The present invention is relates to rotating blades in a turbomachine, and in particular, to a row of shrouded blades with alternate frequency mistuning for improved flutter resistance.
Turbomachines, such as gas turbine engines include multiple stages of flow directing elements along a hot gas path in a turbine section of the gas turbine engine. Each turbine stage comprises a circumferential row of stationary vanes and a circumferential row of rotating blades arranged along an axial direction of the turbine section. Each row of blades may be mounted on a respective rotor disc, with the blades extending radially outward from the rotor disc into the hot gas path. A blade includes an airfoil extending span-wise along the radial direction from a root portion to a tip of the airfoil.
Typical turbine blades at each stage are designed to be identical aerodynamically and mechanically. These identical blades are assembled together into the rotor disc to form a bladed rotor system. During engine operation, the bladed rotor system vibrates in system modes. This vibration may be more severe in large blades, such as in low pressure turbine stages. An important source of damping in the modes is from aerodynamic forces acting on the blades when the blades vibrate. Under certain conditions, the aerodynamic damping in some of the modes may become negative, which may cause the blades to flutter. When this happens, the vibratory response of the system tends to grow exponentially until the blades either reach a limit cycle or break. Even if the blades achieve a limit cycle, their amplitudes can still be large enough to cause the blades to fail from high cycle fatigue.
In order to increase the blade natural frequency and decrease the tendency of the blades to flutter, blades may be provided with tip-shrouds or snubbers. The difference between a snubber and a tip-shroud is that a tip-shroud is disposed over the tip of the airfoil, while a snubber is generally disposed away from the tip, typically attached at a mid-span of the airfoil.
However, there remains room for improvement to better address the problem of blade vibration.
Briefly, aspects of the present invention are directed to shrouded blades with alternate frequency mistuning for improved flutter resistance.
According a first aspect of the present invention, a bladed rotor system for a turbomachine is provided. The bladed rotor system comprises a circumferential row of blades mounted on a rotor disc. Each blade comprises an airfoil extending span-wise along a radial direction from a root portion to an airfoil tip, and a shroud attached to the airfoil at a span-wise height of the airfoil. In operation, shrouds of adjacent blades abut circumferentially. The row of blades comprises a first set of blades and a second set of blades. The airfoils in the first and second set of blades have substantially identical cross-sectional geometry about a rotation axis. The blades of the second set are distinguished from the blades of the first set by a geometry of the shroud that is unique to the respective set, whereby the natural frequency of a blade in the second set differs from the natural frequency of a blade in the first set by a predetermined amount. Blades of the first set and the second set alternate in a periodic fashion in said circumferential row, to provide a frequency mistuning to stabilize flutter of the blades.
According to a second aspect of the invention, a blade for a row of blades in a turbomachine is provided. The blade comprises an airfoil extending span-wise along a radial direction from a root portion to an airfoil tip, and a shroud attached to the airfoil at a span-wise height of the airfoil. The blade is designed to be identical to a first set of blades or a second set of blades in the row. The airfoils in the first and second set of blades have substantially identical cross-sectional geometry about a rotation axis. The blades of the second set are distinguished from the blades of the first set by a geometry of the shroud that is unique to the respective set, whereby the natural frequency of a blade in the second set differs from the natural frequency of a blade in the first set by a predetermined amount. Blades of the first set and the second set alternate in a periodic fashion in said circumferential row, to provide a frequency mistuning to stabilize flutter of the blades.
The invention is shown in more detail by help of figures. The figures show preferred configurations and do not limit the scope of the invention.
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration, and not by way of limitation, a specific embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and that changes may be made without departing from the spirit and scope of the present invention.
In the drawings, the direction A denotes an axial direction parallel to an axis of the turbine engine, while the directions R and C respectively denote a radial direction and a circumferential direction with respect to said axis of the turbine engine.
Illustrated embodiments of the present invention are directed to shrouded turbine blades in a turbine section of a gas turbine engine. However, the embodiments herein are merely exemplary. Alternately, for example and without limitation, aspects of the present invention may be incorporated in fan blades at the entry of a compressor section of an aviation gas turbine engine.
It has been found that alternate frequency mistuning can cause system modes to be distorted, so that that the resulting new, mistuned system modes are stable, i.e., they all have positive aerodynamic damping. It is therefore desirable to be able to design blades with a certain amount of predetermined alternate mistuning. Alternate mistuning may be implemented in blades by having the blades in the row alternate between high and low frequencies in periodic fashion in the circumferential direction. So far, alternate mistuning of blades has been implemented by modifying the mass and/or geometry of the airfoil in alternate blades in a blade row.
