The present invention relates to card shufflers, particularly playing card shufflers, and the detection of jamming or erroneous mechanical performance in the operation of the shuffler.
Examples of shuffling devices for playing cards, particularly for use in casinos are described in U.S. Pat. Nos. 4,659,082; 6,659,460; 6,655,684; 6,651,982; 6,651,981; 6,588,751; 6,588,750; 6,568,678; 6,325,373; 6,267,248; 6,254,096; 6,149,154; 6,139,014; 6,068,258; 5,989,122; 5,695,189; 5,676,372; 5,584,483; 5,382,024; 4,832,342; and 4,586,712. In these known shuffling apparatuses, various different formats of randomizing cards are performed. In U.S. Pat. No. 4,659,082, the shuffling vessel is formed by a horizontally arranged drivable drum that is provided with radially extending shafts, each for receiving a card. An input station for receiving a stack of discarded playing cards is provided through which the individual shafts of the drum are supplied. The storage container for the shuffled cards is supplied by the drum. Following the activation of a card ejector, the individual cards are randomly pushed into the storage container. A similar card shuffler has become known from U.S. Pat. No. 4,586,712 in which the drum is vertical.
A high degree of shuffling is achieved with such card shufflers. The predictability of the card sequence in the shuffled card stack is difficult or virtually impossible for a third party even in the case of using electronic aids. In these known shufflers, there can be card storage means for individually retrieving the shuffled cards. This individual card movement requires significant control and may lead to certain disadvantages. For example, certain card shufflers may only be used for certain games, but not for such games where a removal in stacks of the shuffled cards is provided.
A card-shuffling apparatus with an output apparatus for retrieving cards is described in U.S. Pat. No. 5,683,085 that by way of a respective activation can be supplied from the shuffling storage means, not only with individual cards, but also with several cards, so that an entire stack of cards can be taken from the output apparatus.
U.S. Pat. No. 5,989,122 teaches a card-shuffling apparatus that also conveys entire playing card stacks to an intended output apparatus.
U.S. Pat. No. 5,303,921 teaches a floating jammed shuffle detector for use in a card-shuffling machine. The detector has a body with a card-contacting portion and a sensor interactive portion. A detector housing and a photosensor are provided. The sensor interactive portion has an aperture of a predetermined size. The detector, particularly the body, is reciprocally mounted in the housing, whereby the card-contacting portion of the detector contacts the uppermost card of a deck of cards and the sensor interactive portion is received in the photosensor. Depending on the sensed position of the card-contacting portion of the detector, the machine receives a “reshuffle” or “proceed” command. U.S. Pat. Nos. 6,068,258 and 5,695,189 also have disclosures on card jam detection and recovery.
U.S. Pat. No. 6,139,014 discloses a recovery method for recovering from a card jam in an apparatus for automatically shuffling cards, the apparatus including a card mover for moving the cards and sensors for monitoring movement of the cards wherein, during normal movement, the cards are moved substantially one at a time and the sensors are alternately blocked and unblocked. The recovery method comprises the steps of: sensing a prolonged blocked state, thereby indicating that the card jam has occurred; altering the normal movement of the cards; sensing an end of the prolonged blocked state; and resuming the normal movement of the cards.
U.S. Pat. No. 6,325,373 teaches a card shuffler comprising: a card-moving mechanism; a microprocessor for controlling operation of the card shuffler, including the card-moving mechanism; memory; a program stored in memory for controlling the card-moving mechanism; at least one detector for detecting the presence of a card jam; in response to detecting the presence of a card jam, the program automatically attempts to recover from the jam; and a multi-segment display for displaying the occurrence of a card jam.
The differentiation as to whether or not entire stacks of cards or merely individual cards are conveyed to the output apparatus is solved in U.S. Pat. Nos. 5,683,085 and 5,989,122 by electronic means. The output apparatuses per se remain the same and are therefore not believed to be adaptable to the different card games.
Deficiencies in shuffler operation, including card jams can be electrically or electronically identified. Various physical events such as angular speed or linear speed of shuffler components (e.g., shafts, rollers, pushers, grips, elevators, etc.) can be determined in absolute or relative terms of speed. Threshold speeds, absolute speeds or relative changes in speed can be indicators of jamming or other performance deficiencies that indicate substandard performance. These indicators can be used to provide notice to an operator that such a deficiency is occurring and that it should be addressed.
