The present invention relates generally to rotary machines, and more particularly, to methods and apparatus to facilitate fluid flow within the rotary machine by reducing fluid leakage losses and fluid mixing losses within the rotary machine.
Rotary machines, such as gas turbines, are used to generate power for electric generators. A gas turbine has a gas path which typically includes, in serial-flow relationship, an air intake (or inlet), a compressor, a combustor, a turbine, and a gas outlet (or exhaust nozzle). Compressor and turbine sections include at least one row of circumferentially spaced rotating buckets or blades positioned within a housing.
Turbine efficiency depends at least in part on a radial clearance or gap between tips of the rotating buckets and a shroud coupled to the surrounding housing. The clearance is needed to avoid contact or rubbing between the bucket tips and the shroud which results in a design limitation for the size of the clearance. If the clearance is too large, enhanced gas flow may leak through the clearance gaps, thus decreasing the turbine's efficiency. Leakage flow, either out of the flow path or into the flow path, from an area of higher pressure to an area of lower pressure, is generally undesirable. If the clearance is too small, the rotor bucket tips may undesirably contact/rub the surrounding shroud during certain turbine operating conditions, which may also decrease the turbine's efficiency. To accommodate for the design limitation of the clearance gap, some known turbines utilize honeycomb and/or labyrinth seals with the shroud and/or bucket to reduce leakage flow through the clearance gap.
In one aspect, a shroud for a turbine is provided. The turbine includes a housing, a rotatable shaft, and a bucket extending outward therefrom. The shroud includes an alignment member which is coupled to the housing, wherein the alignment member includes a first end, a second end, and a body extending between the first and second ends. The second end includes an arcuate portion configured to facilitate fluid flow downstream from the bucket. The shroud further includes a seal coupled to the body to facilitate sealing a gap defined between the bucket and the body.
In another aspect, a turbine is provided. The turbine includes a housing, a turbine shaft rotatably supported in the housing, and a plurality of turbine stages located along the turbine shaft and contained within the housing. Each turbine stage includes a rotor coupled to the turbine shaft, wherein the rotor includes a bucket radially extending outward therefrom. A shroud is coupled to the housing and includes a first end, a second end, and a body extending between the first and second ends. The second end includes an arcuate portion configured to facilitate leakage flow downstream from the bucket. The body further includes a first groove and a second groove. A seal is coupled to the first groove and the second groove to facilitate sealing a gap defined between the bucket and the body.
In a further aspect, a method of assembling a shroud to a turbine is provided. The turbine has a housing, a rotatable shaft and a bucket radially extending outward from the rotatable shaft. The method includes coupling a shroud to the housing and extending an arcuate portion of the shroud outward from the housing to facilitate fluid flow downstream from the bucket. The method further includes coupling a seal to the shroud to facilitate sealing a gap defined between the bucket and the shroud.
During operation, air flows through compressor section 36 and compressed air is discharged into combustor section 38. Combustor assembly 50 injects fuel, for example, natural gas and/or fuel oil, into the air flow, ignites the fuel-air mixture to expand the fuel-air mixture through combustion, and generates high temperature combustion gases. Combustion gases are discharged from combustor assembly 50 towards turbine section 40, wherein thermal energy in the gases is converted to mechanical rotational energy. Combustion gases impart rotational energy to turbine section 40 and to rotor assembly 44, which subsequently provides rotational power to compressor section 36.
Rotor 58 includes turbine buckets 78 that are coupled at their radially inner ends 80 to turbine wheels 82 extending radially outward from turbine shaft 46 such that buckets 78 are rotatable about an axis 84. Bucket 78 has a flow inlet side 86 and a flow outlet side 88, which is downstream of flow inlet side 86. Bucket 78 further includes a bucket tip 92, wherein bucket tip 92 includes a plurality of teeth 94 extending radially therefrom, within gap 66 and towards shroud 56. A set of stationary nozzles 74 and rotating buckets 78 form a stage 96 of turbine 32. Moreover, turbine 32 includes a subsequent stage 98 having a subsequent radial outer portion 100 and a nozzle 102. Nozzle 102 includes an inlet side 104, an outlet side 106, and side wall 108. Side wall 108 is angled with respect to shroud 56.
Second end 114 is configured to channel tip leakage flow 62 from gap 66, downstream from bucket 78, and towards nozzle side wall 108. In the exemplary embodiment, second end 114 is sized and shaped to substantially match a flow profile of side wall 108 of nozzle 102 to facilitate alignment of leakage flow 62 towards sidewall 108 to minimize and/or eliminate re-circulation of leakage flow 62 into bucket outlet side 88 as compared to conventional turbines 14 (shown in
In the exemplary embodiment, arcuate portion 128 extends radially outward from housing 76. As illustrated, because arcuate portion 128 extends radially outward from housing 76, second substantially straight portion 126 is positioned at an angle 130 relative to first substantially straight portion 124 and in line to side wall 108 of subsequent nozzle 102. Moreover, in the exemplary embodiment, second substantially straight portion 126 is orientated at less than about 45° relative to first substantially straight portion 124. The orientation of first substantially straight portion 124, second substantially straight portion 126, and arcuate portion 128 facilitates leakage flow 62 downstream beyond bucket 78 and towards nozzle sidewall 108. More particularly, arcuate portion 128 is configured to position second portion 126 in substantial alignment with angle of sidewall 108 to facilitate leakage flow 62 from gap 66, downstream of bucket 78 and toward nozzle 102. Any orientation of first and second portions 124 and 126 and arcuate portion 128 may be used to facilitate flow alignment with nozzle side wall 108, and enables turbine 32 to function as described herein. Moreover, because arcuate portion 128 is configured to direct leakage flow 62 toward side wall 108, arcuate portion 128 facilitates minimizing and/or eliminating re-circulation and mixing of leakage flow 62 with main flow 64.
