this invention relates generally to turbine engine shrouds disposed about rotating articles and to their assemblies about rotating blades. More particularly, it relates to air cooled gas turbine engine shroud segments and to shroud assemblies, for example used in the turbine section of a gas turbine engine, especially segments made of a low ductility material.
Typically in a gas turbine engine, a plurality of stationary shroud segments are assembled circumferentially about an axial flow engine axis and radially outwardly about rotating blading members, for example about turbine blades, to define a part of the radial outer flowpath boundary over the blades. In addition, the assembly of shroud segments is assembled in an engine axially between such axially adjacent engine members as nozzles and/or engine frames. As has been described in various forms in the gas turbine engine art, it is desirable to avoid leakage of shroud segment cooling air radially inwardly and engine flowpath fluid radially outwardly through separations between circumferentially adjacent shroud segments and between axially adjacent engine members. It is well known that such undesirable leakage can reduce turbine engine operating efficiency. Some current seal designs and assemblies include sealing members disposed in slots in shroud segments. Typical forms of current shrouds often have slots along circumferential and/or axial edges to retain thin metal strips sometimes called spline seals. During operation, such spline seals are free to move radially to be pressure loaded at the slot edges and thus to minimize shroud segment to segment leakage. Because of the usual slot configuration, stresses are generated at relatively sharp edges. However as discussed below, current metallic materials from which the shroud segments are made can accommodate such stresses without detriment to the shroud segment. Examples of U.S. Patents relating to turbine engine shrouds and such shroud sealing include U.S. Pat. No. 3,798,899—Hill; U.S. Pat. No. 3,807,891—McDow et al.; U.S. Pat. No. 5,071,313—Nichols; U.S. Pat. No. 5,074,748—Hagle; U.S. Pat. No. 5,127,793—Walker et al.; and U.S. Pat. No. 5,562,408—Proctor et al.
Metallic type materials currently and typically used to make shrouds and shroud segments have mechanical properties including strength and ductility sufficiently high to enable the shrouds to receive and retain currently used inter-segment leaf or spline seals in slots in the shroud segments without resulting in damage to the shroud segment during engine operation. Generally such slots conveniently are manufactured to include relatively sharp corners or relatively deep recesses that can result in locations of stress concentrations, sometimes referred to as stress risers. That kind of assembly can result in the application of a substantial compressive force to the shroud segments during engine operation. If such segments are made of typical high temperature alloys currently used in gas turbine engines, the alloy structure can easily withstand and accommodate such compressive forces without damage to the segment. However, if the shroud segment is made of a low ductility, relatively brittle material, such compressive loading can result in fracture or other detrimental damage to the segment during engine operation.
Current gas turbine engine development has suggested, for use in higher temperature applications such as shroud segments and other components, certain materials having a higher temperature capability than the metallic type materials currently in use. However such materials, forms of which are referred to commercially as a ceramic matrix composite (CMC), have mechanical properties that must be considered during design and application of an article such as a shroud segment. For example, CMC type materials have relatively low tensile ductility or low strain to failure when compared with metallic materials. Therefore, if a CMC type of shroud segment is manufactured with features such as relatively sharp corners or deep recesses to receive and hold a fluid seal, such features can act as detrimental stress risers. Compressive forces developed at such stress risers in a CMC type segment can be sufficient to cause failure of the segment.
Generally, commercially available CMC materials include a ceramic type fiber for example SiC, forms of which are coated with a compliant material such as BN. The fibers are carried in a ceramic type matrix, one form of which is SiC. Typically, CMC type materials have a room temperature tensile ductility of no greater than about 1%, herein used to define and mean a low ductility material. Generally CMC type materials have a room temperature tensile ductility in the range of about 0.4-0.7%. This is compared with metallic materials currently used as shrouds, and supporting structure or hanger materials, that have a room temperature tensile ductility of at least about 5%, for example in the range of about 5-15%. Shroud segments made from CMC type materials, although having certain higher temperature capabilities than those of a metallic type material, cannot tolerate the above described and currently used type of compressive forces generated in slots or recesses for fluid seals. Therefore, a shroud segment and assembly of shroud segments configured to receive and hold an inter-segment fluid seal without generating detrimental stress can enable advantageous use of low ductility shroud segments with fluid seals retained therebetween without operating damage to the brittle segments.
The present invention, in one form, provides a shroud segment for use in a turbine engine shroud assembly comprising a plurality of circumferentially disposed shroud segments. Each segment includes a shroud segment body having a radially outer surface extending at least between a pair of first and second spaced apart, opposed outer surface edge portions, for example circumferentially and/or axially spaced apart. In a pair, at least one of the first and second outer surface edge portions of a shroud segment includes a depression portion including a depression portion seal surface, of a first shape, generally along the depression portion and joined with the shroud body radially outer surface through an arcuate transition surface.
In a circumferential assembly of shroud segments, leakage between segments and/or between axially adjacent members is avoided by a sealing combination disposed in a depression on the radially outer surface of the segments rather than in slot-type recesses in the segments. In the assembly, the first edge portion of a shroud segment is distinct from a juxtaposed adjacent second member, for example a circumferentially adjacent shroud segment, by a separation therebetween. With circumferentially adjacent shroud segments, juxtaposed depression portions of shroud segments define therebetween a substantially axially extending surface depression. Disposed in the surface depression and bridging the separation is a fluid seal member. The fluid seal member includes a seal surface of a second shape matched in shape with the first shape of the depression portion seal surface of the shroud segment, and in juxtaposition for contact respectively with he depression portion seal surface, along the separation. One form of the invention includes a seal retainer to hold the flat surfaces of the shroud segments and of the seal member in juxtaposition.