In normal operation of a shuffling device, there are moving parts that operate to receive, move, orient, load, unload, insert, raise, or lower a single card, group of cards, or complete sets (e.g., decks) of cards. There are a number of reasons why these moving parts may change their quality of movement during a shuffling procedure. In addition to normal wear and deterioration of components, card jams can occur, even with the best designed and engineered products. As significant portions of the shuffling process and the shuffling operation may be hidden from view, there is not necessarily any visual indication that shuffling is not properly proceeding. Waiting until well past an expected end of the shuffling process to find that cards or hands of cards are not being delivered is both an inefficient way of determining shuffling status, and could lead to damage of the equipment if a non-functional shuffling process is stressing parts and components in the shuffler. In addition, failing to realize a shuffle did not take place can result in a loss of revenue to the casino.
Some previous jam detection systems have evaluated blocking and unblocking of sensors within a shuffler to determine that cards are present or are not present at appropriate times in a shuffling process. This has proved to be a good method for detecting certain forms of card jams, but alternative methods are possible. It is even possible with some alternative detection methods, which are included and described herein, to be able to anticipate potential apparatus breakdown and upcoming component problems with a jam detection system.
The herein described technology for determining card jams may be used with any of the various structures of shuffler and with any format of shuffling, as will later become apparent. All of the patent references noted above are incorporated herein by reference to enable manufacture of the underlying shuffler structures that can be used in combination with a jam detector and jam detection methodology described herein. The proposed measures of jam detection are therefore compatible with any shuffler that has moving parts, including but not limited to a) modular arrangements of the card shuffler, with an exchange of the card storage means for the shuffled cards being possible in a simple way; b) carousel shufflers; c) vertical or linear stacked arrays of mixing compartments, d) ejection shufflers; e) riffle shufflers; grip and lift insertion shufflers; and the like, as described in publicly available literature including but not limited to the references cited above.
An underlying aspect of the described detection technology is that moving parts within the shuffling system are expected to move at steady, consistent and/or repetitive rates at different stages of the shuffling operation. By observing, detecting, noting and/or measuring movement, acceleration or speed of movement, performance of individual sections, parts or components of the shuffler can be monitored from moment to moment or at specified time intervals or times during the shuffling operation. By having detection systems at significant or even all moving parts in the shuffler, specific locations of potential jams or adverse shuffling issues can be located and notice can be sent to a processor and/or display system on the shuffler or at a distal location (e.g., to a technician location or pit crew).
There are numerous different ways in which operation variation of moving elements can be observed in an effort to detect deficiencies. In addition to observing complete lack of movement of a specific component, delayed movement, erratic movement, varied acceleration, changing movement (within a single operation or over time), incomplete movement, and the like can be observed. The indications of what will be generically referred to as “speed” (which will be inclusive by definition of linear speed, angular speed, acceleration, start and stop movement, time of movement, and consistency of movement) can be provided by many different methodologies. These methods include, but are not limited to measurement of power utilization by specific components, measurement of torque applied to elements, measurement of forces applied to individual elements, electronically or electromechanically observed/detected/measured speed of elements, magnetically detected flux alterations from moving parts, optically (electro-optically) observed/detected/measured speeds and the like. Descriptions of these forms of detection are provided herein.
When specific components are operating improperly, as when cards are jammed into a specific roller pair, or when cards are not present in a roller pair when they are intended to be present during shuffling, local power consumption of the motor driving the rollers will be different than expected. By measuring power consumption of specific areas of the shuffler, jam detection can be effected by measuring/observing/noting specific levels of change in local power consumption within the shuffler. Where reduced power consumption is observed, it is likely that cards have not been fed to that location. Where a predetermined degree of increased power consumption is noted, it is likely that one or more cards are jammed at that location, and that the local element is expending excess power in attempting to move the card or cards.
Similarly, measurement of torque or available force in the movement of moving parts (rotating elements and linear moving elements, respectively, for example) can be used to detect/observe/measure for the occurrence of card jamming in the shuffler. When a component (e.g., a card pusher or a set of rollers) is operating properly, it has a power capability that can be measured. For example, by providing a belt to a roller, the force applied by the roller (or shaft driving the roller) can be measured. That force is expected to be a measurable amount when the component is moving cards and when it is not moving cards (either in a free-rolling mode or when moving prior to receiving a card). By measuring the torque on the shaft, it can be determined if there is a variation in the amount of available torque that can be explained by a card jam or lack of card feed to that component.
Similar to measurement of torque in rotational movement of parts, linear movement of elements (such as a card pusher or gripping element) is expected to be able to provide force in a measurable range. If a spring or other tension element is present which can be used to measure or observe specific linear forces and provide a signal indicative of that force, the occurrence of events that alter the expected force can be observed and detected, such as where a card jam is preventing proper or complete movement of the element or where the absence of a card allows that element to provide greater force than expected.
