAAGC


TCTTCCAAAAAAATTGAAGAGGAGAAAACACTTTCAAATTCATTATAAGAGGCCAGTTTTACCT


TGATATCAAAGATTTAAAAAGAACACTTTGAGAAAGGAAAATTACAGGCCAAAACCCTTGATAA


ATATAGATGCAAAAATGCTCAGCAAAATACTAGCAAACCTAATTCAGCAACACATTATAATGGC


ATACATCATGACCAAGTGAGATTCATGCCTCGGATGCAGGATAGTTCAATATAATCAAATCAAC


AAATGTTACACTACTTTAACAGAATGAAGGATAAAAATCATATGATCATCTCGATGGTTGAACT


AGTTTACAGTCCCACCAACAGTGTAAAAATGTTCCTATTTCTCCACATCCTCTGCAGCACCTGT


TGTTTCCTAACTTTTTACAGATCACCATTCTAACTGGTGTGAGATGGTATCTTATTGTGGTTTT


GATTTGCATTTCTCTGATGGCCAGTGATGGTGAGCATTTTTCAAGTGTCTGTTGGCTGCATAAA


TGTCTTCTTTTGAGACGTGTCTGTTCATATCCTTCACCTACTTTTTGATGGGGTTGTTTGTTTT


TTTCTTGTAAATTTGTTTGAGTTCTTTGTAGATTCTGGATATTAGCCCTTTGTCAGATGAGTAG


ATTGCAAAAATTTTCTCCCATTCTGTAGGTTGTCTGTTCACTCTGATGGTAGTTTCTTTTGCTG


TGCAGAAGCTCTTTAGTTTAATTAGACCCCATTTGTCAATTTTGTCTTTTGTTGCCATTGCTTT


TGGTGTTTTAGACATGAAGACAGTGTGGTGATTCCTCAAGGATCTAGAACTAGAAATACCATTT


GACCCAGCCATCCTGTTACTGGGTATATACCCAGAGGATTATAAATCACGCTGCTATAAGCCAT


AAAAAATGATGAGTTCATGTCCTTTGTAGGGACATGGATGAAGCTGGAAACCATCATTCTCAGC


AAACTATCACAAGGACAAAAAACCAAACACCGCATGTTCTCACTCATAGGTGGGAATTGAACAA


TGAGAACACATGGACCCAGGAAGGGGAACATCACACACTGGGGATGGTTGTGGGGTGGGGGGAG


GGGAGAGGGATAGCATTAGGAGATATACCTAATGCTAAATGACGAGTTAATGGGTGCAGCACAC


CAACACGGCACATGTGCACATATGTAACAAACCTGCACGTTGTGCACATGTACCCTAAAACTTA


AAGTATAATTAAAAAAAATAATGCTGCTATAAAGACACGTGCACACGTATGTTCATTGCGGCAC


TATTCACAATAGCAAAGACTTGGAACCAACCCAAATGTCCATCAATGATAGACTGGATTAAGAA


AATGTGGCACATATACACCATGGAATACTATGCAGCCATAAAAAAGATGAGTTCATGTCCTTTG


TAGGGACATGGATGAAGCTGGAAACCATCATTCTCAGCAAACTATCACAAGGACAAAAAACCAA


ACACTGCATGTTCTCACTCATAGGTGGGAATTGAACAATGAGAACACTTGGACACAGGAAGGGG


AACATCACACACTGGGGCCTGTCGTGGGGTCAGGGTAGGGGGAGGGATAGCATTAGGAGATATA


CCTAATGTAAATGACGAGTTAATGGGTGCAGCACACCAACACAGCACATGTGTGCACATGTACC


CTAGAACTTAAAGTATAATAAAAAATAAATCATATCATCATCTCAGTAGATTTAGAAAAGCATT


TAACAATATTCAACATCCTTTCAGAACTAAAAACTCTCAATAAATCAGGTATAGAAAGAATGTG


CCTCAACACTATAAAAGCCACATATGACAAACCTGGAGGTAATATACTCAATGGTGAAAAGTAA


AAAGCTTTGACTCTAAGATCAGAACCAAAACAAGGATGTCCATTCTCACCACTTATATTTAACA


TAGTAGTTGAAATTCTAGCTAGAGCAATTAGGCAAGAAAAAAGGCACCCAAGTTGGAAAGAATG


AAGTTAAATTGTCTCTGTAGATGACATGATCTTATATATAGAAAACACTAAAGACTCCACCAAA


ATGCTGTTTTAATTAGAGCTTAAAAAAATAATTCACTAAAGTTGCAGGATACAAAATCAGTATA


CAAAAATCAGTTGCATTTCTAAACACCAAAAACAAGTTATCCAAAAAATTAAGAAAACAATCCT


ATTTGTGATATCATCAAAAAATAAAATACTAAAGAATACCAAAGAAACTGAAAATAAATGGAAA


TAAATGGAAAGATAGCCCATGTTCATGGATTAGATGAATTAATACTGTTAAAATGTTCATACTA


CCCAAAGCAACCTACAGATTAAGTGCAATTCCTACTAAAATTCCAATGACATTTTTCACAGAAA


TAGAAAACACACTCCTAAAGTTTGCATGGAACCGCAAAAGACTCAAATAGATGAAGCAATTTTG


AGCAAGAACAGTAAAGCTGGAGACATCACACTACCTAACTTCAAAATTTTATTAATCAAAACAG


CATGACATAAAAACAGACAGAAAAGACCAATGGAACAGAATAGAGAGCCCAGAAATAAACTCAC


GTTTATAGAGTCAACTAATATTCAACGAAGGTGCCAAGAGTACACAATGGGGAAAGTATAGTCT


CTACAATAAACAGCACTGGGAAGACAATATCCAAATGCAAAAGAATGAAATTACACCCTTATCT


TATACCATACACACAAATCAAATCAAAATTGATAAAGACTTAAATATAAGACCTGAAACCATAC


AATCTTTAGGCAAAAACTCATTGACATTGGTCTTGGCAATGATTTTTTTGATATGACACCAGAA


GCACAGGCAACAAAAGCAAACCTAAACAAGTGGGACCCTAACAAACTAAAAAGTTTCTGCACAG


CAAAGGAAACAATCAATCATCAGAATTAAAAGGCAATTTATGAAATGGGAGAAAATGTTTGCAA


ACCACATATCTGATAAAGGGTTAATATCCAAAAATATATAAGGAATGCATAAAATTCAATAGAA


ATAAACAAACAAATAATCCAATTTTAAAATGGGTGAAGAACCTGAATAGACATTTTTTCAAAGA


AGACTTACAGATAGGCAACAGGCATATGAAAAAATGCTTGACATCACTAATAATCAGGGAAATG


CAAATCAAAGCTCCAGTGAAATACCACCTCCAACTATTAGGATGGCTATTATCAAAAACTCAAA


AGAAAACAAGCTGGGGGAATGTAGAGAAAAGGGAAAAGAAGATCCTTATACACTGTTGGTGTGA


ATTTAAACTGGAATAGCCCTTATGGAAAACAGCATGGAGGTTCCTCAAAAAATTAAAAATAGAA


CTACTATATGATCCAGCAATTTCACTATTGAGTATATATCCAAATGAATTAAAATCACTGTCTT


GAAGAGGTATTTGCACACTCATATTTATTTCAGCATTATTCACAATAGCCAAGACATGGAATCA


ACCTAAGTGTTCATCAGTAGATGATTAGATAAAGAGAACGTGGTATATAGACACAGTGGAATCT


ATTTAGTGTTCAAAAAGAAGGAAATCCAACTTTTAAAATCCTTTAAAAAGTTAAACTCATAAAA


ACAGAGAGGAGAATGGCGGTTTCCAGGAACTGGAGGGTGGGAGAATGGGGAGATGTTGGTCAAA


AGGTACAAACTTTCAGTTATAAAATGAATAAGTTCTAGAGATCTAGTGTACAACAGCATTACTA


TAGTTAATAATAATATTTTTTATACTTGAAATTTGCTAAGAGTAAATATCAATATTCTCAATAC


ACACAAAACAGAACTATCTGAAGGCACTGATATGTTAATTATCTTCATTATAGTAATCATTTCA


CAATGTATAATGAATATCAAAACAATAGTGTACATCTTAAATATATACAGTTTTGATTTGTTAA


TCATACATCAATGAAGCTAGAAAAAATGTTGTAATTTTTAAAACAATAGTAATATAAATTAGGG


GTGAAGGAATTGACCTATGTTGGAGAAAAGTTTTTGTAAACTATTTAAATTAATTGGTATCCAT


TCAAGCTAGATTATTTTTAATTGTTAATTTAATTGTAATACTAAGGCAACCACTAAAAAAGCCT


TTAAAAAAATATAGCACTTGAGGCTGGGCATGGTGGCCCTCAATTATATATATAATATATATAA


AATATATATTATATATATAGTAGATGAACAACAATGGGATTTAAATGGTACACTAGAAAATATC


TGTTTAACAAAAAGAAAGCAATAGTGGAGAAATATAAGAACAAAACCATGTAAGATTTATAGAA


AATGAATAGCAAATTGGTTGACCTAAACCCTATCTTATAATTATATTAAAGATAAATGAAATAA


ATACTACATCAAAAGGCAGAGATTATCAGAATAGAGAAGAAAAATCCAAACCATAATTCAACCT


TATGTTATCTGTATTTAGAATATTTAGAGTCAAGACACAAATAGATAGAGTTCCATTTGGGCGT


GAAAATATTTACCATGCAAAATGTAATTAAAATAGAGCTAGAGCAGCAATACTAATATCTGACA


AAATATACTTTAACAAAAATTGTTGCTAAAGACAAAAAAGAACATTTTATAATAAGACACAACA


ATTATAAACATATACACCAAACAATAGAGCCCAAAATATACAAAGCAAAAACTGCTAGAATTGA


AGAAAGATAGAAAAATCAATGATTACAGTTGGAGGTGTCAATACCAAACTTTCAGTAATACACA


GAACAACAAGTCAAAAGCAAAAAGGAAATAAAAAACTACACATTATCATACAACACCTTAATAC


GATATCCAACAATAGCAGAATACACATTATTCTGAAGTGCACATGGAATATTCTTCAGGATGAC


ACATATTAGGCTGTAAAACATATCTTAATAATTTAAAAGAATTGAAATAATACAGCACATATTC


TCTGACTGCAAAATATTAAACCAATTACAGAAGAAAATGTGGGAAATTCACAATGATATGGAGA


TTTAAAAATACTTCAAAGTAACCAATGAATCAAAGAACAAATCACAAGAGAAATTAGAAAATAT


TTTAGATGAATAAAACTGAAGAAACAACATACCAAAATTTTGTGGTTGTAGCTAAAGCAGTGCT


TCAAGGGAAATGTATAACAGTATATCCCTAAATTTTAAAAAAATCTCAATCCAATAACCTAATT


TTTCACCTTAAGAAATGAGAGTGAAAGAGCAGACTTAACCCAAAGTAAACAGAAGGAAGAAATA


ATAAAGATTAGCATGGAGATAAGTAGTGAAAATAAAAACAATAGAGAAAATTAATAAACTTGAA


AGTTGGTTCTTCTGATATATCAGTAAAATTGACGTATTATTAGTTTGACCGAGAAAGAACAAAA


GAGAGAAGATTCAAGTTACTAGACATAAATGAAAGTATAGATATCACCTTACAGAAATTAAAAG


AATTCTAACAGAATATTGTGAAAAAGTGAATGTCAAAAAATTAAATTATATGAGATACACAAAT


CCCTCTAAAGGCACAAACTACCACAGCTGGTGTAAAAACATGAATACACCATTTACAGTTAAAA


AGACTGAATAGATAAAAATTTTAAGAAGAAATTGAGTAAGTAATTTAATTTTCAAACTATAATC


CCAAGACCAGATGTTTTCATTGGTGAATTCTACCAAACTTTAAAAGGATTAATATCTATTTTTC


ATACACTCTTTCCAGAAAATAGAAAAGGAGGGAACACTCTATAACTCACTGTATGAGGTCCGTA


TTACCCTTATATCAAGACCAAACATCATAAGAAAAGAAGACTAAAGACTTATGGTTTCTGCTCT


GATATGTTTGGAAGTCATCACTACTATTGTCACAAGGAAAAATCTGAACAAACTAAAGTCAACG


ATTTCTTAAACTAACCATAGAATTGAGGTAACGGGCGAAAACTGGAGATGTAGGCAAATACAAA


AAAAATCACAGTTTATCAGGAGCAGAAACTGCTGAAACCAGCAACTCGTATGAACATGTTAAGT


GGTAATTGACAAATTTCTGGAGATTGAATGTGGACTGGATTGAGAGTTAGGAACTCCTAAGTGC


CCAGTTTTTGATGACCCCACACACTTTTGTAAACTAGACTTCCAAGAGCCCCAGCAAGTTTCTT


ACAGTGAAGACTGCAGAAAAATCCCCTGATGCTTCAGATAGGAGGAAGGGAAAAGCAACTATTT


TGAAATAAGCCCAGGGGACAAGTAGTTATTTCTAAACACTCTCAGAGCATTTTCTTTCACACGG


CAGGGGGCTCCCTGCAAGGGAAGCTACTTTGCCTGAGCCTTGTCTGATGTAGGAGAAAAGGAAT


TGGATGGCTCAAGCTCCATCTAGCCTTTCTGATTTATATAAGGGAAGCAAAAAATAGGTTAAGA


AACTCTTCTGAAAGTCACAACTCAGATTTATTTTATATTTATTTATTTATTTATATTTTTTGAG


ACGGAGTCTCGCTCTGTTGCCCAGGCTGGAGTGCAGTGGCGCGATCTCGGCTCACTGCAAGCTC


CACCTCCCGGGTTCACGCCATTCTTCTGCCTCAGCCTCCTGAGTAGCTGGGACTACAGGCGCCC


AGCTAATTTTTTGTATTTTTAGTAGAGACGGGGTTTCACCACGTTAGCCAGGATGGTCTCGATC


TCCTGACCTCGTGATCCACCTGCCTCTGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACC


