The present invention relates generally to the field of plasma processing of materials, and more particularly to the plasma spraying of protective coatings on bulk materials.
Known plasma-spray systems typically use an aggregated powder as feed material, and adjust plasma-spray parameters to induce a high degree of melting of the particles, so that splat-quenching is an important mechanism of coating formation. Because of the rapid solidification experienced by the splat-quenched particles, a significant fraction of the spray-deposited material has a far-from-equilibrium or metastable structure. Such an effect exerts an important influence on the properties of the coating material.
A known plasma-spray method for making a metastable ceramic powder or deposit by a feed-particle melting and quenching (melt-quenching) treatment, uses a radially-fed DC arc-plasma system 1 as shown in
The use of aerosols as feed materials in plasma spraying is known in the art for the fabrication of nanostructured coatings, utilizing aerosol-solution precursors as feed materials. In all such cases, however, no attempt is made to obtain a completely uniform coating structure, nor is this possible by injecting an aerosol feed stream into a conventional non-shrouded plasma flame.
An object of the invention is to provide an improved process for producing metastable nanostructured material.
Another object of the invention is to provide an improved apparatus for the production of metastable nanostructured materials.
Yet another object of the invention is to provide an improved process and apparatus for the production of metastable nanostructured powders, deposits, or preforms.
These and other objects of the invention are provided by a shrouded-plasma apparatus and process for the production of metastable nanostructured powders, deposits or preforms. The apparatus includes a high enthalpy arc-plasma torch as a heat source to provide a plasma flame, and a solution precursor, slurry or aggregated powder as feed material. In one embodiment, an aerosol- or liquid-jet of solution precursor is delivered to a steady-state reaction zone within the shrouded-plasma flame, where rapid and controlled precursor decomposition occurs. The plasma flame is wholly surrounded by a ceramic shroud. Depending on the operating conditions, the precursor material is pyrolyzed, melted or vaporized, prior to quenching to form a metastable nano-sized powder, typically with an amorphous or short-range ordered structure. In another embodiment, an aggregated powder is delivered to the reaction zone, where the particles are melted and homogenized, prior to quenching to form a metastable micron-sized powder, typically with a metastable crystalline structure. In general, for subsequent powder consolidation purposes, a completely homogeneous precursor powder is preferred, since its decomposition during sintering yields a completely uniform nanocrystalline (one phase) or nanocomposite (two or more phases) product. Such metastable powders can be processed into nanostructured coatings by thermal spraying, films by tape casting, spin coating, dip coating and other known methods and bulk materials by pressure-assisted sintering.
The present invention efficiently processes metastable material, utilizing the aforesaid solution precursor, slurry or aggregated powder as feed material. As will be shown, the effect of processing a solution precursor, preferably in the form of a fine-particle aerosol (typically 0.1-50 μm particle size), is to generate a metastable nano-sized powder, whereas the effect of processing an aggregated powder (typically 10-200 μm particle size) is to generate a metastable micron-sized powder. The present process and apparatus can produce a metastable oxide-ceramic powder suitable for subsequent processing into a bulk nanocomposite ceramic (NCC) by a pressure-assisted sintering method. The processing takes advantage of pressure-induced metastable-to-stable phase transformation during sintering to mitigate grain coarsening. The present invention can also be used to produce a nanostructured WC/Co powder, since it provides a more direct and cost-effective route for its production, relative to today's processing technology.
The present “shrouded-plasma process” for ensuring the complete conversion of a solution precursor or an aggregated powder into a homogeneous metastable powder, deposit, or preform, represents a significant departure from the prior art. As will be shown, the method is capable of processing a host of metastable materials, including the difficult-to-process refractory metals, oxide and non-oxide ceramics, as well as their composites.
The various embodiments of the present invention are described with reference to the drawings in which like items are identified by the same reference designation, wherein:
In
By shrouding the plasma flame 4 in a heat-resistant ceramic tube 12, the radiant energy normally released to the surroundings by the plasma flame 4 is now captured by the ceramic tube 12, which is rapidly heated to a very high temperature. Another important role of the shroud 12 is to prevent the gas 14 outside the tube from mixing with the plasma flame 4, to prevent cooling of the reaction zone 9. Since the exterior 13 of the tube 12 is cooled with a flowing gas 14 or liquid, a uniform temperature gradient is established through the tube wall. In effect, therefore, the system is transformed into a “hot-wall reactor”, where a very high inner-wall 11 temperature is sustained by intense radiation from the plasma flame 4. Utilizing the high enthalpy within the plasma flame 4 itself and the radiant energy from the reactor wall 11, rapid and efficient metastable processing of any feed material can be achieved.