Electronically or electromechanically observed/detected/measured speed of elements can be provided with any system that actually measures the linear or angular speed of a component, as with a speedometer, an odometer and timing component, distance measuring element without associated time component, and the like associated with specific elements. For example, distance alone can be an effective indication of a jam where a particular element is known to have to traverse a specific distance to effect its function (e.g., a card pusher or hand pusher must move exactly 10 centimeters to unload cards or hands). If the element is found to be moving less than its required distance, there can be an assumption that its movement is being blocked (as with a card jam). Therefore, upon each operation of that element the distance it traverses is measured, and where the measured distance is insufficient, there is an indication of a possible card jam or other system malfunction. Similarly, if an element is moving too slowly or too fast, that could provide an indication that no cards are being provided (and hence the element is moving faster than expected) or that cards are jammed (and so the element is moving slower because of blockage or friction from jammed cards). The measurements may also be taken on an individual (single) movement of an element or over time to measure an ongoing, repeated event as the signal. As simple an element as a free rolling wheel pressing against the moving surface can provide the distance measurements whenever the element moves. This would be subject to wear, however and would not be a most preferred embodiment.
In one embodiment described herein, an element on a moving part has a measurable/detectable magnetic component to it. As is well known, when a magnet moves, its magnetic field moves, and the rate of the movement can be easily detected either by forces generated on an electrical current or by the generation of an electrical current in a conductive medium that is stationery in the moving field. An ammeter, voltmeter, or other device can be present. The movement of the field through an area or volume of space (flux) can be easily measured and used as a basis for determining if parts, especially rollers or roller shafts, are moving properly. The magnetic elements may be provided outside the card movement area so that detection of the flux variations can also be made outside of the card movement area. The difference in magnetic element location is a design feature that should improve some attributes of the device, but location within the card movement area is also possible.
The detection system may also be based upon optically (electro-optically) detected movement. For example, fiduciary marks or optically sensible marks may be placed on the outside (especially axially end or outside) of the roller or roller shaft. An optical reading or sensing element (e.g., a camera) observes the movement of the marks and determines its speed (as generically defined above). The data from the camera images can be readily used to indicate the speed of the element, which can again reflect a change in machine performance and especially a card jam. A strobe light may be placed outside the moving element or on the moving element, and the movement of the emitted light may be observed. Combinations of these various systems may also be provided within the shuffler to give more detailed or more sophisticated data from which determinations of shuffler performance may be based.
Many variations and designs in shufflers, as noted above, are possible for use in combination with the jam detection of the present invention. With respect to a carousel-type shuffler (with a full carousel or slots forming only a partial circle or fan of compartments), a card storage means for the individual retrieval of cards can be replaced, for example, very simply by one for the retrieval of cards in stacks and vice-versa. Principally, the receiving means can be provided with any desired arrangement and can comprise beveled edges, grooved and/or spring-shaped entrances to the respective compartments, for example, with which the card storage means and the basic body mutually engage. The positioning or fixing of the respective elements can be provided by means of a fixable alignment pin, for example. It is also possible, however, to provide connections by clips or snap-in connections such as spring-loaded balls or pins as receiving means for the card storage means and which latch into respective latching recesses of the card storage means or the basic body of the shuffler.
In one embodiment, the content of each compartment of the shuffler's storage means is securely pushed into a nip line between two rollers during the output, which conveys the same into the card storage means for the shuffled cards. This also allows shuffling more than one card into a compartment of the shuffling storage means and thus keeping the card shuffler relatively small. This allows operating such a shuffler on a game table even when a larger number of card stacks, such as six or eight, are in the game and need to be managed. The nip rollers can either be provided with an elastically deformable coating or be pressed in a resilient way against one another, which also allows an adjustment to the thickness of the content of the compartment to be ejected which can also hold several cards, e.g., a card stack with nine or more cards. The stacks may contain zero, one or more cards at different times in the shuffling process.
In one embodiment, the card-shuffling storage means is a drum having radially arranged compartments. The cards are held in the individual compartments and cannot slip outwardly by centrifugal force and thus prevent any contact of the cards with a housing enclosing the drum. This leads to a very substantial protection of the cards.
Moreover, in the case of any required exchange of a drum, it is not necessary to remove the cards from the compartment of the same. Instead, the drum including the cards contained in the same can be exchanged.
In one embodiment, a card sensor is provided to detect the cards used in a game. It is not only possible to check their number, but also the card picture, as a result of which any changes to the cards can be recognized.
Some of the exemplary embodiments of this described technology are now explained in closer detail by reference to the enclosed drawings, wherein:
A reservoir 10 for discarded (unshuffled, used decks, new decks) cards 13 is provided, which is part of an input apparatus. The reservoir 10 comprises a wedge 11 that may be rolled off by a roller 12 that is arranged rotatably within the reservoir 10 on an inclined floor of the reservoir 10 against two rollers 14, which should be able to gently engage the cards 13 on the roller surfaces, as with a non-abrasive friction surface such as rubber or elastic (
A sensor 24 is shown to be provided as a line or pixel sensor for recognizing the card symbol of the respectively moved card 13. The pair of rollers 19 (only one of the pair is shown due to the angle of view) and the pair of rollers 18 (only one of which is shown due to the angle of view) which touch the same card on the circumference of each roller and are each situated on a shaft 30 and can be driven in the same manner as described above by motor 20.