The present invention will be described in connection with an axial flow gas turbine engine for example of the general type shown and described in the above identified Proctor et al patent. Such an engine comprises a plurality of cooperating engine members and their sections in serial flow communication generally from forward to aft, including one or more compressors, a combustion section, and one or more turbine sections disposed axisymmetrically about a longitudinal engine axis. Accordingly, as used herein, phrases using the term “axially”, for example “axially forward” and “axially aft”, are general directions of relative positions in respect to the engine axis; phrases using forms of the term “circumferential” refer to circumferential disposition generally about the engine axis; and phrases using forms of the term “radial”, for example “radially inner” and “radially outer”, refer to relative radial disposition generally from the engine axis.
It has been determined to be desirable to use low ductility materials, such as the above-described CMC type materials, for selected articles or components of advanced gas turbine engines, for example non-rotating turbine shroud segments. However, because of the relative brittle nature of such materials, conventional mechanisms currently used for carrying fluid seals with metallic forms of such components cannot be used: relatively high mechanical, thermal and contact stresses can result in fracture of the brittle materials. Forms of the present invention provide article configurations and mechanisms for holding fluid seals to articles or components made of such brittle materials in a manner that avoids application of undesirable stresses to the article.
Forms of the present invention will be described in connection with an article in the form of a gas turbine engine turbine shroud segment, made of a low ductility material, and a circumferential assembly of shroud segments. Such assembly of shroud segments is disposed between generally axially adjacent engine members, for example between a turbine nozzle and an engine frame, between spaced apart turbine nozzles, etc. The fragmentary, diagrammatic perspective view of
Each shroud segment, for example 12 and 14, includes a shroud body 22 having body radially outer surface 24 and a circumferentially arcuate body radially inner surface 26 exposed to the engine flowstream during engine operation radially outwardly from rotating blades (not shown). Shroud body 22 can be supported from engine structure in a variety of ways well known and reported in the art (not shown). Each shroud segment body radially outer surface 24 extends at least between a pair of spaced apart, opposed outer surface edge portions. In
Although seal retainer 48 holds such members of the assembly in the relative position described above, during engine operation cooling air commonly is applied to shroud segment body radially outer surface 24 and about the radially outer portion of the assembly. Because the pressure of such cooling air is greater than the pressure of engine flowpath fluid at shroud segment body radially inner surface 26, such cooling air pressure loads or presses fluid seal member 44 toward shroud segments 12 and 14, and presses together substantially matched seal surfaces 40 and 46. Such action on the described assembly provides a more efficient pressure drop fluid seal between substantially matched seal surfaces 40 and 46. As was mentioned above, seal member 44 can be made of a CMC material if temperature requirements demand it. In addition, seal member 44 can be relatively flexible or deformable to allow seal member surface 46, as a result of pressure loading, to follow and match the shape of surface 40 during any thermal distortion during operation and pressure loading.
Provision of the shroud segment and assembly of fluid sealed segments, with the sealing combination disposed on radially outward surfaces of the assembly and with the above-described cooperating surface configuration that avoids generation of stress concentrations in the segment, enables practical use of shroud segments made of a low ductility material, for example a CMC. Although the present invention has been described in connection with specific examples, materials and combinations of structures and shapes, it will be understood that they are intended to be typical and representative rather than in any way limiting on the scope of the present invention. Those skilled in the various arts involved, for example relating to turbine engines, to metallic, non-metallic and composite materials, and their combinations, will understand that the invention is capable of variations and modifications without departing from the scope of the appended claims.
The Government has rights in this invention pursuant to Contract No. F33615-97-C-2778 awarded by the Department of Air Force.
Number | Name | Date | Kind |
---|---|---|---|
3798899 | Hill | Mar 1974 | A |
3807891 | McDow et al. | Apr 1974 | A |
3966353 | Booher, Jr. et al. | Jun 1976 | A |
4193738 | Landis, Jr. et al. | Mar 1980 | A |
4325647 | Maier et al. | Apr 1982 | A |
4768924 | Carrier et al. | Sep 1988 | A |
5071313 | Nichols | Dec 1991 | A |
5074748 | Hagle | Dec 1991 | A |
5127793 | Walker et al. | Jul 1992 | A |
5129783 | Hayton | Jul 1992 | A |
5387082 | Matyscak | Feb 1995 | A |
5388962 | Wygle et al. | Feb 1995 | A |
5562408 | Proctor et al. | Oct 1996 | A |
6000906 | Draskovich | Dec 1999 | A |
6113349 | Bagepalli et al. | Sep 2000 | A |
6142734 | Lee | Nov 2000 | A |
6325593 | Darkins et al. | Dec 2001 | B1 |
6412784 | Cohen | Jul 2002 | B1 |
6503051 | Predmore | Jan 2003 | B2 |
6554563 | Noe et al. | Apr 2003 | B2 |
6648597 | Widrig et al. | Nov 2003 | B1 |
20030133790 | Darkins et al. | Jul 2003 | A1 |
20030185674 | Alford et al. | Oct 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20040120808 A1 | Jun 2004 | US |