An important feature of this so-called “radiantly-coupled plasma” (RCP) process is the rapid heating of the tubular shroud 12 by the plasma flame 4 itself, such that a very high inner-wall 11 temperature is quickly attained and sustained. In another embodiment, using graphitic carbon as a shroud 12 material, rather than ceramic material, the maximum allowable surface temperature in an inert environment is ≈3500° C. The temperature gradient in the tube may be controlled by wrapping the shroud with graphite felt in order to insulate the graphite. When oxygen is present in the system, the carbon shroud 12 must be protected from oxidation. This can be accomplished by applying a thin layer of silicon (Si) powder to the interior wall 11 of the graphite tube providing shroud 12, and then reacting the materials at very high temperatures to form a thin coating of oxidation-resistant silicon carbide (SiC). Other options for shroud 12 material include high melting point oxide-ceramics, such as yttria-stabilized zirconia (YSZ), or refractory metals, such as tungsten (W); the latter being passivated with a silicide coating to resist oxidation. An inert-gas shield to prevent over-heating of the inner wall 11 of the shroud 12 material may also be used. In general, a passivated-graphite shroud 12 is preferred in view of its being low cost, easy to machine, heat resistant, and thermally stable.
For most applications, an aerosol- or liquid-jet of solution precursor is preferred as feed material 7, 16, because of the relatively low cost of the starting material, the flexibility afforded in control of the precursor composition, and the ease with which it can be processed into a metastable nano-sized powder or deposit 6. Typically, the solution precursor comprises an aqueous or organic solution of mixed salts, including nitrates, chlorides, acetates, oxalates, phosphates and sulfates. However, when metastable materials of exceptionally high purity are required, then semiconductor-grade metalorganic (organometallic) precursor materials are substituted. When commercially available, a conventional aggregated powder can be used as feed material 7. If not available, it can readily be produced by spray drying a fine-particle slurry of the constituent phases.
The effect of plasma processing an aggregated feed powder is to generate a metastable micron-sized powder 6, in contrast to the nanosized powder formed by plasma processing an aerosol-solution precursor. Both types of metastable powder 6 have their applications, with the choice for a particular application being determined largely by the requirements with respect to particle size, quality and cost. In some specialty applications, there may be a need for a metastable powder 6 that contains a uniform dispersion of second-phase particles. Such a material is produced by processing a slurry that contains a high fraction of the dispersed phase in a solution precursor.
In most applications, to derive the full benefit from a “radiantly-coupled plasma” (RCP) processed metastable nanopowder, then additional processing steps are necessary. For example, for a thermal spray coating application, a slurry of as-synthesized nanoparticles is first spray dried to form an aggregated powder and then heat-treated to impart some structural strength—otherwise particle disintegration occurs during spraying. Since such heat-treated powder 6 flows readily and packs uniformly when poured into a mold or container, it makes a useful material for hot-pressing applications. In fact, this is the methodology that has been adopted for the production of pore-free bulk nanocomposite ceramics for a host of structural and functional applications.
For those skilled in the art, it will be recognized that alternative plasma systems, such as an inductively-coupled or radio frequency (RF) plasma, transferred-arc plasma or carbon-arc plasma, can all be used to process metastable materials, without departing from the spirit of this invention. In particular, we note that a typical RF plasma system incorporates a ceramic shroud 12, so that it is well-suited for the processing of metastable materials. A shortcoming of the technology, however, is the high capital cost of the equipment, and its relatively low energy conversion efficiency, relative to that of a conventional DC arc-plasma system. Again, an RF plasma system operates in a reduced pressure environment, thus requiring a high vacuum system. Such is not the case for the present RCP process, which operates efficiently under ambient pressure conditions.
By controlling the motion of the substrate 28 relative to that of the shrouded-plasma torch or torches 2, then a uniform coating can be deposited on a shaped substrate or mandrel, as is common practice in the coatings industry. For example, such an arrangement is used for coating turbine blades by electron-beam physical vapor deposition (EB-PVD). The present technology provides an important benefit in such a coating treatment, in that deposition rates are much higher. This is because the coating is formed by in situ sintering of pre-existing nanoparticles, rather than by vapor transport and deposition of the constituent species.