GCACCTGGCCTCACAACTCAGATTTAACCATAAGATTATAGAACACTTCTCCTCCCAAAACAGA


GATATAGATCAATGGAACAGAACAGAGCCCTCAGAAATAACGCCGCATATCTACAACTATCTGA


TCTTTGACAAACCCGAGAAAAACAAGCAATGGGGAAAGGATTCCCTATTTAATAAATGGTGCTG


GGAAAACTGGCTAGCCATATGTAAAAAGCTGAAACTGGATCCCTTCCTTACACCTTACACAAAA


ATTAATTCAAGATGGATTAAAGACTTAAACGTTAGGCCTAAAACCATAAAAACCCTAGAAGAAA


ACCTAGGCATTACCATTCAGGACATAGGCATGGGCAAGGACTTCATGTCTAAAACACCAAAAGC


AATGGCAACAAAAGACAAAATTGACAAACGGGATCTCATTAAACTAAAGAGCTTCTGCACAGCA


AAAGAAACTACCATCAGAGTGAACAGGCAACCTACAAAATTTTCACAACCTACTCATCTGACAA


AGGGCTAATATCCAGAATCTACAATGAACTCAGACAAATTTACAAGAAAAAAACAAACAACCTC


ATCAAAAAGTGGGCAAAGGATATAAGCAGACACTTCTCAAAAGAAGACATTTATGCAGCCAACA


GACACATGAAAAAATGCTCATCATCACTGGCCGTCAGAGAAATGCAAATCAAAACCACAATGAG


ATACCATCTCACACCAGTTAGAATGGCGATCATTAAAAAGTCAGGAAACAACAGGTGCTGGAGA


GGATGTGGAGAAATAGGAACACTTTTACACTGTTGGTGGGACTGTAAACTAGTTCAACCATTGT


GGAAGTCAGTGTGGCGATTCCTCAGGGATCTAGAACTAGAAATACCATTTGACCCAGCCATCCC


ATTGCTATATATATATATATATACCCAAAGGACTATAAATCATGCTGCTATAAAGACATATGCA


CAGGTATGTTTATTGCAGCACTATTCACAATAGCAAAGACTTGGAACCAACCCAAATGTCCAAC


AATGATAGACTGGATTAAGAAAATGTGGCACATATACACCATGGAATACTATGCAGCCATAAAA


AAGATGAGTTCATGTCTTTTGTAGGGACATGGATGAAATTGGAAATCATCATTCTCAGTAAACT


ATCGCAAGGACAAAAAACCAAACACTGCATGTTCTCACTCATAGATGGGAATTGAACAATGAGA


ACACATGGACACAGGAAGGGGAACATCACACTCTGGGGACTGTTGTGGGGTCGGGGGAGGGGGG


AGGGATAGCATTAGGAGATATACCTAATGGTAAATGACGAGTTAATGGGTGTAGCACACCAGCA


TGGCACATGTATACATATGTAACAAACCTGCACATTGTGCACATGTACCCTAAAACTTAAAGTA


TAATAATAATAAAAAAAGGCTACCTAAAAAAAAAAAAAAGAACACTTCTCCTCCCAACACCATA


TCACCACATCAACCAGGACTCCAGTGTAATAGCAGTGAATTCTAACTGAAAGAGGTGAAAGACA


CTGATTGTATTTAAGAAAGATCTTCTAAGGAAATCCAAAAATAGTAGGGGAGATCAAAACAAAG


ATACTAGAGGAAATTGAATATGTGACACCTATAGCTACAAAAAAATTAAACATAACATAGCCCT


AACCATATAAACATAAAACCTCACACAAAGACCTATTATCTGAGATTCTGTTGCCTGATACATT


GCGTTTTATTTCAATAAAAAAATTAGAGGGTATGTTAAAAAGCAGGAAAAGTTAGTCTAAAGAG


ACAAATTGAGCCTCAGAAGTAGGCTCAGATATGGCAGAGATTTGGCAATTATACCTAGAGTTTA


ATATAAATGATTAATATAATAAGTGTTCTAACAGAAAAAGGCAACATGCAAGAACGGATGGGTA


ATGTGATCAGCAAGAAGGAAACTCTAAGAAAGAAGTCAAAAGGAAATGCTAGGAATAAAAACCT


ACAAGAAATAAAGAATGCCTGTGATGGGTTCCTCAGTAGACTGGACAAGGTCAAAGAATCAGTG


GATTTGAAAATATGTCAACAAAAACTGCCCCACTGAAATACAAAAGAAAAATAGAATTTTAAAA


ACGTAACACAATCTCCAAAACAGTGGGACAATTACAAAAGATGTAATGTGCCTAATGCAAATGA


CAGTAGGAGTATAAAGGGAGAAAGGAATAGAAAATCTGAAGTAATAATGGCAGAGAGTTTTCCA


AAATTAATGCTAAACCACAGATACAGCAAGCCCAGAGAACAACAAGGAGGAAATTTAGTAAAGC


GTCTGCAACCAAGTATGTCATATTCAGACTGACAAAACCAAAGGTGAAGAGAAAATATTGAAAG


AAGACAAAGAGGAAAATAAATATCAAGAAAATACATACGAAATACATCATACATACATAAGAAA


TACATCAGACCATACAAGCAAGAAGAGAATGGAGTGAAATGTTTAAAATGTTGAAAAAAAAACT


ATCAATTTGCAATTCTGTATCCAGTGAGATTATCTTTCAAAAGTGAAGAGGGAAATGGCAGAGA


AGTCATCTCCAAGACCTATGGTTTCCCTTCACAGAAACACTGAAAAATATGAACAAAAGTGGTC


AGAATTAACTTTCTAAGAATTCTATAAAATGGTAAAATGTTTACACCAGTAAAGCAAATGCTGA


ATTGAGAAGGCAACTTAAAAAGGTGAAGAAAACTTCGTATTATTTTTATGTGTCCTTGCCCCAC


GTCCTTCCCTACCTTAGTCTTGAAGATGGCAGCCCACATTTCTACTGTGGGGCTCTGGTTTCTG


TTTCCTGGTTCAAGAGGGAGAATAACAGACCTTACTTTTAGTCATTATTATTTCCTTCTTTCTG


ATTTCCTTGGGTTTATTTTGCTCTTCTTTCTACTTTATTGAAATGAGAACTAAGATTATGATTT


GAGACATTTTTCTAATGTAAGCATTTAGTGCTATAAATTTCCATCTCAACACTGCTTTAGTCAC


ATCCCACAAATTTTTATATGTTGTAATTTCACTTTCATTTAGTTCTATTTTTAAATTTTTTCTT


TTTATACTTCCTCTGACTCACAGATTACTTAGAATTGTGTTGTTCAGTTTTCAAGGATATTGTA


GATTTTCCTGTTTCTCTGTTGTCTAATAGTTCTGTTCCATTTTGTACAGATAGCTCACGCTGTA


TGATTTCAATTTTTTAAAAAATTGTGCTTTGTTTTATGGCCCAGATATGGTCTGTGCTGTGAAT


ATTCCATGTTATTATAAAGTATGCCTGTTATATTATTATATATATATAATATATATAATTATAA


AGCATGCCCGTTTTGTATTGTTAGCAGAGTATTCTAGAAATGTCAATGAGATCTTGTTGGTTGA


TGGTGCTTTTCAGTTCTATATCTTTGCTAATTTTTTTTTTTTTTGCTTAGTAGCTATATGAGAT


TCTGAGAGAGGAAATTGAAGTCTCCAACCATAATTGTGGATTTGTCTATTTCTCCTATCAGTTC


TATCAGTTTGTGCATCACATATTTGAGGCTCTGTTGTTTGGTGCATACACAAGTGGAATCATTG


TGCCCTCTTGGTGGCTTATTTTATGATTATATAGTGCCTATCTTTGTGGTATTTTTATTTGCTC


TTAAATCTACTTTGTGTTATATTCATATACCCATTCTTTTTTAAAAAAAATTGTTTGCGTGATA


CATCTTTTCCATTCTTTTAATCTCAGCCTATCTGTGCCATTGAATTTGAAGTGAGTTTTCATAT


AGAGAACATATTATTGAATCATCATTTTAAAAATTCCTTTTGCCAATCTTTTTTATACTGAGGT


AAAATTGACATAAAATTTATCATTTTAAAGTGTACAATACAGTGGCATTTGGTAATACACATGT


TATGCAACGTTAACTCTACCTGGCTCCTAAATGTTTTCATCATCCCCAAAAGGAAACTTCATAC


TCATTAAGCAGTTAATTCCCATTCCTTCTCTCGGCCACTGGCATCCGCAAACCTACTTTTCTGT


CTCTATGAATTTACCTATTATGGATATTTTGTATAAATTGAATTATACAATAAGTGACCTTTAT


GTTTGGCTTCGTTCGCTTCGCATACTATTTTTCGATATTCAACCATGTTGTAGTATGTATCAGT


TTTATTTGAATAACTCAATTCTTTTTGTTGTATAGCTAAAAGTTGATTCCTAGGTCATAATGAT


AATTCTATGTTTAGTTTATTGAATAGCTGCCAAAGTTTTTCCACAGTGGCTCTGTCATTTTAAA


ATCCCACTAGCAATGGATGAGAGTTCCAATATCTCCACATCCTTACCAATATTGTTATTTTATA


TTTTTATAATTATAATTTTCCTAGTGAATACGCAATGGTATCTCATTGTGTTTTTGGTTTGCCT


TTCCCTAATGACTAATGATGTTGAGCATCTTACAATGTACTTGTTAACTATTTGTGTTCTTTAG


AGAAATGTCTATTCAAGTGCCTTGTCCATTTTAAAAATCGAGTIGTCTTGTTGACTTATGAGTT


CTTTAATACAGTAAACGCTTATCAGATATGATTTATAAGTATTTTAACCCATTCTGAAGGTCAC


CTTTTCACTTTTGTGGTAGACCATTATGCACAAAGGTTTTAATTTTGATAAATCCAATTTATCC


GCTTTTGTTGTTGTTTTTGTTGTTCGTGCTTTTGCAAAACCTAGTGTCATGAGGTTTTCTCATT


ATCTTTGGAGAATTTTATAGTTTGGGTCTATACATGTAGATTATTGATCTAATTTCCATTAATT


TGTGTGTATGCTACGAGGTAGGGGTCCAAATTCAATTTTTGCATTGAATTGAAAATTCATATTT


TCAGTTTCAAATTTCAACTGCATATTCAGTTGTTGCAGCACAATTTGTTGAAGAGATCATTCTT


TACCACAGGGAATGATCTGGGACCCTTGTCAAAAATCAATTGATCATAGATGTATGGGATTATT


TCAGACTTTAGATCTTGTTCCATGAATATGCCTATTTTTATGCCAGCACTGCAGTATTTTCATT


ACTGTAGCTTTATCATAAATTTTGAAATCAGGAAGTATGTATCCTCCAAGTGTGATTTTCATTT


GCTAGAGTGTTTTGACTATTTGGGGTCTTTGCAATTCCATATGAATTTCAGAATTGGCTTTTCA


TTTAAAAAAATGGTAGTTGAGATTTTCATAGGAATTATATTGAATCTACAGATCACTTTGGGTA


GTATTGCCATCTTAACAATATTGTATTCCAATCCATAAACACGGATGTATTGCCATTCATATCT


TTTTTTCTTTTCTTTCGGCAACATTTAGTATATGACACTTGTAACTCCTTGGTTAAATTTATAC


CTAAGCATTTTATCCTTTCTGATGCTGTTTAAATGGAATTATTTTATTAATTTCTCTTTTAGAT


GGCTTGTTGCAGGTGTATAGAAATAGAACTGATTATTGTGCTTTTATTGAATTATCTGAAACTT


TGCTGCATTTATTAACTCTAGTAGGTTTTTTTTTTCTTTAAAGTTGTCTATATATCTTGCTCTG


TGAATAGATAATTTTACTTCTTGATCTCCAATATGGATGCCTTTCTTTCTTTTTCTTACCTAAT


TGCTGTAGCTAGAATTTTCAGTATAATGTATGATAGAAGTTGTTCACAACTATCCTTGTCTTCT


TTCTGATCCTAGGGGTATAGCTTTCAGTCTTTCACCATTAAGCACAATGTTAGCTGTGGGGTTT


TCTTAGATGCCATTTAATATATTAAGGAAGTGCTCTGCTATTTCTAATTGGTTGAGTATTTTTA


TTATAAAATGGTGTTAGATTTTATGACTTTATGTACTGCATAATTGAGATTATCATGTGGTCTT


TTCATTCGATTAATGTGGTATATTTTATGATTTTCATATGTTGATCCACCTTTATATTCTTGGG


GCAAATCCCACTGTGTACACGGGTTTTTTAGGGTCTCCTAATTTTCTTCATTCTTTTTCTTTTC


TCTCCCTGAGACTGAATAACGTTAACTGACCTATCTTCAAGTTTACTATTTTTTCTTCTGCTGT


TCAAATCTGCTTGAACCTATAGAGTGAATTTTTCATTTTACTTATTGAACTTTTCAGCTCCAAA


ATTTCTCTTTGGCTACTTTGTATAATATCTATCTCTCTATAGATATTCTCTATTTGGAAAGACA


TTTTTCTCCTGGTTTTCTTTACTTATTTGTATTTTTTAAAGTCTTTAAGCATATTTGAGACAGT


TGATTTAAGTATTTGTGTACTAAGTCCATTGCCTAAGCTTTTGCATAGAGATTTTATATTAATT


TCTTTTTTTTCTGTGAACAGGTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAGAAAACTG


