Information
-
Patent Grant
-
6485330
-
Patent Number
6,485,330
-
Date Filed
Wednesday, December 29, 199925 years ago
-
Date Issued
Tuesday, November 26, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 439 571
- 439 572
- 439 78
-
International Classifications
-
Abstract
An insulative shroud retention wafer for an electrical connector allowing for an optimization of pin placements of the electrical connector is provided. In an illustrative embodiment the shroud retention wafer comprises a first (66), second (68), third (70), and fourth (72) cylindrical members, each having an axial pin receiving aperture (86) and an axial center line (78, 80) extending through the pin receiving aperture (86). Furthermore, the cylindrical members maintain at least one protuberance (100). In operation, the cylindrical members of the shroud retention wafer couple with pins of the electrical connector to realize an electrical connection. Specifically, the protuberance (100) causes collapse of the cylinders (66,68,70,72) allowing for better gripping of pins of the electrical connector. The arrangement of the cylinders (66,68,70,72) of the shroud retention (28) wafer maximizes the number of cylindrical members on the wafer allowing for optimization of pin placement.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to electrical connectors and more particularly to arrangements for securing pins in electrical connectors.
2. Brief Description of Prior Developments
Typical prior art shrouds have a designed interference with a mating pin. In the application process the shroud is placed on the pin tip and, with some sort of toe and press, is pushed down the pin against the rear side of a back panel.
One of the difficulties associated with such a procedure is knowing if the shroud is properly aligned with the pins. That is, knowing if the shroud is misplaced by perhaps one position. Another problem, is that the shroud needs to be held on the pin tips while a tool is placed within it and it is placed into a press. It is also found that as pressure is applied to the shroud, the pin may have a tendency to bend causing pin deformations since the load is being placed on a long slender column.
As is disclosed in European Patent Application No. 578 487 A (U.S. Pat. No. 5,552,730), it is known in the art to provide a structure known as a locking plate or retention wafer between the shroud or housing and the circuit board or back panel. The arms fit in passageways in the base of the housing and these passageways include a camming surface for urging the gripping arms into contact with the pins. The disadvantage to the above arrangement described in European Patent Application No. 578 487 A is that the interacting protuberance and camming surfaces require the gripping arms or cylindrical members to be displaced from each other at a relatively large distance. The present invention aims to ameliorate the shortcomings of the described prior art by providing an electrical connector having a shroud retention wafer that acts to more easily cooperate with the pins of the electrical connector thereby avoiding the necessity of having such pins to be displaced from each other by large distances and protecting against possible pin deformations.
From the foregoing it is appreciated that there exists a need for an electrical connector to overcome the disadvantages of the prior art. By having an electrical connector with a shroud retention wafer, the cylindrical members or gripping arms of the electrical connector would not be displaced over a large distance from each other.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a shroud retention wafer which allows easier shroud application than typical shrouds.
It is another object to provide a shroud retention wafer which produces less damage to pins than typical shrouds.
It is also an object of this invention to provide a shroud retention wafer which provides better retention than typical shrouds.
The insulative shroud retention wafer of this invention includes a planar base member having a first and a second side. There are also first, second, third and fourth cylindrical members each having an axial pin receiving aperture and an axial center line extending said pin receiving aperture. These cylindrical members extend from the first side of the planar base member, and these cylindrical members are positioned in an arrangement such that a first longitudinal center line extends through the axial center line of the first and second cylindrical members. A second longitudinal center line extends in parallel spaced retention to the first longitudinal center line through the axial center lines of the third and fourth cylindrical members. A first transverse center line extends through the centerlines of the first and third cylindrical members. A second traverse center line extends through the center line of the second and fourth cylindrical members. A protuberance is peripherally positioned on the first cylinder at least in part at a position between the first longitudinal center line and the first transverse center line.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention is further described with reference to the accompanying in which:
FIG. 1
is a top plan view of a preferred embodiment of the shroud retention wafer of the present invention;
FIG. 2
is a side elevational view of the shroud retention wafer shown in
FIG. 1
;
FIG. 3
is a front elevational view of the shroud retention wafer shown in
FIG. 1
;
FIG. 4
is a rear view from
4
—
4
in
FIG. 1
;
FIG. 5A
is a side view of showing the operation of the shroud retention wafer with cooperating components in accordance with the present invention;
FIG. 5
is an enlarged view of circle
5
in
FIG. 4
;
FIG. 6
is an enlarged view of Area
6
in
FIG. 1
; and
FIG. 7
is a further enlarged view of Area
7
in FIG.