The two levers 21 are used for the complete insertion of the respectively moved card into a compartment 69 of the shuffling storage element 2′ and are drivable in an oscillating or reversible manner by way of a rod 22 that is reciprocally or swivelably connected with the lever 21 by an axle 34 by way of an eccentric disk 23 disposed on the motor 20.
At least two variants are described herein for the card storage means 42, 42′ (
The output of cards 13 from the compartments 69 into a card storage means 42, 42′ is performed by means of two swivel arms 35 that are swivelably held in the two legs 9 and are drivable in an oscillating manner by way of levers 37 and by way of an eccentric disk 38 situated on a motor. Two swivel arms 35 each carry at their upper ends an inwardly positioned rail 36 (
The grip rollers 40 convey the respectively moved cards 13 either into the card storage means 42 for the shuffled cards as shown in
The card storage means 42 is substantially formed by a U-shaped table 43 in which the cards 13 are deposited in a stack 44. The cards can be removed upwardly by the croupier stack-by-stack if necessary.
The card storage means 42′ according to
As is shown in
As is shown in
The spring 52 is provided with a securing element such as a bent strip or spring 55 that covers the radially outer openings of the compartments 69 and securely prevents cards from being ejected outwardly by centrifugal force during the rotation of the shuffling storage element 2′ or falling out if tilted in a downward direction.
The springs 51 according to
The output of the cards of a compartment 69 is carried out in such a way that the card 13 or a stack of up to nine cards, for example, is ejected by force. This is carried out by means of the swivel arms 35 and rails 36, as already explained above. The springs 51, 52 are deformed during the ejection of the card(s) 13.
As is shown in
The drum 2 can be placed in a security container 63 (
It has been mentioned previously that not only may card jams be detected, but that other shuffling deficiencies may be detected or even predicted. For example, variations in the speed of movement of rollers can provide an indication that rollers are wearing out, causing uneven movement of cards or eccentric movement of cards through the shuffling device. Specific types of signals can be interpreted by the processor as indicative of wear rather than jamming. Power surges that are not associated with specific movements of the elements of the shuffling device can be indicative of a short circuit developing or occurring in the electronics or wiring of the shuffling device. Eccentric movement of rollers or elements on the rollers can be an indication that components have become loose within the shuffling device and need to be secured. Speed or force variations with specific cards in the set of cards being shuffled (which occurrence of specific cards can be defined by the card-reading capability of the shuffling device) can be indicative of a damaged, marked, or foreign card in the set of cards.
As noted above, the jam detection system described herein may be used with all of the various formats and designs of shuffling devices that are known in the art, as long as there is a moving part that can be used for detection purposes. For example, U.S. Pat. No. 6,149,154 describes a commercial shuffler known as the ACE® shuffler produced by Shuffle Master, Inc. This device (as described in the abovementioned patent) may be variously described as an apparatus for moving playing cards from a first group of cards into plural groups, each of the plural groups containing a random arrangement of cards, the apparatus comprising: a card receiver for receiving the first group of unshuffled cards; a single stack of card-receiving compartments generally adjacent to the card receiver, the stack generally adjacent to and movable with respect to the first group of cards; and a drive mechanism that moves the stack by means of translation relative to the first group of unshuffled cards; a card-moving mechanism between the card receiver and the stack (preferably comprising a plurality of shaft-mounted rollers); and a processing unit that controls the card-moving mechanism and the drive mechanism so that a selected quantity of cards is moved into a selected number of compartments. The apparatus may further comprise a second card-moving mechanism adapted to empty one of the compartments after a selected quantity of cards is moved into one of the compartments. The apparatus may also comprise a second receiver for receiving the cards the second card-moving mechanism moves out of the compartments. The stack is preferably vertically translatable in that design. The ACE® shuffler may also be described as a playing card handler comprising: a generally vertically oriented stack of mixing compartments for accumulating cards in at least one compartment; a microprocessor programmed to randomly select the compartment that receives each card in a manner sufficient to accomplish randomly arranging the cards in each compartment, wherein the microprocessor is programmable to deliver a preselected number of cards to a preselected number of compartments; a card-staging area for receiving a stack of cards to be handled, wherein the staging area and stack of mixing compartments are movable with respect to each other; a drive mechanism responsive to output signals from the microprocessor for causing relative movement between the staging area and the stack of mixing compartments; a card ejection device for moving a card from the staging area into one of the mixing compartments; and an input, operably connected to the microprocessor, that communicates a number of game participants and a number of cards to be dealt to each participant to the microprocessor. The ACE® shuffler may also be described as an apparatus for moving playing cards from an unshuffled group of cards into a plurality of hands, each hand containing a random arrangement of the same quantity of cards, the apparatus comprising: a card receiver for initially receiving the unshuffled group of cards; a single stack of card-receiving compartments generally adjacent to the card receiver, the stack generally vertically translatable; a card-moving mechanism between the card receiver and the stack; and a processing unit that controls the card-moving mechanism and the vertical movement of the stack so that a card is moved from the receiver into a randomly selected compartment and so that a selected number of cards are moved into a selected number of compartments.