GACATTTTGAGTAGTATAAACGTGGCTATTTTAGAAATAATTTTCCTCCCTCCTTAGGTTTTGT


TTCCACTTGTTGCATGTTGCTGTTGTTTGCTCATTAGTGACTTTTCTAAAGTATTTTGAAAAGT


CTGTGTTCTTGATCATGTGGGTCCATTGAATTCTGTATTCTGTTAATTTCATAGTCAGCTAGTG


TTCTGAAAGTTCCCTTAAGTGCATAGAGCCAATAAAAGAAAAAGAAAAGAAACACAGAAAAAGA


AAAGAGGAAAAAAGGAGGGAAAGAGATTTAAAAAAATAATGTCGGTTGGGCATGGTGGCTCATG


CCTGTAATCCCAGCACTTTTGGGAGGCCGAGGCAGGCAAATCACTTAAGGTTGACCATCCTGGC


CAACACGGAGAAACCTTGTCTCTACTGAAAATATAAAATTAGCCGGGCATGGTGGCACATGCCT


GTAATCCCAGCTACTCGGGAGGCTGAGAGGTAGGAGAATCACTTGAACTCGGGAGGTGGAGGTT


GCAGTGAACTGAGATCACACCACTGCACTCCAGCCTGGGCAACAAGAATGAAACTCCATCTCAA


AAAAAAATAATAATAATAATGCCTTTGCCGATTTGCTCTGTGTTTGGGCCCTCATTCAATGCCT


AGTCAGGCCATTTACAACTCTCTCTTAACTTTCACTACCTGCTTGTGTACTGACTGAAGGCCAC


CTATAGGTGAAAGCTTAACATCATCTCAGATCTTTTTGGACCATGAATCCTACCCTGGGTATGC


ACATGATCTTCTTAATTTCCCAGTAGATGCAAGAGTTTTAGTGTTTTAAAAGTCCTTATTCCCT


CATCTATCTTCTTTTCTGACCTTTTTCAGTCTGCTTATTGTTCATCTGAACTGACATCCTTTGC


CCCAAGCGGCTGTGGCAAAAACTTTTACCTTTAAATGCTTTCACCACAAGCCACTTGGGAAGCT


GCCCCAGACCTGGGACTGCTCTGACCCTGATGAAACAAAGACAAGACCTTGTACAGCCAGGCAG


CCATAAGACAAGTCCATACCCAAACCACAGTTCTTTCAGAATAAGGTCTATATTGGATTCTCTG


GCCCTAGTAACCAGCATGAGTCTGGGCTTGCCATCTTCATGGCCACTTGTCTTAGTTTGCTAGG


GCTGCCATAACAAAATATGAGAGACTGAGTGGCTTAAACAAGAGAAATTTATTTTTTCACAATT


CTGAAGACCAGAAGTCCATTACTCTGAAATCTCTCTCCTTGGCTTGCAGATACTGCCTTCTTGC


CGTGTCCTCACACAGCCTTTTCTCTGTGTACACATCCCTGGTGTTTTTTAAGCCTGTCCAAATT


TTCTGTTCTTCTGAGGACACCAATCAGATTGGATTAGCGACCACCCATATGATCATTTTACCTT


AAGTACCTCTTCAAAGGTATCAGAGTAGTATATTTGCTACAGTTGATGAACCTGCATACAACAT


CATCACTTGAGGTCTGCAGTTTACATTAGAGTTCATCGTTAGTGTTATATATTCTAGGGTTTGT


TTTGTTTTGAGACAGAACAGAGTCTTGCTGTGTTACCCAGGCTGGAGCGCAGTGGTACAATCTC


ATTGCTACCTCTGCTTCCCAGATTCAAGCAATTCTCATACCTCAGCCTCCTAAGTAGCTGGAAC


TACAGGCGCACACCACCATGCCCAGCTAATTTTCGTATTTTTAGTGGAGATGGGGTTTCACCAT


GTTGGCCAGGCAGGTCTTGAACTCCTTGCCTCAAGTGATCTGCCCGCCTCAGCCTCCCCCAGTG


TTGGGATAACAGGCATGAGTCACCATGCCTGGCCTTATTCTATGGGTTTTGAAATGTATAATGA


CATGTATCCATCGTTGTAGTATTAGATAGAATAGCTTCATTACCCTAAAAGTCTTCTTTGCACT


GGGTTGAGTTTTAAAAGCTCTTTGATTATTTTATGACAGTTCCTTATTAGATATATCTTTTGCA


AGTATTTTTATCAGTCTGTGGTTATCTTGTCTTTTACAGAGCAGTAATTTTTAATTTTAATAAA


ATCCAATTTGTCAATTACTTATCTCATATGACTCTGGTGTTACATCTAAAATGTTACCACCATA


CTCAAGGTCACCTAGGTTTTCTCTAGGAATTTTATGGTTTTGCATTTTACATTTGGTGTATGAC


CCATTTGAAGTTAATTTTTGTGAGGTTGTAAGGTCTGTGCCTAGATTCATTTTTTTTTTTTTTG


GCATGTTACTTCAGTATTCATAAGAAACATTGTTCTGTAATCTTCTTTCTTATAGTATCTTAGT


CTTGCTTTAGTTTTTGGGCAATGCTGGCCTCACTGAATAAATTCAAAGTGTTCCCTCCTCTTCA


ATTATTTGGAAAAGTTTGAGAAAGACTATTGTTAACTGTTTTCTAAATTTTTGGTGGAATTTAC


CAGTGAACCAACTGGTCCTAGGCTTTTCTCCAGTAGGTGGTTTTGATTATGCTTTCAATCTCTT


TACAAGTTACACATCTATACAGACTTTTATAATTCAGTCTTGGTAGGTTGTGCGTATTTAGGAA


TCTGACCACTTCATCTAAGTTATCCAATTAGTTGGCATGCAATTATTCGTAGTTCTCTGAATAA


TCATTTTTATTTCCACAAAATTGGTAATATCCCAGTTTCCATTTTTTATTTCATTGAATCTTCT


TTTTTCTTAGCTAATCTAGCTAAATGTTTGCCAATTTTGTTGATCTTTTGGAAGAACCAACTTT


TGATTTATTAATTTTCTCTACTCTTTTTCTGTTCTTTATATTATTTATTTCCACACTAATCTTT


ACTATTTTCTTCCTTCTGTTGGCCTTTAATTTTTTTTTTTTAATTTTTAAGGTGTAAATTTAGG


TTGAGAAATTTTTTAAATGAAAGCATTTAGAGCTATAAATTTTCCTTCTGGTGTTCCTTTCACT


ACCTGCCATAAATTTTGATATGTTGAGTTTTTGTTTGTCTTGGAGTATTTTCTAATTTGTCTTC


TAATTTCTTCCTTGACCTATTGGTTATTTAAATGTATTTAATTTTTGCATATTGTGGATTTCCC


AGTTTTCCTTCTGTTATTGATTTCTAGTTTTATTCCATTGTGATCACAGAAGATATTTTGTATA


ATCGCAGTCTATTAACATTTATTAAGTCTTGTGGCCTAACAGAGGATCTATGTTGGAGAATGTT


CCAAGTGCAATTGAGAATACTATTCTGGTGCTATTAGGTGAAGTATTCTCTATATGTCTGTTAA


GTCCAATTCATCTATAGTGTTGACGTTTCCTGTTCCTTACTGATTTTCTGACTTATTATTCTAT


CCATTATTAAAAGTGGAGTGGTAAAGTCTCTATTATTGTAGAACTCTCTGTTTTTCAAGTCTAT


CAATATCTGTTTCATATATTTTGGAGCTCTGTTTGCTGCATATGTGTTTACAATTGTTATATCT


TCTTGGCAAATTGACCAGTTTCATCAACATAAAATATAATTCTTATTGTCTTCTAACAGTTTAT


TTTTCTTTTTACATAAAGCCTATTTTATCTGATCTTAGATTCCCTCACACTCCACCCCAGCACG


CTTTTGGTTACATTTACATAATATATCTTTTCCATCCTTTCATTTTCAACCTGTTTGTGTCTTT


AGATCTAAAGTGAATGTCTTACAGACAGCATAAGCTATGTCATTAAAAAAATCCATTCTGCTTA


TCTCTGCCTTTTGACTGGGGAGTTTAATCCATTTGCATTTAAAGTAATCACTGATCATTAAATA


CTTTCAGTATTTTGTTGTTTTATGTATGTCTTATAACTCTTTTGCTCTTCATTTCCTTCAATAT


TGCCTTTGTGTTTAGCTTATCTTTTTGTGTCACACTTTGATCCCCTTCTCATTTCTTTTTTATA


TTTTCTTTGTGGTTACCAGGAGGACAATGTATCAACTTTTAAAGTTATTACAATTTTATTTTTT


TAAATCTCTCCCATTCGGGGATTTTAGGAAGGTTAAATAATAATGTAAATGAGATACCTAGAAC


AATATAAGCATTCAGGAATTATTAACTCAATTCCAATCCTTCCTCCACCTCCACCTCTTTCTCT


GTGAGATTATAGAAAAGATGACAAAAAGGATGTTTTCTGAGCCCTTTAATTGTTGAGAATGATC


TTTGAGAAAAAGAAAAAAAATGAAAGCACTAGGAATGTACAACAGCCTGGAAGTATAATTAAGT


GTAAATTAAATAGATAAAAGTTATAAGCAGAGGAAAGTATAGTAGAACTCAGTATTTAAAAGAG


AATCAATGTGAAAATTATATAAATTTATGTAAAATAAAACTACCAGACAAATCTGATATCCTTA


GGATTTTTCTTTCTTTCATGTGATTTCTAATTGCTACATATGACACTAAACCATTGATCTGAGC


TGTAAGAGAAACTGGAAATTGTTCTGTTATCTTTTGTAAGATTTCTAGAACATTTTGCCCTCAG


ACTTAAATGCCAACGTATTTCTCACTTATTGTTTACTGCTTTTGGATTTACATATGATTTGATT


CTTTCTTATCTCTTATCCTTACAATGTAATTCAAACTGATGCCAATTTAAGTTCAATTGCGTAC


AAAAACTCTACTCCTATGCAGCTCCGCCCCATCTAATTTACATTATTGATGTCGCAAATTCCAT


CTTTGTACATAGTTTACATATTAACATGGATTTATACATTTTTATGTATTTGGTTTTTAAATCC


TGTAGAAAATAAAAAGTCAACACACCAATATTAAAATAATACTGGTTTTTATATTTGTCCATGT


GCTTACCTTTATCAGTGTTCTTTACATCTTTATACGGGTTTGAGTTACTGTCTTGTGTCCTTTA


GTTCCAACCTAAAGAACTCCCTTTAGCATTTTTATAGGGCAGGTCTAGTGGTAATGAACTCTCT


GAGTTTTTATTTAGGGATGTCTTAATTTCTAGCTCCTGTTTGAAGTAAATTTTTCTGGATATAC


AATTCTCTGTTGATTGATTTTTGTTCATTTTCCCTTCAGCTCTTTTAAATACATTATCCCACTT


TCTTCTGCCTTCCAAGGTTTCTATTAACAAAATTCAGCTTATAATCTTATTAAAGATCTCATGT


ACATGAGTGGCTTCTCTCTTGCTGTTTTCAAGATTCTGTGACTTTGGTTTCTGATAGTTTAAAT


ATAATGTGTCTTATTGTGGGTCTCTTTGGATTTATCCTAGAGTTTCTTGGTCTTCTTACGTTGG


TATATCCATGTATTTCAAGACATTTGAGTAGTTTTCAGCCATTATTTCTTCAAACAATCTCTCC


TCTTTGGGGACTTCCATTTTACCTATATTGGTTCTTTTGATGGTGTGGCACCAGTCCCCTAGAC


TTTGTTCACTTTTTTCCAGTCTTTTATTTCTGCTTCTCAGACTCAACAGCTTCAAGTGTTCTGT


ATTCAAGTCTGCTGACTCTTTCTTCTTCCAGCTCAAATCTGCTGTTGGATCCCCCCTTGTAAAA


TTTTTAATTCCATTTTAGTGTTTTTCAAGTTAAGTATTTTTATTAGGTTCCTTTTTATAATTTC


TTTTTGTTGATATTCTCATTTTATTACACATAATTTGTCTGATTTCCATTAGTTTTTTTCTTTG


TTTTCCTTTAGCTCTTTGAAAATATTTAAGACATTTTAAAAGTCTTTATCCAAGTTCAATTTCT


ATGGTTCTGTAGAGATATTTTCTGCCAGTTTATGTTCTTCTTTTCCATGGGCCATGTTTTCCTG


TTTCTTTGTATACTTTCTAATTTTTGGTTGAAAACTGAGCATTTGAAAATAGAGCCAACTTTCC


CAGTTTCTGCAGAGAGTCTTTATGCCACAGTATTCGTTCACTGATTAACTGGGTATATCTAAGC


TTAGGGAGCAGCTGAGTCAAAAGTTTAAGGTCTTCTCAGGTCTTTTCTGAGTATACATGTTTCC


TATGCCTGTGTGAAATGTTCTCAATTTCCCTATATAAACAGCTACTTCTTCTTTTTTTTTTTTT


TTTGAGATGGAGTCTCGCTCTGTCACCCAGGCTGGAGTGCAGTCATCTCAGCTCACTGCATCCT


CCACCTCCCAGGTTCAAACAATTCTCCTATACAGGTGTGTGCCACCACGTCTGGCCAATTTTTG


TATTTTTAGTAGAGACAGGGTTTCGCCGTGTTGGCCAGGCTGGTCTCAATCTCCTGACCTCAGG


AGGATTACAGGCTTGAGCCACAGTGTCCAGCCTAAACAGCTACTTTTGAATGCTTTAATTTCCT


GAATAGTCTCAACCCAGTTTTTCCTTGAGGTCTTAGGTGGTCCATTGTATGTCTCCACCCATAG


TTGCTTGCCCCAGGCATCTGTGGGTCTGTGGTACCACTGCAGCTTTCACCACCTGTAGCTGCCA


CCTTTCCCTATCTGAGATCCAGGTTAGGTGAGAGAGATCATTCCTTCACGCAGTCCCATGACAG


GTTGGAACATTTCAAATAAGGTCTGTTCTGCTCCTCTGGTTGAAGGGAGAAAATTGGGAACCGG


TTTCCCACCTTCTACAAACCAAGATCTCATGTTGCCACGGGAGTGGCAGGGCAAGTGCAAGTGA


AAATGCCATACAATTTTCTACCATTTTGAACGCGGGTTTTTCTTCAATGGTCATTTGCTTGGTT


GCTGTAGGCCTTTCACTGTTTTCCAGAGCTCCCATAAGATTACTTTAGCCAGTTTTTTGTTCTT


TCCTGATGCTTCCCTGGCAGAGTAAGGGTTGGAACTTCCACCATTTTGCTGATTCATAACTCTG


TAGTCAGTTTTAAATATATTGATACTTGAGTTTGTTTTATGGCCCAGAATATGGTCTTGGTAAA


TGTTTCACATATACTCAGAAAGAATGTGTATTCTGATGTTGTTACATGGGCTGTTCTATAAATG


TTACTTAAGGTGGTTAATAATGTTGCTCAAGTCTTCTATATTCTTGCTGATTTTCTTTTATTTA


TTTATTTTATTTTTTTTATTATACTTTTAAGTTCTAGGGTACATGTGCACAACATGCAGGTTTG


TTATATATGTATACATGTGCCATGTTGGTGTGCTGCATCCATTAACTCATCATTTACATTAGGT


ATATCTCCTAATGCTGTCCCTCCCTGCTCCCCCCACCCCATGACAGGCCCCAGTGTGTGATGTT


CCCCTTTCCTGTGTCCAAGCGTTCTCATTGTTCAATTCCCACCTATGAGTGAGAACTTGCGGTG


TTTGTTTTTTTGTCCTTGTGATAGTTTGCTGAGAATGATGGTTTCCAGCTTCATCCATGTCCCT


ACAAAGGACGTGAACTCATCCTTTTTTATGACTGCATAGTATTCCATGGTGTATATGTGCTACA


TTTTCTTAATCCAGTCTATCATTGATGGACATTTGGGTTGGTTCCAAGTCTTTGCTATTGTGAA


CAGTGCTGCAATGAACATACGTGTGCATGTGTCTTTATAGCAGCATGATTTATAATCCTTTGAG


TATATACTCAGTAATGGGATGGGTGGGTCAAATGGTATTTCTAGTTCTAGATCTTGAGGAATCA


CCACACTGTCTTCCACAATGGTTGAACTAGTTTACAGTCCCACCAACAGTGTAAAAGTGTTCCT


ATTTCTTCACATCCTCTCCAGCACCTGTTGTTTCCTGACTTTTTAATGATCGCCATTCTAACTG


GTGTGAGATGGGATCTCATTGTGGTTTTGATCTGCATTTTTCTGATGGCCAGTGATGATGAGCA


TTTTTTCATGTGTCTTTGGCTGCATAAATGTCTTCTTTTGAGAAGTGTCTGTTCATATCCTTTG


CCCACTTTTTGATGGGGTTGTTTTGTTCTTGTATATTTGTTTGAGTTCTTTGTAGATTCTGGAT


ATTAGCCCTTTGTCAGATGAGGAGATTGCAAAAATTTTCTCCCATTCTGTAGGTTGGCTGTTCA


CTCTGATGGTAGTTTCTTTTGCTGTGCAGAAGCTCTTTAGTTTAATGAGACCCCATTTGTCAAT


TTTGGCTTTTGTTGCCATTGCTTTTGGTGTTTTAGACATGAAGTCCTCGCCCATGCCTATGTCC


TGAATGGTATTGCCTAGGTTTTCTTCTAGGGTTTTTTATGGTTTTAGGTCTAACATTTAAGTCT


TTAATCCATCTTGAATTAATTTTTGTATAAGGTGTAAGGAAGGGATCCAGTTTCAGCTTTTTAC


ATATGGCTAGCCAGTTTTCCCAGCACCATTTATTAAATAGGGAATCCTTTCCCCATTTCTTGTT


TTTGTCAGGTTTGTCAAAGATCAGATGGTTGTAGATGTGTGGTATTATTTCTGAGGGCTCTGTT


CTGTTCCATTGGTTTATATCTGTTTTGGTACCAGTACCATGCTGTTTTGGTTACTGTAGCCTCG


TAGTATAGTTTGAAGTCAGGTAGTATGATGCCTCCAGATTTGTCCTTTTGGCTTAGGATTGTCT


TGGCAATACAGGCTCTTTTTTGGTTCCATATGAATTTTAAAGTAGTTTTTTCCAATTCTGTGAA


GGAAGTCATTGGTAACTTAATGGGGATGGCATTGAATCTATAAATTACCTTGGGCAGTATGGCC


ATTTTCACGATACTGATTCTTCCTATCCATGAGCACGGAATGTTCTTCCATTTGTTTGTGTCCT


CTTCTATTTCGTTGAGCAGTGGTTTGTATTTCTGCTTGAAGAGGTCCTTCACGTCCCTTGTAAG


TTGGATTCCTAGGTATTTTGTTCTCTTTGACGCAACTGTGAATGGGAGTTCACTCATGATTTGG


CTCTCTGTTAGTCTGTTACTGGTGTATAAGAATGCTTGTGATTTTTGCACATTGATTTTGTATC


CTGAGACTTTGCTGAAGTTGCTTATCAGCTTAAGGAGATTTTGGGCTGAGACGATGGGGTTTTC


TAAATATACAATCATGTCATCTGCAAACAGGGACAATTTGACTTCCTCTTTTCCTAATTGAATA


CCCTTTATTTCTTTCTCCTGCCTGATTGCCCTGGCCAGAACTTCCAACACTATGTTGAATAGGA


GCGGTGAGAGAGGGCATTCCTGTCTTGTGCCAGTTTTCAAAGGGAATGCTTCCAGTTTTTGCCC


ATTCAGTATGACATTGGCTGTGGGTTTGTCATAAATAGCTCTTATTATTTTGAGATATGTCCCA


TCAATACCTAATTTATTGAGAGTTTTTAGCATGAAGGGCTGCTGAATTTTGTCGAAGGCCTTTT


CTGCATCTATTGAGATAAACATATGGTTTTTGTCTTTGGTTCTGTTTATATGATGGATTATGTT


TATTGATTTGTGTATGTTGAACCAGCCTTGCAACCCAGGGATGAAGCCCACTTGATCATGGTGG


ATAAGCTTTTTGATGTGCTGCTGGATTCAGTTTGCCAGTATTTTACTGAGGATTTTTGCATCAA


TGTTCATCAGGGAAATTGGTCTAAAATTCTCTTTTTTTGTTGTGTCTCTGCCAGGCTTTGGTAT


CAGGATGATGCTGGCCTCATAAAATGAGTTAGGGAGGATTCTCTCTTTTTCCTATTTACTGTAC


ATTTATTCCACCAGTGACTAAAACAGGTGTATCAATAAAATCTGTTCCCTCAGGTTTTGCTTCA


GGTATTTTGAGGGTCTGTTATCAGGTGCATAAACAAGATTGTTATGTCCTATTCTTAAATTAAT


CTCCTTATAATTATGAAGTTAATTTTTTTTTTCTTGAGATGCAGTTTTGCTCTGTCGCCCAGGC


TGGAGTGCAGTGGCACAATCTCGGCTCAGTGCAACCTCTGCCTCCTGGGTTCAAGCATTTCTTT


GCCTCAGCCTCCCGAGTAGCTGGGGTTACAGGTACCTGCCACCACGCCCGGCTAATTTTTTTGT


ATTTTTAGTAGAGATGGGGTTTCACCATCTTGGCCAAGCTGGTCTTGAACTCCTGAACTCTTGA


TCCACCCACCTTGGCCTCCCAAGGTGCTGGGATTACAGGTGTGAGCCACTGCGCCTGGACCTGG


CCCGAAGTAAACTTCTTTACCCTTGCTAATGATCTTTGCTCTGAAGCATGCTTTGCTGGTATTA


ATATAGTCATTCCTTCTTTCTTTGATTCATGTTTGCAGGGTATATCTGTTTCCATTCTTTTACT


TTTAACCTATTGTCTTTATATTTAAAGTGCATTTCTTGTAAGTATAATTGGTTTCTTAAAATCC


AATTATCTGCCTTTTAAATGTCATTTTTATATGATTTGCATAAATATGATTATTATTACAGCTA


AATTGAAATCTGTCATCTTGCTATTTGGTTTCTATTTATCCCATTTTTTTCCCCTCTTTTTTTG


CTTTCCTTGAGATTGAACATTGTATTAGTTTTCTAGGGTTGCTGTAAGAAAGTGACATAAAGTG