6
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The shroud retention wafer of the present invention is an improvement on the insulative plate with integral insulative sleeves that are shown respectively at numerals
57
and
56
, PCT International Application No. WO 96/31922 (U.S. Pat. No. 5,967,844) published Oct. 10, 1996. The contents of this application are herein incorporated in their entirety by reference.
The wafer is composed of a thin molded base with cylindrical member on its top. Although 30 cylindrical members are shown in the disclosed embodiment, different numbers of cylindrical members may be used in various other situations. The inside coring of the 20 central cores has an odd shaped hole in it and two areas of added material on two opposing sides of the tower. The outside
5
cores on each end of the wafer are not pertinent to the wafers function. It will be appreciated that while the cores do not serve for pin retention they do serve for insulation and guidance. As pressure is applied to the opposing areas of added material, hereafter referred to as “protuberances”, the cylindrical member will start to collapse, since there will preferably be approximately 8 mils of plastic on the cylindrical portion 90 degrees from the protuberances.
This wafer as shown in
FIG. 5A
is used in conjunction with a die cast housing
505
which has a matching grid of holes similar to the wafer
28
. In practice, the wafer
28
is placed by hand into the bottom of the casting
505
and pushed (as indicated by the set of arrows
520
) to a specified depth. This piece is then supplied to a user as a shroud which is placed (as indicated by the set of arrows
525
) on the rear side of a back panel
515
by hand. The shroud can be placed over the pins
510
protruding from the rear side of the back panel
515
and pushed down to the board of the rear panel until the wafer
28
contacts the board of the rear panel. At this point, the casting is not against the back panel. A piece of tooling is placed inside the casting, the back panel is then supported, and casting
505
is fully inserted over the wafer
28
. The wafer
28
, which was already pushed against the back panel, cannot move as the casting
505
is pressed over it. This causes the protuberances
98
and
100
to be pushed toward the center of the core and the plastic core itself to press against the pin
510
. This action causes the shroud to be securely fixed to the back panel
515
. The present invention in operating in this manner offers distinct advantages over current retention wafers including the ability to affix a retention wafer over pins of a cooperating substrate without the need of excessive tooling, the ability to secure three piece contact, that is a die casting, a wafer, and a cooperating board of a back panel without the need of external fixtures, and the ability to secure an insulative shroud retention wafer that does not require the gripping elements to be displaced from each other at a relatively large distance.
Referring now to
FIGS. 1-7
the insulative shroud is described as shown in
FIGS. 1-3
, the retention wafer of the present invention includes a planar base section
10
which has a first upper side
12
and a second lower side
14
. Extending upwardly from the upward side there is a first lateral row of cylindrical members shown generally at numeral
16
which is comprised of members
18
,
20
,
22
,
24
and
26
. There is also an opposed lateral row of cylindrical members made up of members
30
,
32
,
34
,
36
and
38
. Interposed between these lateral rows there are four medial rows shown generally at
40
,
42
,
44
and
46
. The array of cylindrical members is also defined by a number of transverse rows shown generally at numerals
48
,
50
,
52
,
54
and
56
. Each of the medial rows has a center line as, for example, center line
58
of medial row
40
and center line
60
of medial row
42
. Similarily, each of the transverse rows has a center line as, for example, center line
62
of row
48
and center line
64
of row
50
. The medial rows include, for example, first cylinder
66
and second cylinder
68
in medial row
40
and third cylinder
70
and fourth cylinder
72
in medial row
42
. Each of the cylindrical members in the medial row has a axial center line as, for example, first axial center line
74
in cylindrical member
66
, second axial center line
76
and second cylindrical member
68
, third axial center line
78
in third cylindrical member
70
and fourth axial center line
80
in fourth cylindrical member
74
. As shown in
FIG. 6
, each of the cylindrical members in the lateral rows such as cylindrical member
30
includes a peripheral base
82
, a central body
84
and a central pin receiving aperture
86
. While these lateral row pin receiving apertures allow for insulation of the pins they do not serve a gripping function. Each of the cylindrical members in the medial row as, for example, cylindrical member
66
has a peripheral base
88
, and a central body
90
. Its central pin receiving aperture through which the first axial center line
74
extends includes an elongated slot
92
and lateral recesses
94
and
96
which extend from the elongated
92
at a medial position in opposed directions. The lateral recesses
94
and
96