Another successful commercial shuffler that can incorporate the jam detection technology described herein is the KING® shuffler from Shuffle Master, Inc. as described in U.S. Pat. No. 6,254,096. That shuffler may be variously described as an apparatus for continuously shuffling playing cards, the apparatus comprising: a card receiver for receiving a first group of cards; a single stack of card-receiving compartments generally adjacent to the card receiver, the stack generally vertically movable, wherein the compartments translate substantially vertically, and means for moving the stack; a card-moving mechanism between the card receiver and the stack (preferably comprising a plurality of shaft-mounted rollers); a processing unit that controls the card-moving mechanism and the means for moving the stack so that cards placed in the card receiver are moved into selected compartments; a second card receiver for receiving cards from the compartments; and a second card-moving mechanism between the compartments and the second card receiver for moving cards from the compartments to the second card receiver. The apparatus may further comprise a second card-moving means for emptying the compartments into the second card receiver. The apparatus may also further comprise a card present sensor operably coupled to the second card receiver. The apparatus may also move cards from the compartments into the second card receiver in response to a reading from the card present sensor. The KING® shuffler may also be described as a card handler comprising: a card-staging area for receiving cards to be handled; a plurality of card-receiving compartments, the compartments generally vertically stacked, and the card-staging area and the compartments are relatively movable, wherein the compartments translate substantially vertically. The apparatus may have a card mover generally between the staging area and the compartments for moving a card from the staging area into one of the compartments and a microprocessor programmed to identify each card in the staging area and to actuate the card mover to move an identified card to a randomly selected compartment. The microprocessor should be programmable to deliver a selected number of cards to a compartment; and there should be compartment moving components responsive to the microprocessor for moving the compartments. It is desirable to have inputs operably coupled to the microprocessor for inputting information into the microprocessor.
The KING® shuffler may also be described as a playing card handler comprising: a generally vertically oriented stack of compartments for accumulating cards in at least one compartment, wherein the compartments translate substantially vertically; a microprocessor programmed to randomly select the compartment which receives each card in a manner sufficient to accomplish randomly arranging the cards in each compartment, wherein the microprocessor is programmable to deliver a selected number of cards to a selected number of compartments; a card-staging area for receiving a stack of cards to be handled, wherein the stack of compartments is movable with respect to the card-staging area; a first card mover responsive to output signals from the microprocessor for moving cards between the staging area and the stack of mixing compartments; and a second card mover for moving cards from the compartments to a second card receiver.
Another commercial shuffling device is known in the art as the MD2® (Multi-Deck 2) and is commercially available from Shuffle Master, Inc. This shuffler is described in U.S. Pat. No. 6,651,982 and may be variously described as a device that moves cards from a first group of cards and randomly moves the cards into an accumulating randomized set of cards by randomly separating the randomized set of cards into at least two segments and inserting one card at a time from the first group of cards into a space between the two segments. The MD2® may also be described as a device for forming a random set of playing cards comprising: a top surface and a bottom surface of the device; a card-receiving area for receiving an initial set of playing cards; a randomizing system for randomizing the order of an initial set of playing cards; a collection surface in a card collection area for receiving randomized playing cards, the collection surface receiving cards so that all cards are received below the top surface of the device; an elevator for raising the collection surface so that at least some randomized cards are elevated at least to the top surface of the device; and an automatically moveable cover over the elevator. The MD2® may have the elevator raise all randomized cards above the top surface of the device and the automatically moveable cover is raised to allow the randomized cards to rise above the top surface of the device. The moveable cover may be raised by an element moving in concert with the elevator or an elevator drive system. The card-receiving area can be sloped to assist movement of playing cards towards the randomizing system. At least one shaft-mounted rotatable pick-off roller may remove cards one at a time from the card-receiving area and move cards one at a time towards the randomizing system. At least one pair of rollers may receive cards from the at least one pick-off roller.