GATGGCTTAAAACAACAGAAATTTATTGTTTCAGTTTGGAGGCTAGTCATCTGAAACCAAGGTG


TCATCAGGGCCGTATTCTCTCTGAAACCTGTAGGGAAGAATTCTTTCCTGCCTGTTCTAGCTTC


TAGCATTTTCCAGCAATTCTTGGCATTCCTTTGCTTGTAGATGTATCCCTCCAATCTCTGCCTC


TATCATAACATAGCCATCTTCTCCCTTTATCTGTCTATTCTTCTCATCTTATAAGAACATTAAT


TACTGAATTGGGGCCCAGCATAGATTAGGCCTAATCTCATCTTGAATAGGTTACATCTGCCAAA


GATTCTTCTTCCAAATAAGATCACTTTTACAGCTTTTACAGGTACTGAGAGTTAGAACCTCAAT


ATATCCTTTGGTGGGGACCGACCTCTTACCCATAAAAAGTATTTTATATGATTCCATTTTATCT


CCTTTTTAGGTTATTAACTACAATTTTTTTTTCTTTTTTTTGAGATGGAGTTTTGCTCTTGTAG


CCCAGGCTGGAGCGCGATTTTGGCTCACTGAAACCTCTGCCTCCCGGGTTCAAGTGATTGTCCT


GCCTCAGCCTCCTGAGTAGCTGGGATTACAGGCATGTGCCACCGTGCCTGGCCAATTTTTGTAT


TTTTAGTAGAAACAGGGTTTCACCATGTTGGCTAGGGTGGGTCTCAAATTCCTGACCTTAGGTG


ATCCACCCACCTCGGCCTCCCAAAGTGCTGGGATTACAGGCGAGAGCCACCACGCCTGGCTTTA


TAATTTTTTTTTAATTCAGTGGATGTTTTAGGGTTTATAGTATACATCTTTATCACAGTCTAGC


TCCAAGTGATATATCCCTTTATGTATAGTACATGACCCTTACAGTAGTGCATTTCCATTTTTCC


TCTCTGGCATTTAGGCTATTGCACACACATACACTCAATTCATCCCTTTGTGTAGATCCGTATT


TCCAGCTGCTATCTTTTGCTTCTGTCTGAAATATATGTATGATTTCTTTTATGACTATTTTGAG


AAATTTGGTTATGTGCATTTGTCTATTTTTCTTATGTACTTTTAGCTCATCAATCTTAAGTCTG


TGAGTTTATAGTTTTTAAAAACAAATTTGAAATTATTTGGCTATTATTTCCTCAAATATTTTTT


TCTGCCGCCCCTGCTTTCCCTTTCCTTAGGGATCTCTGATTTCCACCTATATTACTCTGATTGA


AGTTGTTCCACGTCTCTTTTGAAAATCTCTGAAAAATCTTTTATCATTTGGATAATCTGTATTT


GTACATCTTCAAGTACATTAATATTTTCTTTTGCAATGTTTAATCTGCTGTTAATCCCATGTAG


TGGATTCTTCATCTCAGGTATTGCTGTTTTAATCTCTAGAAATTCCATTGAAGTCTTACTTGAT


GAAAAAGGCAGATAAAAACAAATGTTGGCAAAGATATGGAGAAATCAGAATCTGCACACACTGA


TGATGGGAATGTAAAATGGTCAAGGCAATTTGGAAAGCAGTCTGGCAGTTTCTCAAAAGGCTAA


ACGTAGTTCCCATATGACAGCAATCATTCATCTAGGTATATACTCCAGAGAAATAAAAACATAT


CCACACCAGAACTTGAACATTAATTTTCATAGCAACATTATTCCTAGGGGTTTAAAATTTTTTA


CATTATTTTTATTTAAAATAGAGACAGGGTCTCACTACGTTGCATAGGCTGGTCTGGAACTCCT


GGAATTAAGCATTCCTCCTGCCTTTGTCCTGTTTTCTCCACTGGAAAAGAATAAAACTTTGTAC


ACTTGGACTAACAACTCCCGATTCCCTCCTTTACCAACATGCCCCACAGCCTCTAGTAACTTAC


TCTCTACTTTCATGAATTCAACTTTTTTAAGATTCCACATATAAGTGAGATCATACAATATTTG


TCTTTCTGTGCCTGGCTTATTTCTCTTAGCATAATGTCCTCCAGATTCATACATGTTGTCTTAA


ATGACAGGATTTACCTTCCTTTAAAGGCTGACTAGTACTTCATTGTGTATATGTATCACATTTT


CTTTATCCACTTATCTGTTGATGGGCACTTAAATTGTTTCAATGTCTTGGCTACTGTAAGTAAT


GCTTCAATAAACATGGGAATGAAGATATCCCTTCAACATATTGATTTCTGTTCTTTTGGATAAT


ACTCAGAAGTGAGATTACTGGATCATATGGTTGTTCTATTTTTTTCAGAAACCTCCATACTGTT


TTTCATAGCGGCTGTACTAATTTACATTCCCACTAACAATGCATGAGTTCACTTTTCTGGACAT


CCTCCCCAACACTTGTTATCTTTCATCTTTTTCATAAAAGCCATTATATAATAGGIGTGAAGTG


ACATCTCACTGTGGTTTTGATTTGCATTACTCTAATAATTAGTGTGAGCATTTTTTTTTTTTCA


TGTACCGAATGTCTTTTGAGAAAGGTCTCTTCATTCCTTTGCCCATTTTAAAATCAGGTGGTTT


TCTTGCTCTTGAGTTGTTTGAGTTCCTTATGTATTTTAGATATTTACCCATTTCCAGATATATC


ATTTATATTTTTTCCTATTCTTTGAGTTCCCTCTTCACTGTGTTGTTTCCATTGCTGTGCAGGT


CTTTTATTTTGATGCCACCCCATTTGTCTATTTTTGCCATGCTTTTGCAGTCATATCCAAAAAA


ATCATTCCCAAGACCAATGCTGTGGAGATTTCCCCCTATGTTTTCTTCAGTAGGTGTACAGTTT


TAGGTCTTATATGTTAAGTTTTAAATCTATTTTTTTATATGGTGTAAATAAGGGTCTAATTTAA


TTCTTTTGCATGTGGATATCCAGTTTTCCCAACACCATTTATTGAAGACCCTGTCCTTTTATAC


TTTTCAGTATGCAGATCTTTTACCTCCTTAAATTTACACCTCAGTATTTAATATTTGTTGCTAT


TATGAGATTTTCATAATTTCCTTTTCAGATAGCTCATTAATAGTAGATGGAAACACTACTGATT


TCTGTAAGATGATTTTGTATTACGGAACTTTACTGAGTTTGTGTATCAGTTCTACCAGGTTTTA


GTTTTGTTCTGGTGGAGACATTACAGTTTTTTGTATATGGTTATGTCATCAGTAATTACAGATG


ATTTAACCTATTCCTTTCCTATTAGGATGCCTTTTTTTTCTTTCTCTTGTCCAACTGCTCTGGT


TAGGACTTCTAGTACTATGTCAAAAAGTGATGAGGGTCGTACATGGCCTCCATACCTAATCTGT


TGAGAGTTTTTACCATGAAACCAGGTTGAATTTTGTCAAATGCTTTTTCTGCATCCATTGAGAT


GATCATATGATTTGATTTACACCCTCCATTTTGTTATGTGGTATATCACACTTTTTGATGTGCA


TATGTTGAACCACCCTTGCATCCTAAGGATAAATCCCACTTCATCATGGTGAATCATTCTTTGT


ATTCGTGAATCCAGTTTGCTAATATATTGTTGAGGATTTTTGCATCCATGTTCATCAGGGATAT


TACTTTGTAAGTTTCTGTCCTTAAAGTGTCTTTCTCTGGCTTTAATAACAGTGTAACACTACCC


TTGTAAAATGAATTTAGAAGTATTCCCTCTGCTTCATTGTTTTGGAAAAGTTTGAGAATTTTTA


TTAGTTCTTTAAATGTCTGGTAAAATTCAGTAGTGAAGCTGCCTAATCCTGGGCTTTCCTTTGG


TGGGATACTTTTTATTACTGGCTCAATCTCTTTTCTTGTTATTGGCTTATTCAGATTTGTTTCT


TCATGATTCACTCTTTGTAGGTTGTATATGTCTAGGAATTTATTCATTTCTTTAGGTCATCCAA


TTTGATGGTGCATAACTTCATAGTAGTTTCTTATAATCCTTTGTATTTTGGTGATATCAGTAGT


AAATGTCTCCTCTTTCATTTCTGATCTTATTTGAGTACTCTTTTTTTCTCCTAGTCTAGGTAAG


AATTTGTTGATTTTATCTTTCAAAAAAAAAAAAAACCAACTCTTAGCAACTCTTAGTTTTGTTC


ATTTTTTTCCAGTCTTTATTTCAACTGTGATCTTTGTTACTTACTTCTTTATGCTAACTTTCGG


GCTTAGTCTGTTCTTTTCCTAGTTCCTTTAGGTGAAAAGTGAGATTGTGATCCTTCTTCTTTAT


TGGCGTAGGTTTGTATCGCTATAAATTTCCATTAGGACTGATTTTGCTGCATCACATAAGTTTT


GTTTCCATTTTCATTTGTCTCAAGGTAATTTTTTATTTACTTTTTGACTTCTTCTGTGAACTAT


TAGTTGTTTGGGAGCATATTGTTTAATTTCCACATATTGCTGTATTTTCCACCAGAATTGATTC


TTGTTCTTGATTTCTAGTTTCACGCCATTGTAATCAGAAAAGGGATTTGATATGATTTCTGTCC


ACTTAAACTTAAGATTAGTTTTGTGGACTAACATATATCCTGGAGAATGTTCCATGGGCATTTG


AGAACAAAATGTATTTTGCTGCTTCTGGATGGAATGTTTCATATATGCCTGTTAAGTCCGTTTG


GTCTAAAGTGTAATTGAAATCCATTGTTTCTTTATTGATTTTCTGTCTAGGTGATCAATCTGCC


CATGGTGAAAAGTAGAGTATTGAGGTCCCGTATTATAGTATTGCAGCCTATCTCCCTCTTCACA


TCATTTAAAAATTGCTTTATGTATTTAGGTGGGTCAATGTTGGGTGCATATACTTTTACAATTG


TTATGTCTTCTTGGTGAATTAATCCCTTTATCATTATATAACAAACTTCTTTCTTTTTATAGTA


TTGACTTAAAGTCTATTTTGTCTGATAGAAGTATAGCTACCCCTGCTCTCAATTTCCATTTATA


TAGAATATCTTTTTCCATCCCTTCACTTTCAGTCTATGTGTATGTTTAGTAGAAAAGTGAATCT


CTTGCCGGGCGCAGTGGCTCACTCCTGTAATCCCAGCACTTTGGGAGGCCAAGGCGGCGGGATC


ACCAGAGGTTGGGAGTTAGAGACCAGCCTGACCAACATGGAGAAAACCTGTCTCTATTAAAAAT


ACAAAATTAGCCAGGCGTGGTTGTGGGCCCTTGTAATCCCAGCTACTCGAGAGGCTGAGGCAGG


AGAATTGCTTAAACCCGGGAGGTGGAGGTTGCGGTGAGCTGAGATCATGCCATTGCACTCCAGC


CTTGACAATAGCAAAACTCCGTCTCAAAAAAAGAAAAAGAAAAAGAAAAAAAAGTGAGTCTCTT


ATAGGCAGTATGTGGTTGTGACTTAAAAAAAAAAAAAAATCCATTCTGTCATTCTATGTCTTTT


TGTTGGAGAATCTAATCCGTTTACATTCAAGGTAACTATTGGTAAGAAACTGCTAGTGTCATTT


TGTAATTTGTTTTCTGATTGTTTTGTAGGTCCCTTGTTTCTTTTTTCCCTATTGCTACCTTCCT


TTGTGGTTTGGTGGTTTTCTGTGGTGGTGTGCTTTGAATCCTTTCTTTTATAGTATATGCGATT


ACCATTGTATTTGCTGTAAGGCTAACTTAAAACATTTTATCCTTAGGCTACTTTAAGCGATAAA


AACTTGCCTTTAGTTGCATACAAAAACTCTACGCTTTCACAACCCCCCCGCCTTTCGTGATTTT


GATGTCAAAGTTTACACTTTTTTAAATTTGTATCTCTTATTGTAGCTACAGTTACAATTACTTC


TTGTAGCTACAACTTATTGTAGCTACAGTTGTTTTTAATAGTTTCATCTTTTAAACCTCCTAAT


AGGAATAACATTGCTTTACCTGCCACCTTTACAATACTAGAGAATTCTGACTATGAATTACTTA


TACCATTTAGTTTTTTACTTTTATGTTTCTCATTAACTAGCAGTCTTTTATTTAAGCCTAAAGA


ACTCCCTTTTAGTAATTCCAGTAGAGCAGGCCTAGTAGTGACAAACTCCCTTAGGCATTGTTTA


TCTGGAAAAGTGTTTATTTCTCCCTTTGCCAAGTAAAGTATTCTTAATTAACAGCTTTGTTTCC


TTCAGCACTTTGAATATACCATCCCACTCTCTACTGGCCTGTAAGGCTTTTGCTGATAAAGCCA


CTGAATCTGTATTGGGGCTACCTTGAATGTGATGTTTCTTATCTTTGCTGCTTTCAGTATTCTT


TGTCTTTGATTTTTGATAACTTGGTTGTGATGTGTCTTGGTGAACTCTTTAGGTTGAATCTGAT


CGGTGACCTCAGCTTCCTGTTCCTGAATTTTGTCATCTTTTCTCAGATTTGGGAATTTTTCAGC


TATTACTTCCTTAAATATGCTTTCTAGGCCTTTTTCTTTCTTTTCTCCTTAAGGACCTCCTATT


ATGCAAAAGTTAGCTAGCTTGATGTGTCCTGTAATTCTTATAGGCATTCTTTTTTGTTTTTGTT


TCTCATTGGATAATTTCAAATGTCTTACCTTTGAGCTCATTGATTCTTCTGCTTGATCAAGTCT


GCTGTTGAAGCGTTCTACTTAGATTTTCAGTTCAGTTACTGTATTCTTTATCTTTAGAATTTCT


ATTGTTTTTGTTTATATTTGTTAAACTTCTCATTCTGTTCAGATGTTGTTTTCCAAATTTCATT


TTTCTATCCATATTTTCTTGTACTTTGTTGAACTTAAGAGGATTAGTCTAAATTATTTGTCATT


TCACAGGTCTCCATTTCTTCTGAGTCTGTTACTGGAGCTTTCATATCCAATGTACACCAGAAAC


TTTGCTAATTCCACAGTAAATGTTAGAAATGGGTTTTTATTGATAAAATCAGTGGCTTGCTAAT


TAGTATGTTAGAAGCTGGCTTGCATTGGTGAAGTTGAGGGTATTCGATATACGTATCCCGGCTA


AAATACTTCTAAAGAACCTCTCCAGCTTTGCAAGAATAGAGTATAGGAATCTGAGGAGGCCTTT


AACATGGCCCTCAGAAAGGACACACAGGGCTTGACCTCTAAACATATAAACATATACAGAAACG


AGGTCAGAACATGTTTTGACTGATGCCAGTAGTAACACAGCAGAGCCTATTGCTGGTCACTGTT


ACCAATACCTTGTGTAATAAACCTTTCATTTAAATTGAGAGGTTGTAAGCCCCGAAAAAGCAAA


GGGCTTACAGTACCTCTTGCCTGAACACTCCTGTGTGTGCTTTCTAAGAAATGCTTTTAAAATA


ATGCCTGTGGCACAAATTGATTTGACACTGGCTCTCTTTATAAGCTGCTATCAAGGTTGTGGGG


AATAGCTAACTCTTACCCACTTTCCCTGACAAATAGGAACCCGTAGTTACCTACCAAAAGTATG


TAAAAGCTATATCCGACCCAAAGGCCAGTTAGGTCAAAACACCTTGAAAGGAGCTCAGTTTAAG


GAAATCAGTGGTGTCACAGTGCCCCACTAGCGTGTAAAAGTTTTCATAGTTTGACTATCGGATG


TGCTTAGTTTCACAGCTGAGTCTTACCTTGTGATACTTTTAGAGCAAAAGTCAAATCAAAGATG


ATTTAAAAAAACATTTCAAAGATTCATAAAGAATAAATGCCTCCTCAGGAAGTCTTCTGGAGTT


CTGCCCACTTCCCTTAGGTGGCTCTTTACTGTGCCCATCTCATAGCCTGTCTCCTTCCACTTGG


TGTATTGCAGAGTAAAGCTCACTGTTTACAGGGGTGGTAGAAAGTGTGGTCCTTTCCCAGACTC


CTTTTTCCCTTCCTCTTCTCATTTTTCAGAAGATGTGTTTGATAATAAACGAAACAAAATGACT


AACACATTGAGCTGAGCTACATAAGCAGATGTCAGTTTGACGTGAAGAGTTTAAAAGATCTATG


CATTATCIGGGGACTCCTCCCCCAGACCTGAAGGATCAGGTGCTGCCTTCTATGCCACCTGTGC


AGACAGCAAAAGAGGAAAACCATACCCACGTTCAGTATGAACAAAGGGGACATTTGAACTCTGT


GTGGACCCCTCATTGGAAGGGTGTTTCTTCTCCTGCTGCATCCACAAAGAGCACTCCTTAGCCT


TGCCTTTTGTCAGTTCTCTCTCCAATAAGGCTTGAGCAGAGACAACCCAGTGCAGTTCAGAGAG


ACTGAAGTCTGGTGTTCCAGGTCTGAGTCCTAGCTCTAGCTCTCTGTGTAACTTTGGGATGTCC


CAAAGTAACTTTTCACAACTTGATAGGIGTTAACTTGAATTTTGGATACAGGTGACTCTTAGCC


CATCCCCTCTCTGTGCTTCAGATATGTCATCACTTGGGCCATATGACCTCTGGACACCTTTCCT


ACTTTCCACAATTTCAGAGCAGCAGAGCAGACTGGAGCTCCTGCTGCCTCTGAGCTTCAGTGAA


TTATCACTCGTTGGAGGGAAGCTTCAAGCATTTTGTTATCTTTCAAGAGCAAACACAGTGTCTG


TCAGCAAGAATATGTAGCAGATGCTAGTGAACAGCAGTGATTAGGGTTGAATGCTGGATTTAAA


TATGGAGCTTAGGCTGTGAAGGAAGCCTGAAGAACCTAGAGCCCCATGAAGCTGCCCTCTGTGA


TATGTGAGTGCAATACAGTGAAAGCAAAGAGAATAAAATGATGGCTAACATGATGTTCCAAACT


TTAAACAGGAGAAAAACACACAATTCCATTATGTATAAGAACCCACACAGAGATCAGGAGAATA


ACCTCATTGGAGAATGAATGACCTGTGTGGGGAATTTAGGGTAGAGTTGAGATTGAAAAAATGG


GCCGAAGTCAGGTGGCCAAGGGCCTTAATACCTTGTATACAAGATGTGTAGTCAAGGAAGACCA


TGCCTTACTTATGCATCAATTCCCTTGGGCCTACAAAGAGCTGCCTAGCCTGGGACTGTTGTAG


AGAAAAGCTACAGTGTTCCAATGACACAGGGACTCCTCCATGTATGTATGAGTGCCCAGCTGGC


TCTGTAATAAATCTTATTTTTATTTATTAACTTTTCTTGCGCATTGGCTTGATGCATCAGTTGG


AAGTCAGAGGCCAAACGAAGTGAACACTGAGCCAAAGGAAGTTCTCAGCCTTTAGGGAGGCAGA


ATTCACTTTAAACACAATAAACAAATGAACTCACATTATACAGGAGAGAGTCAGAAGATCCCAG


TGGCTGGTGTCATCGGGCCATATTTGCCCGAAGTGCCTATTCCTTATAGGAACCCACTCCCAGG


GTTGATGGGCTACATCCTTAGGAGGCTTTATGCCTATGTTCTCCTGACCACTGGCTCCTCCAGG


GCTGGCCTTTTTTAGTCTCTCTGTAGAGGTTCCTGTAGCTGGTTGGATATAGGCTTTCACAGAA


GGGTCAGTGCCTTGGGTCTGGTTACAGGACTGTTAATCTTGCTTTGTTAAGAGTAATGTTATTT


CCCCATTTCCAAATTCTCCAGGGAGATGGAATGTCAAAGATAGTATGACTGTAGCACCTAAATC


CTGGGTTCCAGAAGCAGAGAAGAGAATACACTGAAGCTGTAGAAAGGCCTATTAGTCCATGTCA


GAGATTAACTGGATGCGAGGACCATTICTGGGATGGTGTATACAGAACTGGAGAACTGGATAGG


GAGTCAGAAACAAAGAGCTGAAGATGATGCCTTTGAAGTTTCCAACGTGGATAACTAGGTCAAC


AGAATATTACTCAAGAAAGTATTAACATAGGATTGAGATGCAGTCAGTAGTAATGGAATTGAAA


TTTCAAAGTATATACCTCATGGATCTCAGGGGGTGTTGAGCTGATCACCTGGGCTAACACTCCT


ATGACCCTGGGGAAAATCAAATGACCTGGTACTGTAGCCATGGTAGGGGTGTCATCACCTTAAT


CCAACTGGGACAGTGCTGTTTGATATTCATCTGGAACTTGGTGCAGACCCACATTTTGCTGGGT


TTCACCACAACCAAGGCTTTTTTGATTCTTTTCTCTTTTAACATCAGTACATCACTGCAAAGTT


AATCCTCATATAATAGGAGATGAAACTAATTGCTTATAAAAACAAGATTTTTACAACACTAAAA


TTGTTCAAGCATATGGGCATATTTATAGTTGCAGGCAGTGTTTCAGATGCAGACTGTTCTTGGC


TGCAGTGGTTGTTTACAGGCAGCATCTGTTCTGATTAAATATTTGATGATTATCCCCGAATGTT


TTAAAGCATAGTACTGGGCTCTGCTGACTGTACAACAAACTGGCATTTTTGACCTATAGGGCAC


TGGGCTAGGAGATACAGTTCTGAGGGAAGTGAAAGATAGTTAACAACTGCACAACTGACCCTTT


ATTAGTTGCAATAAAGCAATCCAACCACCCAACCCACTGTGATGGCTTTCCTACTATTTAAGGT