When better control of the gaseous environment in RCP processing is needed, then the entire system is enclosed in a water-cooled stainless-steel chamber 30. This is illustrated for three distinct operational modes in
Because of the large size of the chamber 30 relative to that of the shrouded reactor, various mechanical devices can be incorporated in the chamber 30 to achieve controlled deposition on a substrate or shaped mandrel.
Important variables in RCP processing include: aerosol composition, particle size, flow rate and carrier gas; plasma power, gas composition and flow rate; design of tubular shroud 12 and aerosol-precursor delivery system; and stand-off distance between shroud 12 and quenching bath 8 or substrate 18, 28. All these variables must be taken into account when devising an optimal procedure for the production of a specific metastable powder with control of nanoparticle size, distribution and morphology, or a specific metastable deposit with a porous or dense structure.
Recent tests have shown that the aerosol-precursor feed rate is a critical variable. This is because a low feed rate barely affects the high enthalpy of the plasma flame 4, so that vaporization of all the precursor constituents occurs. Metastable nanoparticles 6 are generated when the very hot gas stream is rapidly quenched in cold water 8 or on a chilled substrate 18. Typically, the resulting nanoparticles 6 have amorphous or short-range ordered structures. However, production rates are not particularly high. This is also the case when the feed rate is adjusted to give particle melting but not vaporization, in which case the metastable powder is generated by rapid solidification. In contrast, when the feed rate is high, the effect is to “cool” the plasma, so that varying degrees of precursor pyrolysis can be achieved. The resulting pyrolyzed powder product usually has an amorphous or partially crystallized structure. Since the available plasma energy is used most efficiently in pyrolyzing the aerosol-solution precursor, and little or no energy is expended in its melting or vaporization, this particular operational mode of the plasma reactor may be preferred for the high rate production of metastable powders or deposits 26. However, we note that the nanostructured powders derived from melt-quenching and vapor-condensation methods tend to be of higher purity, because of the more efficient removal of residual precursor constituents during plasma processing. Such powders may, for example, be used directly as dispersants in polymeric hosts, without the need for an additional heat treatment.
The formation of an amorphous powder by plasma pyrolysis of a solution precursor is a common phenomenon. Notably, an amorphous powder can be obtained even for compositions that are not ordinarily susceptible to amorphization by melt-quenching or vapor-condensation methods. A contributing factor may be retention of solution precursor decomposition products in the rapidly-quenched powder, which would tend to inhibit crystallization. In any event, post-annealing of the incompletely pyrolyzed powder in a flowing gas stream eliminates any retained precursor components. This can be done by heating the powder at low temperatures, such that the amorphous structure remains largely unaffected. On the other hand, if a powder with a crystalline structure is desired, then heat treatment at a higher temperature can be used to induce devitrification (crystallization) of the amorphous material—the lower the annealing temperature the smaller the resulting grain or particle size. Thus, by proper choice of heat treatment, effective control of grain or particle size from nano- to micro-scale dimensions can be achieved.
As-synthesized RCP-derived material typically has a homogeneous metastable structure, which may take the form of an extended solid solution phase, a metastable intermediate phase, or a non-crystalline (amorphous) phase. This is significant, since subsequent post-annealing to induce a metastable-to-stable phase transformation necessarily generates a completely uniform nanocrystalline (one phase) or nanocomposite (two or more phases) structure, depending on the initial composition.
When a metastable multi-component ceramic is post-annealed, the final result depends on the selected temperature. If the selected temperature is just sufficient to cause diffusion, then phase decomposition tends to follow a path through a series of metastable intermediate states, prior to the formation of the final equilibrium state. For example,
Investigation on the consolidation of a melt-quenched metastable ceramic powder has demonstrated that the initiation of a metastable-to-stable phase decomposition during sintering has the effect of promoting densification at relatively low temperatures. The effect is particularly striking during pressure-assisted sintering of a powder compact at a temperature where the material is just beginning to decompose, since the material also displays superplasticity. The effect not only enhances sinterability, but also enables the resulting nanocomposite body to be superplastically formed into any desired shape or form.