A microprocessor controls movement of the pick-off roller and the at least one pair of rollers. The microprocessor may be programmed to direct the pick-off roller to cease propelling a first card being moved by the pick-off roller when it is sensed that the first card is being moved by the at least one pair of rollers. When a first card being moved by the pick-off roller is being moved by the at least one pair of rollers, movement of the pick-off roller may be altered so that no card other than the first card is moved by either the pick-off roller or the at least one pair of rollers. Tension on the first card may be effected by the at least one pair of rollers causing the pick-off roller to freely rotate and to not propel the first card. The randomization system may move one card at a time into an area overlying the collection surface. The device may operate by one card at a time being positioned into a randomized set of playing cards over the collection surface. The collection area may be bordered on two opposed sides by two movable card-gripping elements and an insertion point to the card collection area is located below a bottom edge of the two movable card-gripping elements. The card collection surface may be vertically positionable within the card collection area.
The MD2® may be alternatively described as a device for forming a random set of playing cards comprising: a top surface and a bottom surface of the device; a receiving area for an initial set of playing cards; a randomizing system for randomizing the initial set of playing cards; a collection surface in a card collection area for receiving randomized playing cards; an elevator for raising the collection surface within the card collection area; and at least one card-supporting element within the card collection area that will support a predetermined number of cards within the card collection area and suspends at least a subgroup of cards from the randomized cards over the card collection surface to create a card insertion opening.
Still another format for a shuffling device is shown by the Random Ejection Shuffling (RES) format described, by way of example, in U.S. Pat. No. 5,584,483. The RES shuffler may be described as a shuffling device in which cards are randomly ejected out of a first set of cards, transported to a card-receiving area, and collected on the card-receiving area as a randomized set of cards. An alternative description is as an automated playing card shuffler comprising: an infeed array holder for holding an infeed array of unshuffled playing cards; a shuffled array receiver for holding a shuffled array containing shuffled playing cards; a plurality of movable ejectors mounted adjacent the infeed array holder for ejecting playing cards from the infeed array holder at various card discharge positions, the playing cards ejected by the plurality of ejectors being received in the shuffled array receiver. The RES card shuffler may have the plurality of ejectors mounted upon at least one ejector carriage that is movable relative to a frame. The infeed array holder may be movable relative to a frame. The plurality of ejectors and the unshuffled array holder may be mounted to provide relative linear motion therebetween. The RES playing card shuffler may further comprise at least one extractor that engages playing cards that are displaced by the plurality of ejectors. The RES playing card shuffler may still further comprise at least one removal resistor that provides counteractive force opposing displacement of playing cards.
The list of components in the circuit design of
A circuit board 11a comprises the microchip 5a having ports to the jam detection sensor 1a, the tantalum chip capacitor 2a, the chip monolithic ceramic capacitor 3a, and the ZH series header 10a. There are various solid state sensors 9a, one shown in parallel to one of the three shown resistors 6a. An actual program 4a is embedded in the microchip 5a. Other elements on the circuit design, such as the capacitor 7a, while a Press Nut 2.5 mm (used to increase thread depth, made for plastic) is not shown on the microchip 5a.
The Programmable Integrated Circuit (PIC) board 11a contains solid state sensors 9a. Sensor 9a senses the magnetic field created by the three magnets (202) embedded in the disk 203. A microchip 5a is provided that interprets the signals of the magnetic sensors 9a. The software program shown in the Appendix may be used in one example of a practice of the invention, as with a carousel shuffling mechanism to create a signal representative of a jam, which would be further interpreted and acted upon by the jam detection sensor 1a. The PIC 11a board sends a signal to a system control board (not shown), and the system control board may then initiate a jam recovery sequence or provide a visible or audible or machine readable signal that a jam has occurred. When a jam recovery sequence is initiated, an exemplary sequence might include the reversing of direction of rotation of rollers, altering the direction of movement of linear elements (including a slight rotational, flapping, or pronating/twisting motion), and then resuming normal movement. This reversal or alteration of normal component movement may be practiced once, twice, thrice or a fixed finite number of times in an attempt to clear a jam automatically. If the predetermined or random number of recovery attempts does not clear the jam, the microprocessor or system control board or central processing unit sends a signal to a display that can provide directions or a signal identifying the jam and indicating that the operator must address the jam. The signal could be as simple as a light, or as complex as a digital read out, LED, LCD, plasma screen or other display that can provide alphanumeric displays to the operator identifying the issue with sufficient clarity (such as location of the jam, nature of the jam, severity of the jam, etc.) so as to assist the operator.
Referring back to
Although specific shuffling devices have been described and specific components, movements, processes and formats have been provided in the examples, it is clear that alternatives and equivalents can be used by the skilled artisan in practicing the technology described herein. All examples and suggestions are intended to support generic concepts and are not intended to limit practice of the technology unless specifically limited in the claims.