TGGTGGTGTCAAAGAGACACCCTCCTGTACAGTGTGCAGTGAATCAACATCATTTCCACAAAAC


CTCCTTCCTGCACAAAGGAATTATCATACTTTGTTACGAAGTAAAATTTTCCTGTATCAGTCAC


AGGAGTTCACCAGTTAAGATACTGTTAGTTGAAGACTTCTGGGGTGACTTAATGAAATAGCTCA


GCCATCTGGTTTAAAAACTGGATTCTTCTATCCCTCCACACAGCTGTCCATGCACCTGCATCAT


CTCAAGGCTGGTCTCCCTGGTGGTAGAAAGGCTGACAGTAAAAACTGGAGCCACATGATTCCTT


GCTTAGGCAGTGTTTCTTCATACTCTCACATGAGAGCAGGCATGTTCTTTCCCTAGGCTCACAG


TAAACACTCTGTCAAATCTCACAGGCCCAAAGTGCTTTTGGTTATCCCCATTCCAAGCCAATCT


GTGGCATGGAAGATAGCATTACCCTGACTGCCTTAGACTAATATACCTACTCCACTTCTGGGGC


TGGGAATAATTTTGAGGTCAACCATCCAAACTGCATGACAGCCATTCCATGGAAGAGGTATGGC


CTAAATCTTTGGGGCAACCTGAATTCATGAAAACTCTCTTAGATTTATGTAACTATTTTTAGAA


TTCACTTCTGTATCATTTAATTTTACTAATAAAAATACCACCTTTACCCTAAATGTCAGCCAAG


CGTAAGGCTCCGTTGGGACAGAAGGAACTATCAAAGCTTTGTGTTTTTATACATTAGCAGCATT


TGACAAAGAAATAACTCTGAAGGAAGGAGAATAACCAGGCAGAGTCTAGATGCATGGAAAAGAA


GTCTTTGAGAAGGCTTCGCAGGCTGAAGGAAAGGGCAGGACTACTTCAGGAATACAACGTTTAA


GTAAAAGAGGTTGGGGTCTGTTGATCTTGAGGAGAGATGAGGATGGACTGGAAAATAGGAGTGA


GATATAGTAGGAGAGGAAAGGATATGGATGATGTATATACTGTATGGGTAACCATCAGTCGACC


CTAAGAAGATAATAGTTGTTAAATGGTTAGCTATTTAATGAAAGAAACCTGAACAAGTAATAAT


CTTGAGTTGCAAAGTGGCTGGAGTCACACAACAGACTAAATTTCTGGTAGAACAAATCCAGCAG


CTTATGTGAAGGTTACCATGTCTGAAGCTGGATAGAAAAGGTCTAACTTCCAACCAAAGTCACA


GTTCTTGAGCTCGGTACACAGAGACAGACTGCTAACAGCTGATGTGTCCTCAGCGAGAGTGTCC


TCATTTATATCCTCGTTCTCTTCTGCCTCCTTTTTTTGTTTTAAACTTTTGGGAAGTCTCATCA


TTCAATACAGTTCTAATATATCACAATAACAGAGGCGGCCCAATTTCTACAAATTGACTAATTC


TATCCCTGAAAAGTTCATACAATAAAACTATACAAAGCATCATTTTCAACCATCCTATAGAAAA


ATTTCCCTATTAAATTTTAACTCTAAATCCTCTATCTCTGTTAATAACCTTACTAAAAACTTCC


CCATCACTGCCTGCCAGGGAGATCAAAAGAAACCAAATTTAAGAAACCTCCAACACCTGTACCT


GACTGAAAAGCAAACATACAGACCTTTCAGTCCTGCCCCTACTATTCAGCTCCTATCACAGAGA


CATGGTGGATGTCCCCTTGGGAAGCGGATAGCTCTTAGGTGGAAGCTAGGCCTGCAATAAGCAG


GCCAGGAAACATGTCTCCCAGGCCCCATACTCTTGGCAGAAGCACTTGGCCACCAGACAGCATG


TCCTGTCAACCTACAGAGTTCTTAAAAACAAACACTGGGACCCAGAATAGTACCCTGTGGTCAT


AGTGCCCACAGTTCACTAAGCACCCTCACAGGTCTTTGACAGAACACTGACTGCCAGGTCACCT


GGTGGGCAGAGAAATGGAAGATTCCCAGGCCCAACTAGCATCTCAGGGAAGAACCACAAGCAGA


GCAACTTTCAGAGCTGGTCGGCCAGCGTTGGCACCCAGGGAAGCAAGTGCTATTCCATATTTGG


AGAGAACATAAAACTCAAGGAAACAGAGAAGTCCTACTCAATACCGTTCTCAACTGAAAACAAG


AGAACTTGCAAAAAAGAAACCCAGTTTTCTGGAGTCCATGGAGAAATATGAAGCCAATGCTCGG


CTAACAGAGCAGAAAGCCTTTTATAAATAATGCCAGTCAAAGCTCCAAAGGTCAGAGCTGATGC


ATGCCGGATTGTTCTGACAATTTCTTAGGTTTCTAGGCAACAAGGAGCTGGTCAAACAGCTCAC


CTCCAAGGACATACTTTATAATACCACCCTGGTAGACGAGAGCGAGGCAGCAGTGAAGGCAATA


GTCAAGAACAGGAGAGGGAGGTAAAGAACAAGATGCTCTTCAGACAGTCTGGACAAAGACAGTC


CCTACCCAGCTCTCAGGAGTTGCCTCCTTAAGAAGGTGGAGGCCCAGGCAGCTCCCAGGGTGAC


CCTAAAGACAGACTCCAAGGAAAAGGGTGTGAGGGCAATGGTGAATATAAGGAGGTCCCCTTTC


AGTAGGCAGAGCAAGTCAGTTCAGGTCTTATTTTTAGAGTCTCTGAACAGTGAAGAGAAGCTTT


CTGTGGACAGCATTCCACCACCATGGGAGGGGAAAGGTGCCATGAGAGACTTCTCCAGTGGGGC


ATACAAGCATTGTGCAGTGATCCCCAAGATCCAGCCACTGGCAGGAAATCGAAAGGCAAGCTTC


TTAAATACATAGTATATGGAGACAGAAGTGTGGAGCACTCCCAAAATGAAAGGCCAAGACCCAG


GAACAACCTCCACAACCTGGAGTATATACAAATGAACCCAGCCCTGCTGACTCAGATCCACACC


ATCCTAAAGCAGGGGTTTCTCATGAATGAAAGGGCTAAGTATTTGGTGGAGAGAATGAGAAGTC


TCCCACTGCCCACACATTTTTTCTTCAGAGATTTCTTTTCCAAGAGCCCCTTGAATAAAGGAAG


GGAGGGAGCACTGAATGCCCCAGAAATCAGAATGCATGGTGCGGGAAGACGACAGGAAATAGTT


CTCAAAGAGATCAGAAAATAAATTGGAAGCAATTTCATTACCACAAAGAACAGACATTTTTTCT


AAGGCACCCCTCCCCTTTCCACCCAATTGTCATTCAGCAACTACTGAATACTTACCAATGAAAA


ACGTTACCCCTGACCTCAAGGCTGCTCCTGAGCTCTGGTAGAAAATGCTTTCCTTGTCTATAAA


ACATGGCAAGCAAGGCAGGATTTAACAGTAAGGGCACAGTAGCACTGCAAGCCTTCAAATGGAA


ACCTGGAGACAAGCAGTGAGAACAGGAAGCAAAAGCAGGGCAGGTGAAGCTAGGACCAGGGCAT


CTGGAACTTTCCACACAGGTTGGATCTCCATGCCAGACAACAGTTTTCAAGGAAAAATATCTAA


GAGGAACATGACTTTGGGAAACTTTTTGGCAGTACTGCTTACTGTATACTAGAGAGTAAAAGAA


TTTGGGGAACATTCACCAATTTGCTTCTTCAGGGGCTTGGGTAGGGAACGTGAACAGGAACCTG


GCTCTAATTTCTGAACTTTTTTATCAGTAAAAACAATCCAACAAACGAAAGCTAGTCAGTGAGA


GAACTGGGAGGGTCTGCCCTCCTTCCCTGAGTCAAGCCTTCTGGGGGGACCTCCTGACATTTAA


TTAAGCAAAGACAACGCCCACTGAAGGAAGCTGACCTGAAAGTGACACGCTACTGTGAAATGAG


CATGAAGTGGGAGCTTGTTACATATATGAAATGGCCAGCGATCCTGAGCAAAGCGCTTCAGAGC


TTGAGACCTAAGTCTTCTCATCTATATACTGAGGGCTGGACAAGATGATCTGTCAAGCCATTTT


TATCCCTAATCCACCAAAATCCAATGCTTTAGTTTATTGTCACAAAAGCAGGTATCGAATGGCT


ATCCTGCAGTGCCTCCAATCAACATTCAGACTTTTTCCCTGAGGCAATATAAGATAACAGTTAA


CATGTTTTTATCAATTAGGTGGTCATGAGATAAATATATATGGGAAGTGGTAGTTTTTCACTTA


AATGCATATAATAATGGTACAGCTCTCTTTGAATAGTATTTGTTTATTTCTTAAATATTTAAGT


TCCTAAAGACGGTAAGAATAACCCAAGGAAGTGAAATCAATGTCACAAAGCACATGGCTAAATA


ACTGCAGGTTTGCAGTGCCATGTGTGAGATCAGATGACAGAAGGGAGAACTACCTTTAGGCAGA


GGCTTCTCATGTCCCCTGGAGTGGCCATGTGCTGTTCTACATGACTACTTCCACTTCGGTTATG


TAGAAGCTATTTAAAGCACACAGATGTTTGTGATGAGAAAAAAGCCACCCTTAATTGAATAATG


GAAATTATAAGCATGATTTGAGGGTGGGGGTGGAGGTGGGAGTAGAGATGGGTAGAAAGGAGTG


CAATGGAAACAAAGGAGCCTTCATAAAATTCAAGTCACTTCTTAGGATAACGTGATTGATTTAC


TCACCACCTTCTTAGGAACATAAAGCAAACAAGTGGGTTTTCCTTTTACTGCTTTTCTGAAATG


AGCTACACTCAAGAAAGCAGCACGGGGGTTGTGCTGTCCCTGCACAGTGGCAGGAGAGTATGAG


GAGCAGGTGAATGCCACAACAGCTCCATCCAAGATCATTTTTCACATGCAGGAACCATTCTTAT


ACTACCCTTTACTGGTAATTTCTGTAGAAATCTGGAAGTCTGGTTGACACCCTCCTGTACAGTG


TGCAGTGAATCAACATCATTTCCCTTGGACTTTGCAATCACGGTGGCATTCATACATTCATTCA


ACAAGTATGTATGTACAGGACAGTGGAGTAAAGAAAACAGATAGTTCTTACTCTCACGAGGCTT


AAAATTTCAGGAGGGAACTAGGCAGTCATGAAGTAAACATAAAAACACAGATTGTAATAGGCAC


TAGAGAATAATGAAGACTTTGGGGAACACAATTTAAATTGGAAAAATATCTCAGTTCCGTTAAC


ACATGTTGAAGGGGAATAGCATTGTTTTGCTGGATTTGGGGCCTGGATGCAAGCATGTTGGGTA


TGCATTGTAGGGTAATGCATTTCCTTCCATTTGGGCCCAAGTGTATATTTACCACCCAGTIGTG


ATGAGCTGGGATCCTCCTGCTCAATCTCAGCTTGAAGCACTTGGAGGTTATCTGCCTGCTGTGG


GTGATTATTTTGGAGCAAGGTACTTCATTTGCCTCAAGAAACAGATTTGATACCACTACTGTGC


CCTTTTGGAACAGAGAAGTAGGCAAGACCCCAGTGTGAGGCAGAGTGATGGGATCTTTAGGGAC


ATAATTGATGATGTAACTGATGATGATTTTGGAGTTTATACATTTCCAAAGTTTCAAAATATTT


TCACTTGGTTGATTTATCTTTATGGTGATGACACTACGTAGATATATGCCCTTCTTAAAAGTTA


CAGTAAGAGGCTGGGAGCGGTGGCTCACGCCTATAATCCCAGCACTTTGGAAGGCCGAGGTGGG


CAGATCATGAGGTCAGGAGATTGAGACCATTCTGGCTAACACGGTGAAACTCCGTCTCTACTAA


AAATACAAAAAAATTAGCCGGGCGTGGTGGCGGGCGCCTGTAGTCCCAGCTACTCAGGAAGCTG


AGGCAGGAGAATGGCGTGAACCCGGGAGGCGGAGCTTGCAGTGAGCTGAGATTCCGCCACTGCA


CTCCAGCCAGGGCAATGAGCGAGACTCCGTCTCAAAAAAAAAAAAAAAAAAAAAAAAAAAGTTA


CAGTGAGAGTTGACATTGAGAAAAGGGAGGCCCAGCCAGGGTTATGCAAAGACACAGTAGGGAG


GAGGATGGGAAGTTTCTGAGACACCCCAGTAACTGCATGGGTCCACAAAGCACATGTACAGTCT


GCTCTATGCACTGCAGGTACAGCCACGAATAAGACAAAGTCTCTGCCCTCATGGAGCTTGGTGT


CTGTCTACTGGAGCAGACAAAAACAAACCTGCTTTTTCTCATTTGCCTCTACTGTGGGTTCCGT


GTATAACTCTCAAATGCTAGCATTTCCATGCATTCCATCCTTGTCCTTCTCTCCTCTCTGCCTT


TTCCAGGAGAATTTTCCTAGCCACAGGTTCAGCTATGGTCTATGTGCTGGAGTCATACATTTTT


ATCTTCTGTGTACGTTTTTCTCTAGACCCATATTTTTAATTGCCTTAGGACAGCTCTCCCTGGA


TATCCCTCAGACACAACTAAAACATCATTCAATTGTACTATTAATAATTTTCCCTTCAAAATCC


ACTCCTCTTCTCTATAGACCTAACAGCAACACTGTCCGTCCAGCTCTCAAAACCTGAAATGTGG


GAGTTGTCTTTGACTCTTATCTTTCCCATGCATGAGCACTGAATCAATCAGAGTCCCTAGCATG


TCTTGGACTGTGGCCTCCCTTCTATCTTCAGATTATCTGCCTTTTTAGAATTATGGCAATAACT


TAACTGCAAAGACCACATGTGCACTTGTGCTCTTTCAGTTTGTAATAAATATAAAATGAAAAGT


GATTATGTCTTTGCTTAACGTCTGCAAAATAAAAGTCCAAAGTCCTTGGTATGGTCTATAAGGC


CCTCATTATCTGACCTGCCTGCCTTCCCAATCTCATCTTAATCCCTTACAGCCTGACACTCAGA


CATACTAGACTTTCCACCTAACTCACTCACATACACCTATCCTGTATGTCAAGATTCGGCTTGA


CCTTCATCACCTACCTATCTGCAGTATTTTTGGATCTGAATTCTCTGCCCACATTGTACTTTCA


CATACTTCTTTTACCCTTAGTGGTTTGTACTTATGCCTGGTCTAACTAGATTGTCTCCCTGTAA


CAGACTTCTTGATTCAACAAAGCAGCTCTGAATCAGCCTGAAACCTATGGCACACTGCAAAATG


GCAAACATTCAATAGGTATTTGCCCAGTAAATGTTAATGAAAGGAAAAAAATTCAAACTTCAGT


TGGAATAGGATTAGAGACAAGTTAAAAAAAAGTTTCCCATAGAAATCTTCCTCATCGTAAATAT


CATCATCCTAAATGTCCCGAGTCTTTCCATGGGTCTAATTTACCAAATCATGAAGACTCTCTTT


CTCACTGTGTATGTGTAGTGGGAGAGGCAGAGACAGAACGGTTTTTTTTTTTTTTTGCAAGTCT


GCTCTCTGGATTCGTTTTTCTGGGGATGAAATCTCAGGCTATGTAGCTTTTCTGGTCCCTTTTT


GGTAATCAACAAATCATCAGTTTCTCTAGGTATTAAAAAGCCTACACTTTTGAAACACCAAGAG


GCCAAACTCTCTCTTAATTGAAAACATAATTCTGCCTCTTACTGAGGTCTTTGGGTGGGAAGCT


TAAAGACAGCAGTGTTGGGGCAATTGGTTTTTCTTTTCCTCCCTCCACCTTCTTTCCCATTCAA


GAGCTGTTGCTGCCCTTTCTGGAGGGGAGGGAATTAGAAAAAAAGATCCTGCCTTACCCAGTCA


CTGTTAATTATTACTTTGAGCCAGGGTGGGGAATGACTTTCTTTCCTGGAATACACCCTGCTGG


AAACCACAGCTGAGATTCTCTAAGCTGGCAGCTTCCAACCTCTCCTCCCTCAACAGCTTCAACA


TTATATGGCACTCAGCTGCAGGGTGCCTGGCTCCAGGCCGGCAGTCCATTTGTGCAGGGTAGTT


TTCAAGATGGCTCATAGCCCATCTCTTTCAGTGACCAGCGTGGCCTATGGGAAACATACATCTT


GACTCCATTATTGGTAGGAGTACTCTTTAGTTAACTGCCACAGGCCAGTTCAGACACGTCTTAC


CCTGAGAGCCTTTTCAGAGTCAGGTACCATCCCTGTGTCCCCCAGCATCTGAAGATCACAGGTG


AAGGTCTCCAAGTAGTTCACTTAAAAAATACCTCAGTAGGTTTAAGAACAGGGAAAGCTCCCAA


TTCATTCTGTCAGGAGTATGACTCTCATCCCCAAACTGGACAGATATATAATATGAAAACTACA


GACCAATATTCCTTATGAATATAGATGCAAACATTCTAAACAAAATACTAGCAAACCAAATCCA


GCAGCATAGAACAAGGTTTATGTAGCATGGACAACTGAGATTATCCCAGGAATGCAAAGTTAAT


TCAATATACAAAAGTCCATTAATACAACATATTAATAAAGGACAAAACAACATGAAAATCTTGA


TACAGAAGAAGCATTTAACAAAACCCACAGCCCCTCCTTTTTTTTTTTTTGATTAAAAAACACT


CAGTAAACTAGGTTTAATAAAAGAATTTCCTCAACTTGAAGCAAACCCACAGCTAGCTAACATC


ATACTCAATGGTGAAAGACTGAATGCTTTCCCCTTAAAATCAGGAACAAGAAAAAGATGTCTGC


TCTTGTCACTTCTATCCAATATTGTACTGGAGGTGCTAGCCAGCACACTAAGGCAAGAAAATGA


AATAATAGGAATCTAGACTGGAAAGGAAGAAGTAAAAGTATTTCTGTTCACAGATGCATGATCT


CATATGCAAAAAATACTAAGTGACAAAAAAAGAATTTTAGAAAAGCTACAATATACAAAATCAA


TATACAAAAATTAATTTTATTTCTAACACCAGTGATGAATACAAAAATAAAAATTAGAAAATAA


TCATATAATTAAAGTGGCATCAGTAAAATACTTAGAAAAAAATTAAAGACGTCAAGACTTGCAC


ACTGAAATCTCTAAAACATCACTGAAATAAAGACCTAAGCAAATGCAAAGACATCCCACAGTCA


TGGAACAGAAAACCTAACACCATTAAAATAGCAGTTATTTCTCAAATTTATCTACCAATTCAAC


TAAATCCCTATCAAGATCCCAGCTGTTTTGCAGGAATTGACACAATGATCATATAAAAATTCAT


ATGCAATGCAAGGGACCCAAAACAGACAAAATGATTTTGGGGAAAAAAAAAAAAAAAATGGAGG


ACTTGCACATCCCAAATCTAAACTTACTACCAAGCTACAGCCATCAAGACAGTGCGGTGCTGGT


ATAACGACAGACATATAGGGCAATGGAGTAAGACTGAGAATCCAGAAAGTCTTATATTTATGGT


CAACTGTTCTTTGACAAGGGTACCAGGACCATTCATGGGGAAATAATAGTCTTTTCAACAACTG


GTGCTTGGGCAGATGGATATACAGATACCAATGCACTTATGCAAAAAATGGATGAAATAGGAAA


CTTCACTACATTCTACTGCATGCTCGGTCATTTTCAATCATTTAGGTGGCAACACTGACAAGAT


AACAGAAAGATGGAGGTAATAACATGTGAAAGGCAAAATGGTTTGTTTTTTTTTTTAAAAATGA


CAGTCTCTATCATGAATTTACTTACACTCCAGGCAAAGGTTATTAGAAGAAAAAAAGATGTAAG


AAAATTCCTTAACTGAAATGTGGAAAGAGTATCAAGAGGAGACCCTAAGACACTCTGTAAGAAT


CCCAGTGACTCCTCACTGTTCAACTAAGAAATGTACCCCATTATGCTGTGCTACCACGGAAGCA


TTGGAGGCACTTTGGGGGTTGATGAAGTCTTCATGGATGAGGTACTTTAAATATCTGGTCATGA


AGAGTATTTGAGAAATATGACAAGTGAAGATGCTGGGTAGGAATGCAGCGAGGAAAGTGTGTAA


CACAAGGCCAAATTGGAAAGGTCAGTGAGGGGGCAATCTGTGGAGGCACTGAATGCAGAGGATA


TTAAAATTAGCAAGATAGTGTTCTAGCACAATGAAAAGGATTGGAAGAGGGAGATGAGAGTCAG


GGAGTGAAATTAGGCAGCTGCTAAGAATGTCCGGGTGAGTCAGAGGATCAGGACCTGTAAGGGC


AGTATAAAGAAGGAAGGAATGATGGGAGAGGTTTAGGGGGAAAGAAGTGACAACCTGTGACAAT


TGAGGAATGAGAGATTTTGATGATTGGGGTGAAGGTTACATTTCTTAAAAAGAAACAAAGAATG


GTCGGTCGATAGAGATGCAAGATGAAGAATTTTGTTTTTAGGACTACTGACTATGAGGTAACAA


AGAAATCCCAGAGACAGAGGTCTGAGCAAAAGATATGGGATTGGGGAAGAATCTTTGGGAGTGA


CTGAGGTTGACTAGAGGGAACTGGGCAAGAACAGGTAAGGACTTTAAGCAGAATTGGAGGAGTA


TCCATCTAAAATCTGGGTAAACTGGGATGGAAAAACAAGTAGCCAGAGAAGCAACAGCCCAAGC


TAGGGTGTTGTCAAGGTTATAGATGTTACTGATTTTGGCAATGAGGAGATTATAAGGATCCTTG