Over the past two years, we have investigated various designs of shrouded-plasma reactors, in which a high enthalpy plasma acts as heat source and a powder, slurry or aerosol serves as feed material. Since a powder injection unit is an integral part of many of today's commercial plasma spray systems, the attachment of a heat-resistant shroud 12 to the plasma torch 2 is all that is needed to ensure complete melt-homogenization of all the feed particles in a single pass through the reactor, prior to water-quenching to obtain a uniform metastable powder product. This has proved to be the case, irrespective of the type of radial or axial powder delivery unit used in conjunction with the shrouded-plasma reactor (see
In systems designed for use of an aerosol feed, controlled injection of the feed material directly into the plasma flame 4 is a challenge, since varying pressures and temperatures exist within the tubular reactor. Moreover, the aerosol particles must remain in the hot zone (reaction zone 9) for a sufficient time (residence time) to complete the desired thermo-chemical reactions, since otherwise a heterogeneous powder product is obtained. In practice, this is best accomplished by injecting the aerosol precursor directly into the reaction zone 9 in the form of three symmetrical feed streams, using conventional pressure- or ultrasonic atomizers. For the high rate production of a metastable powder or deposit, the pressure-atomization method is preferred. On the other hand, for the low rate deposition of a metastable thin film, the ultrasonic-atomization method is favored. In both cases, precise convergence of the three aerosol jet streams within the plasma-reaction zone 9, as shown in
A schematic of the basic design of a shrouded-plasma reactor is shown in
Two reactors have been built and tested. In the first design, a massive water-cooled copper block contains a heat-resistant graphite or ceramic liner. As discussed earlier, the heat-resistant shroud 12 serves to restrict the flow of the plasma gas stream, such that its inner surface is rapidly heated up to a very high temperature. In effect, the system is transformed into a super hot-wall reactor, where rapid conversion of the feed material occurs. In some situations, when the precursor material is vaporized, a supersonic nozzle 24 attached to the lower end of the modular reactor serves to induce prolific nucleation of nanoparticles 6 in the adiabatic cooling zone near the nozzle exit. A similar gas-quenching/nanoparticle-nucleation effect can also be achieved by directing the hot gas stream onto a chill plate 18. In the second design, the tubular graphite reactor is supported inside a stainless-steel chamber 30 that is partially submerged in the water bath 8,
Recently, a more versatile shrouded-plasma reactor has been developed for dry-processing of nanopowders. In effect, all the experience gained from the prior work has been incorporated into this new design, plus provision for external collection of the nanopowders on a stacked array of metal chill plates, where nanoparticle deposition occurs by a thermophoretic mechanism. This provides an opportunity for the large-scale deposition, in which the metallic collection plates are made of Fe-, Ti- or Ni-base alloys. These plates, which have been coated with metastable ceramic nanopowders, can be integrally-bonded upon subsequent consolidation by hot isostatic pressing, thus providing laminated metal-ceramic composite plates.
To achieve a much higher inner-wall temperature in the inner tubular reactor, the outside of the graphite shroud 12 (see
As indicated in
As described in detail above, there are several parameters controlling the particle size of the as-produced nanopowders. These include plasma torch 2 power and gas phase composition, precursor feed rate and spray quality, and location and efficiency of the quenching medium. For example, using a low precursor flow rate, most of the precursor material is completely vaporized, which leads to a supersaturated environment where prolific nucleation of nanoparticles occurs. On the other hand, when the precursor flow rate is higher, the particle size is much larger. By making further adjustments to the processing parameters, it may be possible to obtain micron-sized spherical particles, which are inaccessible to other known powder processing methods, such as spray drying and spray pyrolysis. Dense spherically-shaped particles display excellent flowability, which is a prerequisite for conventional powder consolidation practices. In particular, it eliminates the need for ball milling and other size-reduction technologies.
A wide range of structural and functional applications have been identified for RCP-processed materials. Amongst the most promising are electrical switching gear (Cu—W), welding electrodes (Cu—Al2O3), ceramic armor (B4C or composite ceramics such as Al2O3—MgAl2O4), machine tools (Co—WC), protective coatings (Th:YSZ), surgical scalpels (ZrO2—Al2O3), optical amplifiers (Er/Y:SiO2), lasers (Nd:YAG), IR windows (MgO:Y2O3), ferroelectrics (BaTiO3), magnetics (MnFe2O4), superconductors (YBa2Cu3O7-x), fuel-cell electrodes (Sc:YSZ), battery electrodes ((Li,Fe)PO4), and aerospace structures (C/C nanocomposites).
The versatility and applicability of this invention will become more apparent when the following examples are considered.