——interrupt void Interrupt(void)
——no_operation( );
——no_operation( );}
This application is a continuation of U.S. patent application Ser. No. 13/411,922, now U.S. Pat. No. 8,628,086, issued Jan. 14, 2014, filed Mar. 5, 2012, which, in turn is a continuation of U.S. patent application Ser. No. 10/940,420, filed Sep. 14, 2004, now abandoned, the disclosures of which are hereby incorporated herein by this reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
130281 | Coughlin | Aug 1872 | A |
205030 | Ash | Jun 1878 | A |
609730 | Booth | Aug 1898 | A |
673154 | Bellows | Apr 1901 | A |
793489 | Williams | Jun 1905 | A |
892389 | Bellows | Jul 1908 | A |
1014219 | Hall | Jan 1912 | A |
1043109 | Hurm | Nov 1912 | A |
1157898 | Perret | Oct 1915 | A |
1556856 | Lipps | Oct 1925 | A |
1850114 | McCaddin | Mar 1932 | A |
1885276 | McKay | Nov 1932 | A |
1955926 | Matthaey | Apr 1934 | A |
1992085 | McKay | Feb 1935 | A |
1998690 | Shepherd et al. | Apr 1935 | A |
2001220 | Smith | May 1935 | A |
2001918 | Nevius | May 1935 | A |
2016030 | Woodruff et al. | Oct 1935 | A |
2043343 | Warner | Jun 1936 | A |
2060096 | McCoy | Nov 1936 | A |
2065824 | Plass | Dec 1936 | A |
2159958 | Sachs | May 1939 | A |
2185474 | Nott | Jan 1940 | A |
2254484 | Hutchins | Sep 1941 | A |
D132360 | Gardner | May 1942 | S |
2328153 | Laing | Aug 1943 | A |
2328879 | Isaacson | Sep 1943 | A |
2364413 | Wittel | Dec 1944 | A |
2525305 | Lombard | Oct 1950 | A |
2543522 | Cohen | Feb 1951 | A |
2588582 | Sivertson | Mar 1952 | A |
2661215 | Stevens | Dec 1953 | A |
2676020 | Ogden | Apr 1954 | A |
2692777 | Miller | Oct 1954 | A |
2701720 | Ogden | Feb 1955 | A |
2705638 | Newcomb | Apr 1955 | A |
2711319 | Morgan et al. | Jun 1955 | A |
2714510 | Oppenlander | Aug 1955 | A |
2717782 | Droll | Sep 1955 | A |
2727747 | Semisch | Dec 1955 | A |
2731271 | Brown | Jan 1956 | A |
2747877 | Howard | May 1956 | A |
2755090 | Aldrich | Jul 1956 | A |
2757005 | Nothaft | Jul 1956 | A |
2760779 | Ogden et al. | Aug 1956 | A |
2770459 | Wilson et al. | Nov 1956 | A |
2778643 | Williams | Jan 1957 | A |
2778644 | Stephenson | Jan 1957 | A |
2782040 | Matter | Feb 1957 | A |
2790641 | Adams | Apr 1957 | A |
2793863 | Liebelt | May 1957 | A |
2815214 | Hall | Dec 1957 | A |
2821399 | Heinoo | Jan 1958 | A |
2914215 | Neidig | Nov 1959 | A |
2937739 | Levy | May 1960 | A |
2950005 | MacDonald | Aug 1960 | A |
RE24986 | Stephenson | May 1961 | E |
3067885 | Kohler | Dec 1962 | A |
3107096 | Osborn | Oct 1963 | A |
3124674 | Edwards et al. | Mar 1964 | A |
3131935 | Gronneberg | May 1964 | A |
3147978 | Sjostrand | Sep 1964 | A |
3222071 | William | Dec 1965 | A |
3235741 | Plaisance | Feb 1966 | A |
3288308 | Gingher | Nov 1966 | A |
3305237 | Granius | Feb 1967 | A |
3312473 | Friedman et al. | Apr 1967 | A |
3452509 | Hauer | Jul 1969 | A |
3530968 | Palmer | Sep 1970 | A |
3588116 | Miura | Jun 1971 | A |
3589730 | Slay | Jun 1971 | A |
3595388 | Castaldi | Jul 1971 | A |
3597076 | Hubbard | Aug 1971 | A |
3618933 | Roggenstein | Nov 1971 | A |
3627331 | Erickson | Dec 1971 | A |
3666270 | Mazur | May 1972 | A |
3680853 | Houghton | Aug 1972 | A |
3690670 | Cassady et al. | Sep 1972 | A |
3704938 | Fanselow | Dec 1972 | A |
3716238 | Porter | Feb 1973 | A |