AAGACTGTACTTTCGGTGAAACTACCATGCATTAGTAGCCTTTCACAGTGATATCTACCCCACA


CCTGCATCAAAATCTTGCAGTGCCTATTAATAAATGCCAACCCACTAACGGGGAGGGGAGAAAA


GACTTGGGACTCTGTACTTGTAAAACCCTCTACCCTCCCCAGGCAATTCTTTACACACTAACAC


TGTTGAGGTAAAAGGAGACAAGTGAGGGAGCAAATGGAAGGTGTGTTTTTGGATTATACAGTGG


CTCATGGAAGGGTGGGAGGGGTACAGATGGCCCTTAGACACTGGCGGAAAGTCAGAGAAAAAAA


ATTACAGTAAGCAGGTAAAGGGATCAAGACTACACAGGGACTAGTCTTGGGACGACATTTCTTC


CTCTGACAGTTTGTATGGAATTCTTGAGAAAAATTCCTCGAAGGGGCCTGAAATCTCAGAATGG


TCATGTTTTTAATGGGAATAGGGAGTGATGCTGCCCCATTACAACCATCTGTTCTAACAGAATG


TCTGTACCGAGGAGGGATGAGTAACATCGGCAAGTTCTGTTCGAAGCCTTTTTCAAGTTTCTTT


TTGATATGTATCTATCTATCTATCATCTCCCTATACAAGCAAGCATCCCCAAAAGTAGTTGTCT


CAGGAAACCAGGGTTAGGATGACCAGCTCATTTGCTGGAGCTGCCAAGGTCCAGAAAAGTTTGG


CTGCAGGCTGTTTTCATGTTTTATGTATGTTTGAAATGTTCTATAATAATAAAAGGTTAAAAAA


GTTTACATTTATTTGGAAAACCAGTTACTTTAGTTTATGGTTCCTTTTTTTCCCTCCAGAGCTT


CCTGGAGATTGAGGTCTAATTCAAAGAAAACCAAAATATATAATAGAGTACCTGGGCAAAAAAA


GTACTTTTATAACATAACATTTGGGGTAGAGGAAGTATCCACTGTAGTCAAAATGTCTATGTTT


TGCTCTTCCTTATTGTTCAGGGACATTCCATTAAATAGTAATGAAAAGGCAGCAAAAGTAAGAG


GAGTGACAACATGCCCGGCATAATTAAGCAAGCTAGAGCAGCTATTCTGTGCAACCGACGATTT


TTTTTCTCTAAAATTTTAAGGGTAGGTTCATTCTGACTCTGTTAAAAGTCTACTTGATGTGAAC


AACTCTATATCTGATAACCTATTTCAATTACCACTTTAAAACTTGTCATATGGATACGTTATTA


CAATTGTAGAACTTTAATAAATACCATAATAATAAAACTTGAGAACTGAAGAGCACACATTTCT


TCACGAATTTATTATATAAAACGCCCTCAGAGTATTTAATTTCTCCTCACTTTAATTACACATT


AAGAAGCACAGTGGATGAGAAGCCTTTAAGATGACTACAGTTGCACGAAGGTCCCTTTCATCAA


GGTAGCGTATGTACCCTAACAGTGTTCTAAAGGCTGGCCCAGAAAAACCCCATGTTACCTTATC


ACAATATGGAAAGCATTGTCTTCTTTTTCCACTAAATTAAATTATGGTGAAAAGTGCCACAGTT


TTATTTAGCATTATGGTACATAACAAACAGTTCTGTCTCAATTATGAAAAAAATTAATTAAAAT


AATCCTGAAAGACATCCTTTTTCTCCCCCCAATGATTTGAAAGCTGCATTTTTCCTGCCAATTT


CAAACAAACAAATCATCAGGTTGATCTACAGTAATCAGTTAAAACAATCAGTCAATCAATCAAT


CAATCACCAAGGCACAAGCTCAGCACATTAGCTATAGCTTGTAGCAAAAGGATATATCAATGTC


TCACCTTAGTTAAAAATACATAATCCTTTTATTTTATAATGCAATAAAAGAAATTAACAACATC


ACATACACAGAAGACTAGGAAAGGGGAAACTACTTACTTCTGGAAATCAGTAATGTAAACCTAC


TTGTACTTTTCCATAGTACATGAAAGTAACGTTTAACATGTTTTGAATTAATTAATTAAATTTA


ATCTGTGGGGCTATACAATGTAATTCTTAGGAGTAATAGTTTCATTCATTTCCAGGTCAGCTTA


CTGTATGATTAAGTAACACAAGGCACAGTAGCCATCTTTTTCATTATGTTGCAACACTGATCAC


GTGCCTCGATAAAATGGCTGATTCAACAAGATGATGGCAACACGAAGGGGAGACTTTGGATTGT


CTATTTAAAATCTAGGTAATAAGTAAGTAATTAATAAAAACTCTATCTTAAGTGCACTTTCACA


TGCTTTTTGTTTATAATAAACAAACAACAAACTTCCTAACTTTGTTGCAATAGGCTTGACTACC


ATTTCATTTGGCCAAATGCACTTTCCCCAGTAAACTTAAAACAACAACGAGAACAACAAGAACA


AAAATCCCTGTCCTTTCATATACTAAGAAAGAGGATTGGCTACTGAAACAGTTCATTGCAAGAC


ACATGAAGACGACATACTGTGGCATGAGTTGTTTTTGTTTTTAATTTGTTGTGCTGTTACTAAA


GTTCTGAGGGCTGCAGTTAAAACATTCCAATTTCTCCCTTCCTTCCATCTTTCTTTATTGATTG


ATTCTCAAGATTTTGCACAGAAAACTCTTTGGGGGCTAGAACAGCAGTAATTGCATCACACTGT


TTTCAAGACTTCAAGTTTCAAAAGCAAATCATTAAAAAAAATACAGTTCCTGATTTGAGTTAGA


TACAGGGACAAAAAAGTAGCACATACTTGAAGGTTACGTGGTCTACAAATGGTGGCAATATTTT


CCTTGGGAGAGTAGTTCTGTTGGTATATATTTTTTAAATACTCAAAAGGCTCAACCTCAAGCAG


TAATAAACACAAGCAAAAGTGATTTAACCCTTAAAATAAATATTCAGAAAAACCTCTCTGTACA


TACAAGTGAAAGAATATGTAACACTTTCACGCAAAAAAATAATTATAATAATAATAAAGGATTT


GTTCATATATGTAGCTGAAATCTGCTGTTCCAGCCCACATGTCCCCAATAAAGAAGGGAGGCAC


AGACATAGGTGACTACTGTGGTTGACTATCTTACAGCCTTTTTGTACTGGGACACTATCACCAC


CAAAAATTTATCCCTCGTTATATTTTTAAAATTTTTTAAATTTTTTCTTTTTTTTTCCTTCCTT


TTTTTTGTTTTATTTTGTTTTGTTTTGTTTTACAGCATGCCAAATCCTTTGGCATACGTGATGG


CCTTCAACAATCTCTCTTTAAGTTTTTCTTTGCTTGAGTATTCCGGAAGTAAAAGCACATTAAA


GCAAGTATGAGATGTAGGTAACCTAAATAGAGAAAAGGGGAAAAAAACAGGAAAACTGTAAGTC


ATGGGAAATACACTTAGAATTAAATGCTCCTATTTTTAGATTGTATATAGTTGAGACGGTCTGC


AATGCAAACTATACATTAATGCAAATCATAAACTTTTTGTTGTGTAACTACCAAGTTGCCTTTA


TCCTATAAATTACTCAAAGCTAGTGACGATGATAAGATACTGTATCCATTGAGTTTTTACTACA


TAACAGATACCATTTTAGGTACTGAATTCTTACAGTTCATTTAACTAAATCTTTCCACAACAAA


ACCACAGAGAGGACATCAGTAAATGCACTTTAGAGGTTAGGTCACTGAGAAGTCAAGTAACTTC


CTCTAAGGTGGAGAAAATACTCAAACCTGTTTTACAAGACTGCAAAGTGTGTGCTCTTAAATGC


TTATTAGAAACACTGCTGGCAATATGACTAAGAAAATGATTTGATAACAGGATTCTAGCACAAT


CAAATGATAATCTTCCGAGCCTCAATGTAACCATTCTAAATAGATGATCATGTTATATGGCTTT


CAATTAACAAGCTGGGAATCAAAAAAGTAAATGAATCACACTAATTTGATTCCAAACCAATGTG


AGCCCCATAATAATTTTTAACTAGGGCAATTTCTTAAAAGTTTCCTCACACAATGACAGCAAAG


TATTTTCTCAATTGTCTAATATGATTTGGGGATTTGTATATAAAATCACGAATGTGCTCAGAAA


CTATAAAGACAGTTCATATGTATGTGACGAGGAATGCAAGGTTTTCGGTAGGTATACAGTCACA


AGTTAATAATTACCTACCTTTCTGTGTCTGGGCCATTTTTGGCTATAATCATCTTTAATTTTCC


TAGTCCTCCCACAGGTGCTCTGTCTGTGCCCGTTGTAAACTGCAAGAAGAGTCTTTTCTGTTCA


TCTGTAAATGAATGAACGATTTCCCAGAACTCCCTAATGAGAAAAAATACAATACTGGTTTCAG


TTTGGCATTCATTATGACTGGTACTAACATAAGCTTATGATTTGCATTAAAACTATATTAAGAG


ACAACTTGGAAGTTAATTATCAGGATAGTATCACTTCTGGTGATTTAAAAATTTCCAAGCAAAT


TTATCCTGAACAGCTCTGAATACGTAAAAATTTAGATTAGATTACAATATAGTAAAATATTAGT


ACTACAATAGTAAAAAATTGAGAAAACCCAAGTGTGTAGTAACAGGAAGTGACTATTTAAACTA


TGGTATAATCACATTATGCAGTCAGTAATGAGCAAAAGACAAAATCCTATGAATTGAAAAAGAC


TGAAATGAATATTTGGAAAAATTAACTCCAGGTGCCTTTGGGTATATATTTTATTTATCCTTTC


TCCTTTATTCTCCTGGTCTACTCATCCTTTAACTCAACTTTGGGAGGAAAAAGTGATACAGATT


AAGGACAAAAGAAAAAAAGACCCCCTGCCCCAACCAACTGGCCCCAAATGCAAACAACTACATA


CCTAATAGCAGTAATACAAAAGTTCAATTTTTATATGAACTAGAATACTTTAAACAAGTAATAT


GTGCTGTGTATGGAGGAGGAGAATTATTCTGACATTTCTGCCACCTGCAGTTATTTTAAGAGAA


TGATTTATCCTGTGGCATTCCTAAAATCTATGTAATAAAAGCTATGTTTTAATGACACTTATGT


TAGTTTGAGTTCTAAAAAACGAAATACAAGCTCATAAAGTGCAATCTTGAAGTTTATTTGAATA


ATCAGGCATCTATAAAACATATATACACTAGTTCATAGCTAAATAAATTTTTTTTTTTTTGAGA


CAGAGTCTTGCTCTGTCGCTCAGGCTGGAGTGCAGTGGCGCGATCTCGGCTCATTGCAAGCTCC


GCCTCCTGGGTTCGCGCCATTGTCCTGCCTCAGCCTCCCAAGTGGCTGGGACTATAGGTGCCTG


CCACCACGCCTGGCTAATTTTCTGTACGTTTAAGTAGAGGCAGGATTTCACCATGTTAGCCAGG


ATGGGTCTCGATCTCCTGACCTCGTGATCCGCCCACCTTGGCCTCCCAAAGTGCTGGGATTGCA


GGCATGAGCCACCGCGCCTGGCCTATAGCTAAATAATGTTAAGATTAAAAAATTAAAAAAAAAA


TTAAAAGTATTTTTAGTTGCTTATATAATATAAAATGCATTTTAATAGTTATTTAGAAAGTTCT


TTCCAGAGCCAGGTGTGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGCCAGTG


GATCACCTGAGGTCAGGGGTTCAAGATCAGCCTGACCAACGTGGTGAAACCCTGTCTCTACTAA


AATACAAAAATTAGCCGGGCGTGGTGGCAGATGCCTGTAATCTCAGCTACTTGGGAGGCCAAGG


CAGAAGAATTGCTTGAACATGGGAGGCGGAGGCTGCAATGAGCTGAGATCACACCATTGCACTC


TAGCCTGGGAAACATTTTGAGCCATCTCAAAAAAAAAAAAAAATTTCATCTCAAAAAAAAAAAA


AAAAAAAATTCCAGAATGTTAGCAGAGAACATCACACATCCCAAACCAGTAATTACAATTTTCT


ACCTTTTGATATTCTAATATCCCAACATACTATTTTTATTACCAAAATGCTGGCATTTTTGGTG


CTGCAACACCATTTATCTGAAATAACTTAAAAGTTTTATTAGAATTCTTGGCTTTCTCCAATCT


CTTGCCACTTCCCTTCCCTGCCCCTTTACAAATCCACCAGTCAGCAAGAGAAAACAAAAAAGAA


ACACACAACAACAGAAAACTGGACATGAAACTTGCAGGAGCATCTCTCAGGTAAGGAGGAGAGG


AATCGGACCCCAGTTCATGATACTCCTTTTGGGGAGGCTGACAAGAGAAAACAAGTCTGCTGTA


GCACAGAACCCTCCAACATAGCAGAAAAGCTGCCCTGCAGTGGGTGGTAATAAAGCCTCCTCAC


ACTGCAGGAGGGCTCTGAAGCTTAACTGAACCAGCTACACCTAAGGAGGTAGACCAAAGAGCAC


CACCGAAGAACAGAGACAGACCCTGCAGGAAGTGGCAGATCAGCAGTGGTCACAATGACCAGTC


TGGCTATATTATTACGGAGCTGTTTCTTTGGACTTTTAAACGAAACCTTTAAAAATTTTATACA


ATGAAAACAGGGAACAAAATGCATCTCTATTCCTATAAGTGTTATGTGTGTTACATTAACATTT


TGAATTAAACAAGAATGCATATATTTAGAAAGCTGAAGAAAACACGAAGAAGCTTCCAGGTTTC


CACATAAAAGTGGTGGCTGTATCGATCACATCCTACTCACATCTCTAAAAATCTACCCGGATCA


AAAAGGGGAAAATAAAAAAAAAACCTATGACTTAGGTCTAGAGTAAAACTAGGAGACAGAACAA


TAAACTCCAAATACCAAAGAAGTGGGGAAATGAGCAGGGTCCAGCAGGAGCTACATCGAAGAGT


GGCTTGTGCGGAATCATACTGATTAGGGATCACCCAAGGCCAGACCCCACCCCCTCCACCACCT


GCCCCTCAACAGAGCACTACTGAGTGTAGGTTAGAGCACTGGCAACAGGGTGGTTAAAGGAAGG


ACTACAGAAAAGTACTTGGGTCCAGCAATGGCAGGCTCAGGAAGGCACCATGCATGAAAGGAAG


GGGGGTACCTTCAAAAGCAGAAGTGTCCCTTAAGCGGCTGTAAAGGGGTGGAAGCAGCTAATGA


AAAAGAGTCTTCATTAAGCTACATGGAGCTGAAAAATCAGAAAGTGGTGATTCTGCCCTTACTA


AAGCAACAGAAGAGGGATCCCTTCAACCAAGACCCCTAAAGCCACACAATTCCTCCCTGCTCCA


CCATGAGGTCTAGTAATAACAGGTCCAGAAAAAAGTAACATCTGTTATAGAAACATAAACAAGA


AAAACAGAATTCGGAAGTCTAAATAAAGTTATTATGGGAAGAGTCTGGCGAATGAGAAGCAAAA


CTTTCCGGTAGACAAAAGTAGACCAGAAAAATTCAGTCATAAACAATGGGAAACTAGTAACACC


ACATTCCAACACAAAAGGAGAATGCAGCAGCAGACAAGACAGACCACCAGTGATGAGAAATACA


AATTCAGAAAGAAATGAGCACATCTTAAATAAAAATAAGAATACTAAAAAATACTGAAGAAATA


TGCAAGGTAACTTTGGAAATAAAGGCTAATTTTATTATAAGGTGACCAAAGAAGAAGCAGTATG


ACTAAAATTTCTACTGAGGACAGACTCTAGAAAATTAAAAAACAAAGAAAATGAATAAAATAAA


CATAACTAAAGAAATGCATATCAAAGCATAATAACGAAAAAGATTAATAGCTAACTACATAAAC


ATAAAACCTTTCATTTGGCAAAAAAATCCTATAAGCAAGGTTAAAAGACAAATGACAAACTGGG


AAAAAATATTTGCGAATTTACCAGCGTTAAAGGACTAATCTCCTTAACATATAAAGTTTCTAAA


AGTGAAGAAAACGACCAGCTGAGCAGCAAAATGAGCAAAAGACTATATAAAACTATAAACAGCT


CTACAAGAAAAAATGTCCATTATCATTCATAATTGAGGTAAGCTCAAAAATTGTAACTATAGTA


AAATACCATTTCTCAATTGGCAAATAAGTAAACATCCACATTTAACAACACATTCTGTTTGGAA


AGTTTTAAGAAAAGAGATACTGTTGTAAACTGCTGGTGGGAATGCAAAATGTTATTTTTCTGTG


AAGGAGGATTTGGCAGTATCTAGCAAAATTACACATGCATCTACCATTTGATGCAACAATCCCA


CTTCTAACAATTTATCTTAATGATACTTTACATATGTACGGAATAATGCATGAACATTAAGAGG


ATTCACTGTGACATTAGTACTAACAGCAAAAGGTTAAAAATAACCTCGATGCCCATAAATATTG


ATAAGCTATGCTGCATCCACACAAAGGAGCAGTATTCAGTCATACAAAACAAAATGGAAAACAC


CTCTGCAATAATGTGGGATGATTCTCAGGATACACTAGGAAGATTATTTTCCTAGTTCTGTCCT


CTGATAAGGCCTACAAGCAGTAACGTTCAAAAGCAAAGGCCATACTTTGCATCTAAAATCTGAC


TTCTAAATGCCATTCTCCAACAATTTATTGGAAAAATAACTTATTCCAGGCCTGAGAATGAATG


TTCGAGATTAGTTAGAAATCTCAAAATCTAATAGGGTCATTTTAAAAGCACACGATAGCTAAGC


AATTTGAATATCATTTAGAGTAATGACTGTGAAACGTATTAAATACAAAAACATTCATTAGTTC


GTAATATTCAAAAAGGCAGCAAAAACCAACCAAAAAACAAAATTAAATTGTCACTATTAAAATT


ATTACATTAACTCCTTACTCTAAAAACCTTAAATCTATTTTATCATGCCTTTTCTGTAGAACTG


TTTTTCAAGGTAATCAAATGGCACCCAATGATGAGAAAAAAGAATGCCAGGTATATATGTAGGA


CAAGCAGATGGAAATTTTTTTTCCCCAAACAGCCATTTTGCAATCCCCAATGAGATAACAGATT


AAGGTAATGATACTGATAAATACGAAAATCAGGTGAAGGGCAGGTAGCAGGTTCTGGAAAGATG


ATGATGGCAACGACATAGTTATTATTATTATTATTTTTTGTTTTATTCCCTCCCAACCTCCCCT


ACAAAAACAGCAAACTGAATGAGAAAACCAAAGACCCAGAGACATTATCTACAACAAAACCATG


AACCATTGCATATAATTGGACAGAAACAAAGCTCTGACAACTACAAGACTGGTTAGTAAGGAAG


CAGATGCAAGGTAACTGACTGGGTTTCTGACAGCCCTGAGAACACTGCCAACCCACTGGAAAGC


ACAGGCCAATCTGAAAACAGGGCTTAAAGTTTTAAAAAGTTCTACAGGATCTAATTTGCAGATG


ATTACAAAGGGATCATGATGTAGTAAGCTCTGGGCCCTTAAAACACCCGAATACCAAACCCCCA


CCAGAAACAAACCTTGTACCGAGGAAAAACTTCTGGGAATAACTTCCGAATGGACCAGGTCAGT


AATAAAAACCAAAAAAAAGTTCAAATATATGTGTGGGATAGAGGAGTAAAGAAGGCAGTTTCAG


AAAGCACAAGGGCATATTTTTGACCATTTTACAAAAACACAGACTTCTCCTCGTCCCTAAAAAG


CGAAAAAAGTTATCCTGGCCCATCTCTCCCTCGTCCAAGTATGAGAAACTCATTTCACTCACAC


ACACACACACACACACACAAATAAATAAATAACAGAACAGAGTGAAACAGTGTAATTATTAGAG


AAAAAGTATGTGCATATACATGAGAATGGTGTCCCTACAGAAAATCAAAGTACATGAAACAATA


TGCAAATAAAACATGAAAACTGTAAACAAATTTCAAACTGAGCTAAAAAGAATTTAAAAAATAA


CAAATCATTAGAAATGGGAAATTTCTGAATGAGGGTAACTGAAAAAAAGGAAGACATGACACAA


CTAAGGAGTAATTAGAAATGCAAGGAAAAAAATCCCATCAAATACAAAGAAACTAAAACTAAAC


TAGAAGAAACATAAAGGTGAATAAAACAGAACAATAATACCAGAACCTGAAGGCAGAAGAAAAA


TCTTAAAATCAAAAAGAAACAAACCCATGCTTGAGACTCTCCTTGCTGGTCCAGAGCCACAGTG


CTGCTGTGTACTGGCAGGAGGAATTCTGCTATAATTGGTCCTGGCAGTGTTCACCTTTCCTGCA


AGTGTTCCACAGCCCAGGGACACAATGTGGTCAGGAGCACTGCCAGGAACACCAGCAAGGGGGA


GCCTGCCACAACAGGCACAAGGCTCAGGAAGCACTCTCCAGCCCACGAAAATCTAGTGGGGGTC


CTCTTCCCTCACCCAAACACACTCTGCGCAGCT





SEQ ID NO: 2


shRNA artificial/synthetic sequence.