Synthesis of YAG powder—A starting solution was prepared by dissolving 139 g of yttrium nitrate (Y(NO3)3.xH2O)+316 g of aluminum nitrate (Al(NO3)3.9H2O) in 500 ml of deionized water. The solution was fed at a rate of 15 cc/min to an atomizer, using a peristaltic pump. Atomization was achieved by forcing the liquid under a pressure through a rectangular nozzle (0.5 mm×1.0 mm). Argon at a pressure of 10 psi was used as atomizing gas, and mixing of the solution and argon to form an aerosol was achieved inside the nozzle.
A Sulzer-Metco 9 MB plasma torch 2, operating with a Ar-10% H2 gas mixture, was used to obtain 30 kW power. A water-cooled copper shroud, attached to the plasma torch, and cooled internally with flowing argon at a pressure of 60 psi, was used as a particle reactor. The aerosol was delivered to the plasma in the manner depicted in
Influence of precursor concentration and flow rate—Starting solutions were prepared and processed, as in Example 1, but using different precursor concentrations and flow rates. Using a high precursor concentration and flow rate,
Synthesis of BN powder—A starting solution was prepared by dissolving 150 g of H3BO3 or B2O3.3H2O in 300 ml of methyl alcohol (CH3OH). The material was atomized, as in Example 1, using N2 as atomizing gas. An N2-10% H2 mixture was used as plasma gas, giving 50 kW power output. Nitrogen at a pressure of 60 psi was used as cooling gas in the water-cooled copper shroud.
An X-ray diffraction pattern of the as-synthesized powder 6 is shown in
Synthesis of NiAl2O4 spinel—A starting solution was prepared by dissolving 82.3 g of nickel nitrate (Ni(NO3)2.6H2O)+213 g of aluminum nitrate (Al(NO3)3.9H2O) in deionized water. The material was atomized, as in Example 1, using argon as atomizing gas. An Ar-10% H2 mixture was used as plasma gas, giving 40 kW power output. Argon at a pressure of 60 psi was used as an internal cooling gas in the water-cooled copper shroud.
Synthesis of Cu—Al2O3—A starting solution was prepared by dissolving 253 g of cupric nitrate (Cu(NO3)3.2.5H2O)+228 g of aluminum nitrate (Al(NO3)3.9H2O) in 500 ml of deionized water. The material was atomized, as in Example 1, using argon as atomizing gas. An Ar-10% H2 mixture was used as plasma gas, giving 20 kW power output. Argon at a pressure of 60 psi was used as an internal cooling gas in the water-cooled copper shroud.
X-ray diffraction analysis showed that the as-synthesized powder had an amorphous-like structure. Heat treatment in flowing H2 at 400° C. for two hours gave a mixture of Cu+Al2O3 nanophases.
Synthesis of Cu—W—A starting solution was prepared by dissolving 116 g of cupric nitrate (Cu(NO3)3.2.5H2O)+94 g of anunonium metatungstate (NH4)6H2W12O40.4H2O) in 500 ml of deionized water. The material was atomized, as in Example 1, using argon as atomizing gas. An Ar-10% H2 mixture was used as plasma gas, giving 40 kW power output. Argon at a pressure of 60 psi was used as an internal cooling gas in the water-cooled copper shroud.
X-ray diffraction analysis showed that the as-synthesized powder had an amorphous-like structure. Heat treatment in flowing H2 at 700° C. gave a 50:50 mixture of Cu+W nanophases.
Synthesis of WC-8Co—A starting solution was prepared by dissolving 33.8 g of cobalt acetate (Co(CH3COO)2.4H2O)+119 g of ammonium metatungstate (NH4)6H2W12O404H2O)+sucrose (C12H22O11) in 500 ml of deionized water. The material was atomized, as in Example 1, using argon as atomizing gas. An Ar-10% H2 mixture was used as plasma gas, giving 30 kW power output. Argon at a pressure of 60 psi was used as an internal cooling gas in the water-cooled copper shroud.
X-ray diffraction analysis showed that the as-synthesized powder had an amorphous-like structure. Heat treatment at 800° C. in flowing H2, followed by CO/CO2 (ac=0.9) gave a mixture of WC+Co nanophases.
Synthesis of LiFePO4—A starting solution was prepared by dissolving 174 g of iron acetate (Fe(CH3COO)2)+34 g of lithium acetate (Li(CH3COO).2H2O)+ammonium phosphate (NH4H2PO4) in 500 ml of deionized water. The material was atomized, as in Example 1, using argon as atomizing gas. An Ar-10% H2 mixture was used as plasma gas, giving 30 kW power output. Argon at a pressure of 60 psi was used as an internal cooling gas in the water-cooled copper shroud.