Embodiments of the present invention are based on the principle of modifying a geometry of the shroud for a set of blades in the blade row, so that said set of blades are mistuned, having a different frequency in relation to the rest of the blades in the blade row. In accordance with the illustrated embodiments depicted in
In the context of the specification, the term “shroud” may refer to a tip-shroud which is attached at a tip of a blade airfoil, or to a snubber which is attached at a mid-span region of a blade airfoil. A mid-span region may be understood to be any region located between the root and the tip of the airfoil. In exemplary embodiments, mid-span snubbers may be located between 40-70% of the span of the airfoil as measured from the root.
Referring now to
Each blade airfoil 16 may be twisted about its span-wise axis. During engine operation, the blades 14 rotate about a rotation axis 22, whereby centrifugal and aerodynamic forces untwist each blade airfoil 16 in the blade row so that a pressure side contact edge 42a of each tip-shroud 30a abuts a suction side contact edge 44a of a tip-shroud 30a of the neighboring blade 14 in the row, to form a continuous shroud ring. The abutting contact between neighboring tip-shrouds 30a helps to limit the untwisting of the blade and establish the blade's precise orientation during operation. The shroud ring provides a constraint that causes the frequencies of the blades to increase, which decreases the tendency of the blades to flutter.
In accordance with the illustrated embodiment, a geometry of the tip-shroud 30a may be modified for a set of blades in the blade row, so that said set of blades are mistuned, having a different frequency in relation to the rest of the blades in the blade row.
In accordance with an alternate embodiment of the invention, a geometry of a mid-span shroud or snubber 30b may be modified for a set of blades in the blade row, so that said set of blades are mistuned, having a different frequency in relation to the rest of the blades in the row. The frequency of a snubbered blade may be affected by the mean radial thickness of the snubber and/or the location of the snubber along the span of the airfoil. Consequently, the thickness and/or the span-wise location of the snubber may be modified to change the frequency of the blades.
As an example, to effectively stabilize flutter, the shroud geometries may be modified to achieve a mistuning of about 1.5-2% above manufacturing tolerances.
As illustrated above, the cross-sectional geometry of the airfoils about the rotation axis are essentially the same for both the high-frequency blades H and the low frequency blades L. The only difference between the airfoils in the high-frequency blades H and those in the low frequency blades L is the radial length of the airfoils, which is slightly longer for the low frequency (mistuned) blades L. This makes it easier to design the airfoil to have optimum aerodynamic efficiency since a uniform airfoil geometry has to be considered. Moreover, the illustrated embodiments make it possible to employ alternate mistuning for blades with hollow airfoils, for example, containing internal cooling channels. The design of hollow airfoils is more constrained than the design of solid airfoils. The use of mistuned tip-shrouds and snubbers provide a possibility for implementing alternate mistuning for such hollow blades without compromising the aero-efficiency.
While specific embodiments have been described in detail, those with ordinary skill in the art will appreciate that various modifications and alternative to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention, which is to be given the full breadth of the appended claims, and any and all equivalents thereof.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/019686 | 2/26/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/169665 | 9/20/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1639247 | Zoelly et al. | Aug 1927 | A |
3588278 | Ortolano | Jun 1971 | A |
5511948 | Suzuki | Apr 1996 | A |
5667361 | Yaeger et al. | Sep 1997 | A |
20110274549 | Krikunov | Nov 2011 | A1 |
20130089424 | Frischbier | Apr 2013 | A1 |
20140072432 | Woehler et al. | Mar 2014 | A1 |
20140348657 | Stiehler | Nov 2014 | A1 |
20150089809 | Guo et al. | Apr 2015 | A1 |
20151076413 | Weber et al. | Jun 2015 | |
20170058681 | Martin, Jr. et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
104727858 | Jun 2015 | CN |
1881163 | Jan 2008 | EP |
2015068342 | Apr 2015 | JP |
Entry |
---|
PCT International Search Report and Written Opinion dated May 4, 2018 corresponding to PCT Application No. PCT/US2018/019686 filed Feb. 26, 2018. |
Number | Date | Country | |
---|---|---|---|
20200032658 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62470471 | Mar 2017 | US |