are triangularly shaped to receive a cross sectionally square pin. A semi-circular shape for these recesses would be used for a round pin. Each of the cylindrical members in the medial rows also includes a pair of opposed protuberances
98
and
100
. These protuberances have respectively center lines
102
and
104
. Protuberance center lines
102
and
104
are radially aligned respectively with the opposed lateral recesses
94
and
96
in the pin receiving aperture. The protuberance center lines
102
and
104
are also displaced from the first longitudinal center line
58
and the first transverse center line
62
by an angle of 45 degrees. As shown in
FIGS. 4 and 5
, protuberances
98
and
100
also include vertical wall sections
106
and
108
respectively which overly the outer periphery of cylindrical member
66
. These walls each cover about 90 degrees of the periphery of the cylindrical member
66
. These walls have a arcuate upper sections
110
and
112
respectively which curve inwardly toward the cylinder member to form a cam surface. The wall also has upper edge
114
and
116
respectively which slope laterally and downwardly toward the base from their center lines. All of the cylindrical members in the medial rows are essentially similar to cylindrical member
66
. Further, the protuberances in these rows are similarity positioned on the cylindrical members and have the same relatively positions to the longitudinal and traverse center lines.
The shroud retention wafer described above may be fixed to a header prior to shipment of that header thus saving considerable time and effort during the placement of the header on a back panel or circuit board. It will also be appreciated that the positioning of the protuberances as described above on the cylindrical members maximizes the number of cylindrical members available by reducing the amount of space between gripping elements (e.g. protuberances) of the wafer that are used secure the wafer to cooperating substrates (e.g. rear back panel). In addition, the shroud retention wafer of the present invention allows for efficient use of space on the wafer and when cooperating with pins of cooperating electrical connectors server to protect against pin deformations by ensuring that sufficient force is provided to sustain an electrical connection without unduly offering unnecessary forces to pins of cooperating electrical connectors.
While the present invention has been described in connection with the preferred embodiments of the various figures, it is to be understood that other similar embodiments may be used or modifications and additions may be made to the described embodiment for performing the same function of the present invention without deviating therefrom. Therefore, the present invention should not be limited to any single embodiment, but rather construed in breadth and scope in accordance with the recitation of the appended claims.
Claims
- 1. An insulative shroud retention wafer comprising:(a) a planar base member having a first and a second side; (b) first, second, third and fourth cylindrical members extending from the first side of the planar base member and each having an axial pin receiving aperture and an axial center line extending through said pin receiving aperture wherein said cylindrical members are positioned in an arrangement such that a first longitudinal center line extends through the axial center line of the first and second cylindrical members and a second longitudinal center line extends in parallel spaced retention to the first longitudinal center line through the axial center lines of the third and fourth cylindrical members and a first transverse center line extends through the centerlines of the first and third cylindrical members and a second traverse center line extends through the center line of the second and fourth cylindrical members; and (c) a protuberance peripherally located on the first cylindrical member at least in part at a position between the first longitudinal center line and the first transverse center line.
- 2. The insulative shroud retention wafer of claim 1 wherein there is a second circumferential protuberance on the first cylindrical member and said second protuberance is located at a second position at least in part between the first longitudinal center line and the first transverse center line.
- 3. The insulative shroud retention wafer of claim 1 wherein the second protuberance is circumferentially opposed to the first protuberance.
- 4. The insulative shroud retention wafer of claim 3 wherein the first and second protuberances each have a protuberance center lines and said protuberance enter lines are each displaced from the first longitudinal center line and the first transverse center line by about 45 degrees.
- 5. The insulative shroud retention wafer of claim 4 wherein the axial aperture includes an elongated slot.
- 6. The insulative shroud retention wafer of claim 5 wherein a pair of opposed pin receiving recesses extend from the elongated slot in the pin receiving aperture.
- 7. The insulative shroud retention wafer of claim 6 wherein the elongated slot has a longitudinal axis which intersects the first longitudinal center line at an acute angle.
- 8. The insulative shroud retention wafer of claim 7 wherein the acute angle at which the longitudinal axis of the elongated slot intersects the first longitudinal center line is about 45 degrees.