X-ray diffraction analysis showed that the as-synthesized powder had an amorphous-like structure. Heat treatment in flowing CO/CO2 (ac=1.0). gave a mixture of C+LiFePO4 nanophases.
Synthesis of SiO2-8Y2O3-2Er2O3—A starting solution was prepared by dissolving 208 g of tetraethoxysilane (TEOS) in an equal volume of water and ethyl alcohol (C2H5OH) to induce hydrolysis+HCl as catalyst, and then mixed with an aqueous solution of 382 g of yttrium nitrate (Y(NO3)3.xH2O+345 g of erbium acetate (Er(CH3COO).2H2O) to form a clear pink solution. The material was atomized, as in Example 1, using argon as atomizing gas. An Ar-10% H2 mixture was used as plasma gas, giving 30 kW power output. Argon at a pressure of 60 psi was used as an internal cooling gas in the water-cooled copper shroud.
X-ray diffraction analysis showed that the as-synthesized powder 6 had an amorphous or glassy structure. Partial devitrification of the glassy material at ˜1000° C. gave a uniform nano-dispersion of a metastable silicate phase (monoclinic structure) in a residual glassy SiO2 matrix, whereas complete devitrification at 1400° C. gave a uniform nano-dispersion of an equilibrium silicate phase (pyrochlore structure) in a crystobalite SiO2 matrix. The corresponding fluorescence emissions showed a broad and flat spectral emission for the partially-devitrified material and a deconvoluted spectral emission, with several prominent peaks, for the completely devitrified material.
Synthesis of Indium-doped YSZ—An initial experiment was conducted on the synthesis of ZrO2-8 mol % Y2O3, which is a fuel cell electrolyte material, starting with aqueous solutions of zirconium chloride octahydrate and yttrium nitrate hexahydrate salts. The solution was aerosolyzed and sprayed into the plasma and the powder collected in water. The plasma gun was operated at 35 kW and the solution was sprayed at 10 cc/min. The collected powder was allowed to settle, excess water was drained off, and the remainder was degassed by heating in an oven at 400° C.
A second experiment was performed to determine if the base material could be doped with indium (In) to increase oxygen-ion mobility. Indium nitrate was added to the base solution to obtain a concentration of 1 mol % In. An addition of scandium (Sc) was also considered, but deferred because of the high cost of the salt precursor material. Additions of In or Sc to YSZ should have similar effects on oxygen-ion mobility.
XRD analysis showed that nanoparticles of cubic-YSZ and In-doped cubic-YSZ were synthesized,
Synthesis of ITO—A starting solution was prepared by dissolving indium nitrate and tin acetate in de-ionized water. Two compositions with 5 wt % and 10 wt % tin were made. The solutions were aerosolyzed and sprayed into the plasma 4 and the powder 6 collected in water 8. The plasma torch 2 was operated at 35 kW using pure Ar or Ar-10% H2 as the ionizing gas. The precursor solutions 7 were sprayed at 10 cc/min. The collected powder 6 was allowed to settle, excess water 8 was drained off, and the remainder was degassed by heating in an oven at 500° C.
XRD analysis showed that the powder 6 comprised a mixture of carbon, indium oxide and indium hydroxide. The XRD spectra of In2O3-5% SnO3 as synthesized powders 6 in Ar plasma is shown in
Although various embodiments of the invention have been shown and described, they are not meant to be limiting. Those of skill in the art may recognize certain modifications to these embodiments, which modifications are meant to be covered by the spirit and scope of the appended claims.
This application is a Continuation-In-Part of U.S. patent application Ser. No. 11/259,299, filed on Oct. 26, 2005, co-pending herewith, which application is a Division of Ser. No. 10/049,709, filed Jul. 16, 2002, which is a 371 of PCT/US00/22811 filed Aug. 18, 2000, which claims the benefit of Provisional Ser. No. 60/149,539 filed Aug. 18, 1999.
The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of Grant Number N00014-01-1-0079 awarded by the Office of Naval Research.
Number | Date | Country | |
---|---|---|---|
60149539 | Aug 1999 | US | |
60670675 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10049709 | Jul 2002 | US |
Child | 11259299 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11360226 | Feb 2006 | US |
Child | 13413305 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11259299 | Oct 2005 | US |
Child | 11360226 | US |