5′-GATATCACCTTACAGAAATTACTCGAGTAATTTCTGTAAGGTGATATC-3′





SEQ ID NO: 3


UBE3A-ATS artificial/synthetic target sequence.


5′-GATATCACCTTACAGAAATTA-3′





SEQ ID NOS: 4-489


UBE3A-ATS artificial/synthetic sequences.


  4. CTGAAGTGCACATGGAATATT





  5. TCTTCAGGATGACACATATTA





  6. CACAATGATATGGAGATTTAA





  7. CTCAATCCAATAACCTAATTT





  8. GTAAACAGAAGGAAGAAATAA





  9. AGGTCCGTATTACCCTTATAT





 10. CATCTAGCCTTTCTGATTTAT





 11. ATCTAGCCTTTCTGATTTATA





 12. TCTAGCCTTTCTGATTTATAT





 13. CTAGCCTTTCTGATTTATATA





 14. AGTCACAACTCAGATTTATTT





 15. GGCCTCACAACTCAGATTTAA





 16. GAACAGAGCCCTCAGAAATAA





 17. GGAAAGGATTCCCTATTTAAT





 18. GAAAGGATTCCCTATTTAATA





 19. GACAAACGGGATCTCATTAAA





 20. CATCTGACAAAGGGCTAATAT





 21. ACAATGAACTCAGACAAATTT





 22. CAATGAACTCAGACAAATTTA





 23. GTTAGAATGGCGATCATTAAA





 24. CAGCCATCCCATTGCTATATA





 25. AGCCATCCCATTGCTATATAT





 26. GCCATCCCATTGCTATATATA





 27. CCATCCCATTGCTATATATAT





 28. CATCCCATTGCTATATATATA





 29. ATATACCCAAAGGACTATAAA





 30. TATACCCAAAGGACTATAAAT





 31. ATATGCACAGGTATGTTTATT





 32. GAAAGACACTGATTGTATTTA





 33. ACATAGCCCTAACCATATAAA





 34. CCTCACACAAAGACCTATTAT





 35. TGGCAGAGATTTGGCAATTAT





 36. GGCAGAGATTTGGCAATTATA





 37. AGAACAACAAGGAGGAAATTT





 38. GAACAACAAGGAGGAAATTTA





 39. GAATGGAGTGAAATGTTTAAA





 40. TCTGATTTCCTTGGGTTTATT





 41. CTGATTTCCTTGGGTTTATTT





 42. TGCTCTTCTTTCTACTTTATT





 43. GTAAGCATTTAGTGCTATAAA





 44. TTAGTCACATCCCACAAATTT





 45. ATGGTCTGTGCTGTGAATATT





 46. TTGAAGTCTCCAACCATAATT





 47. CAGTTTGTGCATCACATATTT





 48. TGCCCTCTTGGTGGCTTATTT





 49. TCCTAGGTCATAATGATAATT





 50. CTCCACATCCTTACCAATATT





 51. CGCTTATCAGATATGATTTAT





 52. GGTCTATACATGTAGATTATT





 53. TCATAGATGTATGGGATTATT





 54. CATAGATGTATGGGATTATTT





 55. CTTGTAACTCCTTGGTTAAAT





 56. TTGTAACTCCTTGGTTAAATT





 57. TGTAACTCCTTGGTTAAATTT





 58. GTAACTCCTTGGTTAAATTTA





 59. TCCTTTCTGATGCTGTTTAAA





 60. CCTTTCTGATGCTGTTTAAAT





 61. CTGAAACTTTGCTGCATTTAT





 62. TGAAACTTTGCTGCATTTATT





 63. GAAACTTTGCTGCATTTATTA





 64. TTGCTCTGTGAATAGATAATT





 65. TGCTCTGTGAATAGATAATTT





 66. ATATGTTGATCCACCTTTATA





 67. TATGTTGATCCACCTTTATAT





 68. ATGTTGATCCACCTTTATATT





 69. TCTTTGGCTACTTTGTATAAT





 70. CTTTGGCTACTTTGTATAATA





 71. TAAGTGCATAGAGCCAATAAA





 72. ATGCACATGATCTTCTTAATT





 73. TGCACATGATCTTCTTAATTT





 74. TGGCTTAAACAAGAGAAATTT





 75. GGCTTAAACAAGAGAAATTTA





 76. AGGTATCAGAGTAGTATATTT





 77. TTAAAGAGTTGCCACATTATA





 78. GTTGCCACATTATACATAATA





 79. AGACATTGAACCAGCTATTAA





 80. GACATTGAACCAGCTATTAAA





 81. AGGGTTAAAGAAAGGTATAAA





 82. ATACCCGAGATGACCAATAAA





 83. CAAATCCACGAGAAGAAATAA





 84. ACTTGTGTTGATGGTATTATA





 85. CTTGTGTTGATGGTATTATAT





 86. ATTCATTGGAAAGGGTATAAA





 87. CAGTAACAAGAGCCCATTATT





 88. AGTAACAAGAGCCCATTATTT





 89. GCCCAAGAGATCCACTTTATT





 90. CCCAAGAGATCCACTTTATTT





 91. TTTCATCTCACCCAGAATATT





 92. TGTTATGAGATCCAGTTATTT





 93. ACTGAACTGTGAGCCAATTAA





 94. CTGAACTGTGAGCCAATTAAA





 95. AGTCTTAGGTAGTTCTTTATA





 96. CAAAGGCAGCAGCACAATAAT





 97. AGACTGGCTATTTGAAATTAT





 98. GACTGGCTATTTGAAATTATT





 99. CACCATCAAGAGAACTAATAT





100. ACCATCAAGAGAACTAATATA





101. CCATCAAGAGAACTAATATAA





102. GGAAAGTACATAGTCAAATTT





103. CAATGCATACTACAGTATAAA





104. AGTCCTTACGTGTCAATAATT





105. GTCCTTACGTGTCAATAATTA





106. GACACATACAGGCTGAAATTA





107. ACACATACAGGCTGAAATTAA





108. CACATACAGGCTGAAATTAAA





109. CAATATTGAAGCACCTAAATA





110. ATGGATCTAACAGACATTATA





111. CATTCTCCAGGATAGATTATA





112. ATTCTCCAGGATAGATTATAT





113. CAAGATGGAAACTGGAAATTT





114. TTCTATGAGGTAAGCTTATAT





115. TCTATGAGGTAAGCTTATATT





116. ACAAAGATCAGACAGAAATAA





117. CAAAGATCAGACAGAAATAAA





118. ATACCACAGACATACAAATTA





119. TGAAGACTGCCAACCATTTAA





120. GAAGACTGCCAACCATTTAAA





121. CTAATTCAGCAACACATTATA





122. GATGCAGGATAGTTCAATATA





123. ATGCAGGATAGTTCAATATAA





124. TGCAGGATAGTTCAATATAAT





125. GTGTCTGTTGGCTGCATAAAT





126. CTTTGTAGATTCTGGATATTA





127. GCAGAAGCTCTTTAGTTTAAT





128. CAGAAGCTCTTTAGTTTAATT





129. CATCCTGTTACTGGGTATATA





130. GTATATACCCAGAGGATTATA





131. TATATACCCAGAGGATTATAA





132. ATATACCCAGAGGATTATAAA





133. TATACCCAGAGGATTATAAAT





134. CCCTAGAACTTAAAGTATAAT





135. TGACAAACCTGGAGGTAATAT





136. GACAAACCTGGAGGTAATATA





137. GTCCATTCTCACCACTTATAT





138. TCCATTCTCACCACTTATATT





139. CCATTCTCACCACTTATATTT





140. CATTCTCACCACTTATATTTA





141. GTAGATGACATGATCTTATAT





142. GAATAGAGAGCCCAGAAATAA





143. ATGCTTGACATCACTAATAAT





144. TACACTGTTGGTGTGAATTTA





145. ACACTGTTGGTGTGAATTTAA





146. CACTGTTGGTGTGAATTTAAA





147. GGTATTTGCACACTCATATTT





148. GTATTTGCACACTCATATTTA





149. ATAAAGAGAACGTGGTATATA





150. AGACACAGTGGAATCTATTTA





151. GGTACAAACTTTCAGTTATAA





152. GAAGGCACTGATATGTTAATT





153. AGGCACTGATATGTTAATTAT





154. ATCCATTCAAGCTAGATTATT





155. TCCATTCAAGCTAGATTATTT





156. GGCATGGTGGCCCTCAATTAT





157. GCATGGTGGCCCTCAATTATA





158. CATGGTGGCCCTCAATTATAT





159. ATGGTGGCCCTCAATTATATA





160. TGGTGGCCCTCAATTATATAT





161. GGTGGCCCTCAATTATATATA





162. GTGGCCCTCAATTATATATAT





163. TGGCCCTCAATTATATATATA





164. GGCCCTCAATTATATATATAA





165. ATGAACAACAATGGGATTTAA





166. TGAACAACAATGGGATTTAAA





167. GAACAACAATGGGATTTAAAT





168. AGCAATAGTGGAGAAATATAA





169. GACCTAAACCCTATCTTATAA





170. ACCTAAACCCTATCTTATAAT





171. CCTAAACCCTATCTTATAATT





172. CTAGAGCAGCAATACTAATAT





173. GTGTAGCTATGACTGATATTT





174. TGTAGCTATGACTGATATTTA





175. GTAGCTATGACTGATATTTAT





176. TAGTCTTTGCTTGCCTATTTA





177. AGTCTTTGCTTGCCTATTTAT





178. GTCTTTGCTTGCCTATTTATT





179. CTGTGTTTAGTTGTCTTATTT





180. CTACCCTGGATAGGGAATATA





181. TTCTATTGCAACAGGATAAAT





182. TCTATTGCAACAGGATAAATA





183. CTATTGCAACAGGATAAATAA





184. ACTGGTGAACTCCTCAATTAT





185. TCAAGGAGGAAACAGATTATA





186. CAAGGAGGAAACAGATTATAA





187. AGGAGGAAACAGATTATAAAT





188. TGCCTGTATGATAAGAAATTA





189. GCCTGTATGATAAGAAATTAT





190. GAACCAATCTTGTGCTTTATT





191. GCATTCTCTGATCTGATTTAT





192. CATTCTCTGATCTGATTTATT





193. AGAGGCTTAAAGGAGATTATT





194. TTGTTCAAGGATTCCTTATTA





195. TGTTCAAGGATTCCTTATTAT





196. GTTCAAGGATTCCTTATTATT





197. TGTGGAGAATCATTGATATAT





198. GTGGAGAATCATTGATATATT





199. GTATATGAGAGTTCCATTATT





200. TGGCTGTGGAAACGCTTATTT





201. TGGATCGATGATGAGAATAAT





202. GGATCGATGATGAGAATAATT





203. GCCCTCCAATAGGACAAATAA





204. TGACCCAAGACTTGCTTTAAT





205. GACCCAAGACTTGCTTTAATT





206. TGTGCTGAAAGAAGGAAATAT





207. ATATGGCATGCCTCTATTAAA





208. TATGGCATGCCTCTATTAAAT





209. ATGGCATGCCTCTATTAAATA





210. TGGCATGCCTCTATTAAATAA





211. GGCATGCCTCTATTAAATAAT





212. GACAGTGGAACCAAGTTTATT





213. GAGACTCCATGGTTCATAATA





214. AGACTCCATGGTTCATAATAT





215. TTGTGGTCATACTACATTATA





216. TGTGGTCATACTACATTATAT





217. GTGGTCATACTACATTATATT





218. TTGCAACAAGGTAAGTTATAT





219. TGCAACAAGGTAAGTTATATA





220. TTGATTGATGCCCTCATAATA





221. TGAAGTTGGGTAAAGTATAAA





222. GTCAATACACAACTGATAAAT





223. CAAAGAGTTTCAGCCATAAAT





224. CATGCTTTCCAGAGGAAATAT





225. TCCAGAGGAAATATGTTTAAT





226. TTTAATCATCTGCCCTATATT





227. TTAATCATCTGCCCTATATTA





228. TGCAAGATACCATACATTTAT





229. GCAAGATACCATACATTTATA





230. GGTCCATGTGATTTCTTTAAT





231. TGCCATAACTATAGCATTTAT





232. GGATACCATCCACACTATAAA





233. TGTGTTTCCTTCCAGATAATT





234. GTGTTTCCTTCCAGATAATTT





235. GTGTGCTGAAAGGGCTATAAA





236. TTGAACCAACCACCCTATAAA





237. TAAACGTTGTATGGCTTATTT





238. ATCCCTGTGTACACAATATTT





239. ATGTGTGGTAAATCCATTATT





240. TGTGTGGTAAATCCATTATTT





241. ATGAGCATTTGGCAGTAATAT





242. TGAGCATTTGGCAGTAATATT





243. GAGCATTTGGCAGTAATATTA





244. AGCATTTGGCAGTAATATTAT





246. GCATTTGGCAGTAATATTATT





245. GAGACTCTGCTGAAGTTTATA





247. AGACTCTGCTGAAGTTTATAA





248. CAGTTATAGAAGTGCTAATTT





249. TATGATGACCTCCTGAATTAT





250. GGGTCTGGTGTTTCATTTATT





251. GGTCTGGTGTTTCATTTATTT





252. GGGTCTCATTATAGTTAATAT





253. TAACAGCATGTCAGGTAATAA





254. GCAGAGCCCTATTCCTTTAAA





255. CTCCTAAATGTTTGGAAATTT





256. TTAGCATTTCTGACCTATTTA





257. TAGCATTTCTGACCTATTTAT





258. AGCATTTCTGACCTATTTATT





259. ACAGGATATAGGGAATAATTT





260. CAGGATATAGGGAATAATTTA





261. TAGCACTGAAATGCCTATATT





262. AGCACTGAAATGCCTATATTA





263. GAGCAGAAATCAATGAAATAT





264. ACTTGTAACCAGACCAATTTA





265. CTTGTAACCAGACCAATTTAA





266. ACTCAGTGAACAAGTAAATAA





267. TAGCCCTGTATCAAGTAAATT





268. ACAAGATTCCAGAACATTTAA





269. CAAGATTCCAGAACATTTAAA





270. GAGAGTTACCCAAAGAATTTA





271. AGAGTTACCCAAAGAATTTAA





272. AGAAGAAAGGTTTGGAAATTT





273. AGCCCAATCTATAGGATTTAT





274. GCCCAATCTATAGGATTTATA





275. CCCAATCTATAGGATTTATAT





276. AGTTCATCGTTAGTGTTATAT





277. GTTCATCGTTAGTGTTATATA





278. ACCACCATGCCCAGCTAATTT





279. ATGACCCATTTGAAGTTAATT





280. TGACCCATTTGAAGTTAATTT





281. ATGCTGGCCTCACTGAATAAA





282. TGCTGGCCTCACTGAATAAAT





283. GCTGGCCTCACTGAATAAATT





284. TGTTCCCTCCTCTTCAATTAT





285. GTTCCCTCCTCTTCAATTATT





286. TTCCCTCCTCTTCAATTATTT





287. TTGGTAGGTTGTGCGTATTTA





288. ATTAGTTGGCATGCAATTATT





289. ATTCGTAGTTCTCTGAATAAT





290. TTCCTTCTGTTGGCCTTTAAT





291. TCCTTCTGTTGGCCTTTAATT





292. CCTTCTGTTGGCCTTTAATTT





293. GAAAGCATTTAGAGCTATAAA





294. CTTTCACTACCTGCCATAAAT





295. TTTCACTACCTGCCATAAATT





296. TTCACTACCTGCCATAAATTT





297. TCCTTGACCTATTGGTTATTT





298. CCTTGACCTATTGGTTATTTA





299. CTTGACCTATTGGTTATTTAA





300. TTGTGATCACAGAAGATATTT





301. TGTATAATCGCAGTCTATTAA





302. TCGCAGTCTATTAACATTTAT





303. CGCAGTCTATTAACATTTATT





304. GAGTGGTAAAGTCTCTATTAT





305. AGTGGTAAAGTCTCTATTATT





306. AGCATAAGCTATGTCATTAAA





307. CTCTTCATTTCCTTCAATATT





308. TGAGATACCTAGAACAATATA





309. GAGATACCTAGAACAATATAA





310. CTCTTTCTCTGTGAGATTATA





311. ACAACAGCCTGGAAGTATAAT





312. CAACAGCCTGGAAGTATAATT





313. ACAGCCTGGAAGTATAATTAA





314. ATTCAAACTGATGCCAATTTA





315. TTCAAACTGATGCCAATTTAA





316. AGTCAACACACCAATATTAAA





317. AGCTCCTGTTTGAAGTAAATT





318. GCTCCTGTTTGAAGTAAATTT





319. GCCTTCCAAGGTTTCTATTAA





320. TGTGGGTCTCTTTGGATTTAT





321. TATGGTTCTGTAGAGATATTT





322. TGTTCTCAATTTCCCTATATA





323. GTTCTCAATTTCCCTATATAA





324. AGGTTGGAACATTTCAAATAA





325. TTACATGGGCTGTTCTATAAA





326. TACATGGGCTGTTCTATAAAT





327. TGTTACTTAAGGTGGTTAATA





329. GTTACTTAAGGTGGTTAATAA





328. GTTGCTCAAGTCTTCTATATT





330. CAACATGCAGGTTTGTTATAT





331. ACATGCAGGTTTGTTATATAT





332. ACGTGTGCATGTGTCTTTATA





333. CTTTATAGCAGCATGATTTAT





334. TGTGTCTTTGGCTGCATAAAT





335. CTTTGTAGATTCTGGATATTA





336. GCAGAAGCTCTTTAGTTTAAT





337. TTTCCCAGCACCATTTATTAA





338. TTCCCAGCACCATTTATTAAA





339. TCCCAGCACCATTTATTAAAT





340. CCCAGCACCATTTATTAAATA





341. GTTGTAGATGTGTGGTATTAT





342. TTGTAGATGTGTGGTATTATT





343. TGTAGATGTGTGGTATTATTT





344. GTTCTGTTCCATTGGTTTATA





345. TTCTGTTCCATTGGTTTATAT





346. GGATGGCATTGAATCTATAAA





347. GATGGCATTGAATCTATAAAT





348. CCTAATTGAATACCCTTTATT





349. GGCTGTGGGTTTGTCATAAAT





350. GCTGTGGGTTTGTCATAAATA





351. TGTCCCATCAATACCTAATTT





352. GTCCCATCAATACCTAATTTA





353. TCCCATCAATACCTAATTTAT





354. CCCATCAATACCTAATTTATT





355. TTGTCTTTGGTTCTGTTTATA





356. TGTCTTTGGTTCTGTTTATAT





357. AGCATGCTTTGCTGGTATTAA





358. GCATGCTTTGCTGGTATTAAT





359. CATGCTTTGCTGGTATTAATA





360. ATGCTTTGCTGGTATTAATAT





361. TGCTTTGCTGGTATTAATATA





362. GAGAGTTAGAACCTCAATATA





363. AGAGTTAGAACCTCAATATAT





364. CCACCACGCCTGGCTTTATAA





365. CACCACGCCTGGCTTTATAAT





366. ACCACGCCTGGCTTTATAATT





367. CCACGCCTGGCTTTATAATTT 





368. GTCTAGCTCCAAGTGATATAT





369. TTTGCTTCTGTCTGAAATATA





370. TTGCTTCTGTCTGAAATATAT





371. TCTTAAGTCTGTGAGTTTATA





372. TCTCTGATTTCCACCTATATT





373. CTCTGATTTCCACCTATATTA





374. GTATATACTCCAGAGAAATAA





375. CACCAGAACTTGAACATTAAT





376. ACCAGAACTTGAACATTAATT





377. CCAGAACTTGAACATTAATTT





378. GTCTGGAACTCCTGGAATTAA





379. CTTTCTGTGCCTGGCTTATTT





380. CAGGATTTACCTTCCTTTAAA





381. TCTGTTGATGGGCACTTAAAT





382. CTGTTGATGGGCACTTAAATT





383. TCATAGCGGCTGTACTAATTT





384. CATAGCGGCTGTACTAATTTA





385. TTTACCCATTTCCAGATATAT





386. GTGTAAATAAGGGTCTAATTT





387. TGGTTATGTCATCAGTAATTA





388. CCTTGCATCCTAAGGATAAAT





389. GTGAATCCAGTTTGCTAATAT





390. TGAATCCAGTTTGCTAATATA





391. GAATCCAGTTTGCTAATATAT





392. CCATGTTCATCAGGGATATTA





393. GTGTCTTTCTCTGGCTTTAAT





394. TGTCTTTCTCTGGCTTTAATA





395. GTCTTTCTCTGGCTTTAATAA





396. TTGTGATCCTTCTTCTTTATT





397. GTAGGTTTGTATCGCTATAAA





398. TAGGTTTGTATCGCTATAAAT





399. AGGTTTGTATCGCTATAAATT





400. GGTTTGTATCGCTATAAATTT





401. TCATTTGTCTCAAGGTAATTT





402. TTTGGGAGCATATTGTTTAAT





403. TTGGGAGCATATTGTTTAATT





404. TGGGAGCATATTGTTTAATTT





405. TGGATGGAATGTTTCATATAT





406. AGTATTGAGGTCCCGTATTAT





407. GTATTGAGGTCCCGTATTATA





408. CTCCCTCTTCACATCATTTAA





409. TCCCTCTTCACATCATTTAAA