Arcuate portion 128 is sized and shaped to facilitate reducing and/or eliminating flow mixing losses and/or flow path losses through gap 66 as compared to conventional shrouds having substantially straight exit ends, which increases efficiencies of turbine operations. More particularly, arcuate portion 128 is configured to channel leakage flow 62 substantially uniform out of gap 66 and towards nozzle 102, and to facilitate smooth transition of leakage flow 62 in alignment with nozzle wall 108 towards nozzle 102. Moreover, the shape of arcuate portion 128 directs leakage flow 62 to minimize flow impact of leakage flow 62 toward side wall 108 against a nozzle arcuate surface 131. Reducing flow impact of leakage flow 62 facilitates reducing and/or eliminating oxidation of nozzle arcuate surface 131 and/or adverse heat effects on surface 131, to enhance increasing operating life of nozzle 102.
In the exemplary embodiment, alignment member 110 also includes a first groove 132 and a second groove 134. First groove 132 and second groove 134 are in flow communication with gap 66 and facilitate coupling seal 60 to body 116. First groove 132 is defined by opposing side walls 136 and 138 and an end wall 140 that extends between side walls 136 and 138. End wall 140 has a first length 142. In the exemplary embodiment, side walls 136 and 138 are angled towards body 116 to facilitate reducing flow leakage and flow losses across gap 66. Alternatively, side walls 136 and 138 may extend orthogonally (not shown) to body 116.
Second groove 134 is defined by opposing side walls 144 and 146 and an end wall 148 that extends between side walls 144 and 146. End wall 148 has a second length 149. End wall length 142 is longer than end wall length 149. A shortened second groove 134 facilitates channeling leakage flow 62 out of gap 66 to facilitate reducing flow leakages and losses of fluid flow 62 downstream towards each subsequent nozzle 102 and subsequent bucket (not shown). Alternatively, lengths 142 and 149 can have any length that enables seal 60 to function as described herein. In the exemplary embodiment, sidewalls 144 and 146 are angled towards body 116 to facilitate reducing flow leakages and losses across gap 66. Alternatively, side walls 144 and 146 may extend orthogonally (not shown) to body 116.
Seal 60 extends between bucket 78 and member 110. In the exemplary embodiment, seal 60 includes a honeycomb seal 150 that is coupled to body 116 and that is mounted within at least first groove 132 and second groove 134. Honeycomb seal 150 is fabricated from thin corrugated strips 152 that are mated together in a honeycomb configuration to form cells 154. In the exemplary embodiment, cells 154 are each hexagonal. Alternatively, cells 154 can have any other shape, including circular, triangular, and/or rectangular, that enables seal 60 to function as described herein. Additionally, or alternatively, seal 60 can include other seals such as, but not limited to, brush seals (not shown).
Seal 60 also includes at least one seal tooth 156 that extends from body 116 into gap 66. Tooth 156 defines a tortuous path with teeth 94 that facilitates mitigating leakage flow 62 through gap 66. In the exemplary embodiment, seal tooth 156 is positioned between grooves 132 and 134. A first tooth 158 of teeth 94 is spaced a first distance 160 from seal tooth 156 and a second tooth 162 of teeth 94 is spaced at a second distance 164 from seal tooth 156. In the exemplary embodiment, first distance 160 is longer than second distance 164. A shortened second distance 164 facilitates reducing flow leakages and flow losses of leakage flow 62 towards arcuate portion 128. Alternatively, distances 160 and 164 can have any length that enables seal 60 to function as described herein. In the exemplary embodiment, first end 112 and second end 114 of alignment member 110 minimize and/or eliminate additional seal teeth on opposite sides of tooth 156. Moreover, seal tooth 156 is thicker than conventional teeth 18 (shown in
Method 300 includes extending 320 the arcuate portion relative to and beyond the bucket to facilitate fluid flow downstream to a subsequent nozzle. In the exemplary embodiment, orientating the arcuate portion includes extending the arcuate portion radially outward from the housing. A seal, such as seal 60 (shown in
During an exemplary operation of turbine 32, fluid flow 64 is channeled through nozzle 74 towards buckets 78, which causes buckets 78 to rotate with turbine shaft 46 to induce work output by shaft 46. A portion of leakage flow 62 is channeled from inlet side 86 of bucket 78 into gap 66. Bucket tip 92 (shown in
The embodiments described herein enhance the efficiency, reliability, and reduced maintenance costs and outages of the associated turbine as compared to conventional shrouds. An arcuate portion of the shroud is sized and shaped to align and channel gas flow out of a clearance gap defined between the shroud and a rotor and towards a subsequent nozzle. The arcuate portion is sized and shaped to facilitate reducing flow leakages and losses of gas flow from the bucket.
Although the embodiments are herein described and illustrated in association with a turbine for a gas turbine, it should be understood that the present invention may be used for controlling any fluid between any generally high pressure area and any generally low pressure area within any rotary machine. Accordingly, practice of the exemplary embodiments is not limited to gas turbines.
Exemplary embodiments of systems and methods for using a shroud are described herein in detail. The systems and methods are not limited to the specific embodiments described herein, but rather, components of systems and/or steps of the method may be utilized independently and separately from other components and/or steps described herein. Each component and each assembly step may also be used in combination with other components and/or assembly steps. Although specific features of various embodiments may be shown in some drawings and not in others, this is for convenience only. Any feature of a drawing may be referenced and/or claimed in combination with any feature of any other drawing.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.