- 9. The insulative shroud retention wafer of claim 8 wherein the recesses extending from the longitudinal slot extend generally perpendicularly from the longitudinal center line of the elongated slot.
- 10. The insulative shroud retention wafer of claim 9 wherein the recesses are triangularly shaped.
- 11. The insulative shroud retention wafer of claim 9 wherein the protuberances each comprise a wall which overlies a portion of the cylindrical member.
- 12. The insulative shroud retention wafer of claim 11 wherein the protuberances each peripherally overlies about a 90 degrees area of the cylindrical member.
- 13. The insulative shroud retention wafer of claim 11 wherein the protuberance center lines are radially aligned with the recesses extending from the longitudinal slot.
- 14. The insulative shroud retention wafer of claim 11 wherein the first cylindrical member has a height and the protuberances extend over only a portion of said height.
- 15. The insulative shroud retention wafer of claim 14 wherein the protuberances each have an upper edge which is curved arcuately toward the cylindrical member.
- 16. The insulative shroud retention wafer of claim 15 wherein the upper edge of the protuberances curves laterally toward the planar base member between the protuberance center line and the first longitudinal center line and the first transverse center line.
- 17. The insulative shroud retention wafer of claim 1 wherein the second cylindrical member has a pair of protuberances which are peripherally positioned on said cylindrical member in opposed relation at positions between the first longitudinal center line and the second transverse center line.
- 18. The insulative shroud retention wafer of claim 1 wherein the second cylindrical member has a pair of protuberances which are peripherally positioned on said cylindrical member in opposed relation at positions between the first longitudinal center line and the second transverse center line.
- 19. The insulative shroud retention wafer of claim 1 wherein the second cylindrical member has a pair of protuberances which are peripherally positioned on said cylindrical member in opposed relation at positions between the first longitudinal center line and the second transverse center line.
- 20. The insulative shroud retention wafer of claim 1 wherein the second cylindrical member has a pair of protuberances which are peripherally positioned on said cylindrical member in opposed relation at positions between the first longitudinal center line and the second transverse center line.
- 21. An insulative shroud retention wafer comprising:(a) a planar base member having a first and a second side; (b) first, second, third and fourth cylindrical members extending from the first side of the planar base member and each having an axial pin receiving aperture and an axial center line extending through said pin receiving aperture wherein said cylindrical members are positioned in an arrangement such that a first longitudinal center line extends through the axial center line of the first and second cylindrical members and a second longitudinal center line extends in parallel spaced retention to the first longitudinal center line through the axial center lines of the third and fourth cylindrical members and a first transverse center line extends through the centerlines of the first and third cylindrical members and a second traverse center line extends through the center line of the second and fourth cylindrical members; and (c) a protuberance peripherally located on the first cylindrical member at a position angularly displaced from the first longitudinal center line.
- 22. An insulative shroud retention wafer comprising:(a) a planar base member having a first and a second side; (b) first, second, third and fourth cylindrical members extending from the first side of the planar base member and each having an axial pin receiving aperture and an axial center line extending through said pin receiving aperture wherein said cylindrical members are positioned in an arrangement such that a first longitudinal center line extends through the axial center line of the first and second cylindrical members and a second longitudinal center line extends in parallel spaced retention to the first longitudinal center line through the axial center lines of the third and fourth cylindrical members and a first transverse center line extends through the centerlines of the first and third cylindrical members and a second traverse center line extends through the center line of the second and fourth cylindrical members and the pin receiving aperture is a slot extending through the axial center line of the first cylindrical member having a pair of medial opposed recesses perpendicularly extending therefrom; and (c) a protuberance peripherally located on the first cylindrical member at a position radially aligned with the opposed recesses extending from the slot.
- 23. An insulative shroud retention wafer comprising a planar base member having a plurality of members extending from said planar base, each member having an axial pin receiving aperture that accept contact pins from cooperating electrical connectors, and protuberances located peripherally to said members, wherein the location of the protuberances provide a retention force on said electrical connector contact pins by engaging pin housing members offered by said cooperating electrical connectors, said retention force protecting against deforming of said electrical connector contact pins.
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
PCT/US98/09946 |
|
WO |
00 |
Publishing Document |
Publishing Date |
Country |
Kind |
WO98/52253 |
11/19/1998 |
WO |
A |
US Referenced Citations (20)
Foreign Referenced Citations (1)
Number |
Date |
Country |
39 36 466 |
May 1991 |
DE |