410. TATGTCTTCTTGGTGAATTAA





411. ATGTCTTCTTGGTGAATTAAT





412. CTGCTCTCAATTTCCATTTAT





413. TGCTCTCAATTTCCATTTATA





414. GCTCTCAATTTCCATTTATAT





415. TCCTTCAGCACTTTGAATATA





416. TCAGCTATTACTTCCTTAAAT





417. CAGCTATTACTTCCTTAAATA





418. TCCTTAAGGACCTCCTATTAT





419. GCTTGACCTCTAAACATATAA





420. CTTGACCTCTAAACATATAAA 





421. ACCAATACCTTGTGTAATAAA 





422. TTGACACTGGCTCTCTTTATA





423. TGACACTGGCTCTCTTTATAA





424. CAGAAGATGTGTTTGATAATA





425. GTTTGACGTGAAGAGTTTAAA





426. CTCTGAGCTTCAGTGAATTAT





427. AGGGTTGAATGCTGGATTTAA





428. GGGTTGAATGCTGGATTTAAA





429. GGTTGAATGCTGGATTTAAAT





430. GTTGAATGCTGGATTTAAATA





431. AGTGAAAGCAAAGAGAATAAA





432. CATGATGTTCCAAACTTTAAA





433. AGGTGGCCAAGGGCCTTAATA





434. GCCCAGCTGGCTCTGTAATAA





435. CCCAGCTGGCTCTGTAATAAA





436. CCAGCTGGCTCTGTAATAAAT





437. TGGTGTCATCGGGCCATATTT





438. TAACTAGGTCAACAGAATATT





439. GCAAAGTTAATCCTCATATAA





440. GCAGCATCTGTTCTGATTAAA





441. CAGCATCTGTTCTGATTAAAT





442. AGCATCTGTTCTGATTAAATA





443. GCATCTGTTCTGATTAAATAT





444. CTGCACAACTGACCCTTTATT





445. TGCACAACTGACCCTTTATTA





446. TGATGGCTTTCCTACTATTTA





447. GATGGCTTTCCTACTATTTAA





448. AGCTCAGCCATCTGGTTTAAA





449. CTGACTGCCTTAGACTAATAT





450. TGACTGCCTTAGACTAATATA





451. CAGCATTTGACAAAGAAATAA





452. AGGATATGGATGATGTATATA





453. GTCGACCCTAAGAAGATAATA





454. AGAAACCTGAACAAGTAATAA





455. GAAACCTGAACAAGTAATAAT





456. AGTCACACAACAGACTAAATT





457. GTCACACAACAGACTAAATTT





458. AGCGAGAGTGTCCTCATTTAT





459. GCGAGAGTGTCCTCATTTATA





460. CGAGAGTGTCCTCATTTATAT





461. ATCCTCTATCTCTGTTAATAA





462. AGCAAGTGCTATTCCATATTT





463. CTGGAGTCCATGGAGAAATAT





464. CCTCCAAGGACATACTTTATA





465. CTCCAAGGACATACTTTATAA





466. TCCAAGGACATACTTTATAAT





467. CCAAGGACATACTTTATAATA





468. GTGAGGGCAATGGTGAATATA





469. TGAGGGCAATGGTGAATATAA





470. CGAAAGGCAAGCTTCTTAAAT





471. GAAAGGCAAGCTTCTTAAATA





472. GGCAAGCAAGGCAGGATTTAA





473. ACAGGAACCTGGCTCTAATTT





474. GGGACCTCCTGACATTTAATT





475. GGACCTCCTGACATTTAATTA





477. GACCTCCTGACATTTAATTAA





476. GTGGGAGCTTGTTACATATAT





478. CTAAGTCTTCTCATCTATATA





479. TTAGGTGGTCATGAGATAAAT





480. TAGGTGGTCATGAGATAAATA





481. AGGTGGTCATGAGATAAATAT





482. GGTGGTCATGAGATAAATATA





483. GTGGTCATGAGATAAATATAT





484. CACAAAGCACATGGCTAAATA





485. ACAAAGCACATGGCTAAATAA





486. CGGTTATGTAGAAGCTATTTA





487 .GGTTATGTAGAAGCTATTTAA





488. AGCCACCCTTAATTGAATAAT





489. ACTACCCTTTACTGGTAATTT





SEQ ID NO: 490


Stem loop artificial/synthetic sequence.


CTCGAG





SEQ ID NO: 491


Stem loop artificial/synthetic sequence.


TCAAGAG





SEQ ID NO: 492


Stem loop artificial/synthetic sequence.


TTCG





SEQ ID NO: 493


Stem loop artificial/synthetic sequence.


GAAGCTTG





SEQ ID NO: 494


shRNA artificial/synthetic sequence.


5′-ATATCACCTTACAGAAATTACTCGAGTAATTTCTGTAAGGTGATAT-3′





SEQ ID NO: 495


shRNA artificial/synthetic sequence.


5′-TATCACCTTACAGAAATTACTCGAGTAATTTCTGTAAGGTGATA-3′





SEQ ID NO: 496


shRNA artificial/synthetic sequence.


5′-ATCACCTTACAGAAATTACTCGAGTAATTTCTGTAAGGTGAT-3′





SEQ ID NO: 497


shRNA artificial/synthetic sequence.


5′-TCACCTTACAGAAATTACTCGAGTAATTTCTGTAAGGTGA-3′





SEQ ID NO: 498


shRNA artificial/synthetic sequence.


5′-GATATCACCTTACAGAAATTCTCGAGAATTTCTGTAAGGTGATATC-3′





SEQ ID NO: 499


shRNA artificial/synthetic sequence.


5′-GATATCACCTTACAGAAATCTCGAGATTTCTGTAAGGTGATATC-3′





SEQ ID NO: 500


shRNA artificial/synthetic sequence.


5′-GATATCACCTTACAGAACTCGAGTTCTGTAAGGTGATATC-3′





SEQ ID NO: 501


shRNA artificial/synthetic sequence.


5′-GATATCACCTTACAGACTCGAGTCTGTAAGGTGATATC-3′





SEQ ID NO: 502


shRNA artificial/synthetic sequence.


5′-TGCTCTTCTTTCTACTTTATTCTCGAGAATAAAGTAGAAAGAAGAGCA-3′





SEQ ID NO: 503


shRNA artificial/synthetic sequence.


5′-CTCAATCCAATAACCTAATTTCTCGAGAAATTAGGTTATTGGATTGAG-3′





SEQ ID NO: 504


shRNA artificial/synthetic sequence.


5′-TTAGTCACATCCCACAAATTTCTCGAGAAATTTGTGGGATGTGACTAA-3′





SEQ ID NO: 505


shRNA artificial/synthetic sequence.


5′-TCCTAGGTCATAATGATAATTCTCGAGAATTATCATTATGACCTAGGA-3′





SEQ ID NO: 506


shRNA artificial/synthetic sequence.


5′-GATATCACCTTACAGAAATTAnnnnnnnnTAATTTCTGTAAGGTGATATC-3′,


wherein nnnnnnnn can be CTCGAG (SEQ ID NO: 490), TCAAGAG (SEQ ID


NO: 491), TTCG (SEQ ID NO: 492) or GAAGCTTG (SEQ ID NO: 493).








Claims
  • 1. A polynucleotide sequence comprising:
  • 2. An expression vector comprising the polynucleotide sequence of claim 1.
  • 3. The expression vector according to claim 2, further comprising a promoter.
  • 4. The expression vector according to claim 3, wherein the promotor is a neuron specific promoter.
  • 5. The expression vector according to claim 4, wherein neuron specific promoter is neuron-specific enolase (NSE), synapsin I (Syn), or Ca2+/CaM-activated protein kinase II alpha (CaMKIIalpha).
  • 6. The expression vector according to claim 3, wherein the promotor is a U6 promoter or a H1 promoter.
  • 7. The expression vector according to claim 2, wherein the expression vector is an adeno-associated viral (AAV) vector or a lentiviral vector.
  • 8. The expression vector according to claim 7, wherein the expression vector is AAV1, AAV2, AAV3, AAVS, AAV6, AAV7, AAV8, AAV9, or AAV10.
  • 9. A pharmaceutical composition comprising the polynucleotide sequence according to claim 1 and a pharmaceutically acceptable carrier.
  • 10. The pharmaceutical composition according to claim 9, wherein the polynucleotide sequence is contained within an expression vector.
  • 11. The pharmaceutical composition according to claim 10, wherein the expression vector is an AAV vector or a lentivirus vector.
  • 12. A polynucleotide encoding a shRNA comprising a nucleotide sequence that is at least 85%, at least 90%, at least 95%, or 100% complementary to a RNA encoded by any of SEQ ID NOs: 3-489.
  • 13. The polynucleotide of claim 12, wherein the polynucleotide is SEQ ID NO: 2.
  • 14. The polynucleotide of claim 12, wherein the shRNA causes activation of, or an increase in, expression of paternal UBE3A.
  • 15. The polynucleotide of claim 12, wherein the shRNA causes a reduction of expression of paternal UBE3A ATS.
  • 16. An expression vector comprising the polynucleotide of claim 12 and a promoter.
  • 17. The expression vector of claim 14, wherein the promoter is a neuron specific promoter.
  • 18. The expression vector according to claim 17, wherein neuron specific promoter is neuron-specific enolase (NSE), synapsin I (Syn), or Ca2+/CaM-activated protein kinase II alpha (CaMKIIalpha).
  • 19. The expression vector of claim 16, wherein the promoter is a U6 promoter or a H1 promoter.
  • 20. The expression vector according to claim 16, wherein the expression vector is an adeno-associated viral (AAV) vector or a lentiviral vector.
  • 21. The expression vector according to claim 20, wherein the expression vector is AAV1, AAV2, AAV3, AAVS, AAV6, AAV7, AAV8, AAV9, or AAV10.
  • 22. The expression vector of claim 16, wherein the polynucleotide is a DNA polynucleotide.
  • 23. A pharmaceutical composition comprising the polynucleotide sequence according to claim 12 and a pharmaceutically acceptable carrier.
  • 24. The pharmaceutical composition according to claim 23, wherein the polynucleotide sequence is contained within an expression vector.
  • 25. The pharmaceutical composition according to claim 24, wherein the expression vector is an AAV vector or a lentivirus vector.
  • 26. A method of treating Angelman syndrome comprising administering to a patient in need thereof the polynucleotide according to claim 1.
  • 27. The method of treating Angelman syndrome according to claim 26, wherein the polynucleotide encodes a shRNA which causes a reduction of expression of paternal UBE3A ATS.
  • 28. The method of treating Angelman syndrome according to claim 26, wherein the polynucleotide encodes a shRNA which causes activation of, or an increase in, expression of paternal UBE3A gene.
  • 29. A method of treating Angelman syndrome comprising administering to a patient in need thereof a polynucleotide according to claim 12.
  • 30. The method of treating Angelman syndrome according to claim 29, wherein the polynucleotide encodes a shRNA which causes a reduction of expression of paternal UBE3A ATS.
  • 31. The method of treating Angelman syndrome according to claim 29, wherein the polynucleotide encodes a shRNA which causes activation of, or an increase in, expression of paternal UBE3A gene.
  • 32. A polynucleotide comprising SEQ ID NO: 2 encoding a shRNA wherein the shRNA is capable of inhibiting the silencing of paternal UBE3A.
  • 33. A method of inhibiting the silencing of a paternal UBE3A gene by an RNA antisense transcript encoded by SEQ ID NO: 1 comprising administering to a patient in need thereof, an amount of the polynucleotide of claim 1 encoding a shRNA effective to cut the RNA antisense transcript encoded by SEQ ID NO: 1.
  • 34. The method of claim 33, wherein the polynucleotide is contained within an expression vector.
  • 35. The method of claim 34, wherein the expression vector is a AAV vector or a lentivirus vector.
  • 36. The method of claim 33, wherein the polynucleotide is administered to the patient's brain.
  • 37. The method of claim 33, wherein the polynucleotide is administered to neurons of the patient.
  • 38. The method of claim 33, wherein the shRNA reduces or terminates transcription of a polynucleotide comprising the sequence of SEQ ID NO: 1.
  • 39. The method of claim 33, wherein the shRNA reduces the levels of the RNA antisense transcript encoded by SEQ ID NO: 1.
  • 40. A method of inhibiting the silencing of paternal UBE3A gene by the RNA antisense transcript encoded by SEQ ID NO: 1 comprising administering to a patient in need thereof, an amount of the polynucleotide of claim 12 encoding a shRNA effective to cut the RNA antisense transcript encoded by SEQ ID NO: 1.
  • 41. The method of claim 40, wherein the polynucleotide is contained within an expression vector.
  • 42. The method of claim 41, wherein the expression vector is a AAV vector or a lentivirus vector.
  • 43. The method of claim 40, wherein the polynucleotide is administered to the patient's brain.
  • 44. The method of claim 40, wherein the polynucleotide is administered to neurons of the patient.
  • 45. The method of claim 40, wherein the shRNA reduces or terminates transcription of a polynucleotide comprising the sequence of SEQ ID NO: 1.
  • 46. The method of claim 40, wherein the shRNA reduces the levels of the RNA antisense transcript encoded by SEQ ID NO: 1.
  • 47. The polynucleotide of claim 1, for use in treating Angelman syndrome, for use in activating paternal UBE3A, or for use in inhibiting the silencing of paternal UBE3A gene by the RNA antisense transcript encoded by SEQ ID NO: 1.
  • 48. The polynucleotide of claim 12, for use in treating Angelman syndrome, for use in activating paternal UBE3A, or for use in inhibiting the silencing of paternal UBE3A gene by the RNA antisense transcript encoded by SEQ ID NO: 1.
  • 49. Use of the polynucleotide of claim 1, in the manufacture of a medicament for the treatment of Angelman syndrome, for activation of paternal UBE3A, or for inhibition of the silencing of paternal UBE3A gene by the RNA antisense transcript encoded by SEQ ID NO: 1.
  • 50. Use of the polynucleotide of claim 12, in the manufacture of a medicament for the treatment of Angelman syndrome, for activation of paternal UBE3A, or for inhibition of the silencing of paternal UBE3A gene by the RNA antisense transcript encoded by SEQ ID NO: 1.
  • 51. A shRNA encoded by a portion of SEQ ID NO: 2, wherein the portion of SEQ ID NO: 2 defines a first segment defined by the bold nucleotides which has been shortened by one, two, three or four nucleotides at either end of the first segment, and a second segment defined by the italicized nucleotides which has been shortened by one, two or three nucleotides at either end of the italicized nucleotides.
  • 52. The shRNA of claim 51, wherein the shRNA is encoded by SEQ ID NO: 494, SEQ ID NO: 495, SEQ ID NO: 496, SEQ ID NO: 497, SEQ ID NO: 498, SEQ ID NO: 499, SEQ ID NO: 500 or SEQ ID NO: 501.
  • 53. A polynucleotide sequence comprising:
  • 54. A polynucleotide sequence comprising a first portion, a second portion and a third portion, the first portion comprising any of SEQ ID NOs: 3-489, the second portion comprising any of SEQ ID Nos: 490, 491, 492, or 493, and the third portion comprising respective nucleotide sequences complementary to those in SEQ ID NOs: 3-489.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims benefit and priority to U.S. Provisional Application No. 63/317,154, filed Mar. 7, 2022, which is incorporated herein by reference in its entirety.

STATEMENT OF GOVERNMENT SUPPORT

This invention was made with government support under Contract No. 1R01HD094953 awarded by the National Institutes of Health. The government has certain rights in the invention.

Provisional Applications (1)
Number Date Country
63317154 Mar 2022 US