3751041 | Seifert | Aug 1973 | A |
3761079 | Azure | Sep 1973 | A |
3810627 | Levy | May 1974 | A |
3861261 | Maxey | Jan 1975 | A |
3897954 | Erickson | Aug 1975 | A |
3909002 | Levy | Sep 1975 | A |
3929339 | Mattioli | Dec 1975 | A |
3944077 | Green | Mar 1976 | A |
3944230 | Fineman | Mar 1976 | A |
3949219 | Crouse | Apr 1976 | A |
3968364 | Miller | Jul 1976 | A |
4023705 | Reiner et al. | May 1977 | A |
4033590 | Pic | Jul 1977 | A |
4072930 | Lucero et al. | Feb 1978 | A |
4088265 | Garczynski et al. | May 1978 | A |
4151410 | McMillan et al. | Apr 1979 | A |
4159581 | Lichtenberg | Jul 1979 | A |
4162649 | Thornton | Jul 1979 | A |
4166615 | Noguchi et al. | Sep 1979 | A |
4232861 | Maul | Nov 1980 | A |
4280690 | Hill | Jul 1981 | A |
4283709 | Lucero et al. | Aug 1981 | A |
4310160 | Willette | Jan 1982 | A |
4339134 | Macheel | Jul 1982 | A |
4339798 | Hedges et al. | Jul 1982 | A |
4361393 | Noto | Nov 1982 | A |
4368972 | Naramore | Jan 1983 | A |
4369972 | Parker | Jan 1983 | A |
4374309 | Walton | Feb 1983 | A |
4377285 | Kadlic | Mar 1983 | A |
4385827 | Naramore | May 1983 | A |
4388994 | Suda et al. | Jun 1983 | A |
4397469 | Carter | Aug 1983 | A |
4421312 | Delgado et al. | Dec 1983 | A |
4421501 | Scheffer | Dec 1983 | A |
D274069 | Fromm | May 1984 | S |
4467424 | Hedges et al. | Aug 1984 | A |
4494197 | Troy et al. | Jan 1985 | A |
4497488 | Plevyak et al. | Feb 1985 | A |
4512580 | Matviak | Apr 1985 | A |
4513969 | Samsel | Apr 1985 | A |
4515367 | Howard | May 1985 | A |
4531187 | Uhland et al. | Jul 1985 | A |
4534562 | Cuff et al. | Aug 1985 | A |
4549738 | Greitzer | Oct 1985 | A |
4566782 | Britt et al. | Jan 1986 | A |
4575367 | Karmel | Mar 1986 | A |
4586712 | Lorber et al. | May 1986 | A |
4659082 | Greenberg | Apr 1987 | A |
4662637 | Pfeiffer et al. | May 1987 | A |
4662816 | Fabrig | May 1987 | A |
4667959 | Pfeiffer et al. | May 1987 | A |
4741524 | Bromage | May 1988 | A |
4750743 | Nicoletti | Jun 1988 | A |
4755941 | Bacchi | Jul 1988 | A |
4759448 | Kawabata | Jul 1988 | A |
4770412 | Wolfe | Sep 1988 | A |
4770421 | Hoffman | Sep 1988 | A |
4807884 | Breeding | Feb 1989 | A |
4822050 | Normand et al. | Apr 1989 | A |
4832342 | Plevyak | May 1989 | A |
4858000 | Lu | Aug 1989 | A |
4861041 | Jones et al. | Aug 1989 | A |
4876000 | Mikhail | Oct 1989 | A |
4900009 | Kitahara et al. | Feb 1990 | A |
4904830 | Rizzuto | Feb 1990 | A |
4921109 | Hasuo et al. | May 1990 | A |
4926327 | Sidley | May 1990 | A |
4948134 | Suttle et al. | Aug 1990 | A |
4951950 | Normand et al. | Aug 1990 | A |
4969648 | Hollinger et al. | Nov 1990 | A |
4993587 | Abe | Feb 1991 | A |
4995615 | Cheng et al. | Feb 1991 | A |
5000453 | Stevens et al. | Mar 1991 | A |
5039102 | Miller et al. | Aug 1991 | A |
5067713 | Soules et al. | Nov 1991 | A |
5078405 | Jones et al. | Jan 1992 | A |
5081487 | Hoyer et al. | Jan 1992 | A |
5096197 | Embury | Mar 1992 | A |
5102293 | Schneider | Apr 1992 | A |
5118114 | Tucci et al. | Jun 1992 | A |
5121192 | Kazui | Jun 1992 | A |
5121921 | Friedman | Jun 1992 | A |
5154429 | LeVasseur et al. | Oct 1992 | A |
5179517 | Sarbin et al. | Jan 1993 | A |
5197094 | Tillery et al. | Mar 1993 | A |
5199710 | Lamle | Apr 1993 | A |
5209476 | Eiba et al. | May 1993 | A |
5224712 | Laughlin et al. | Jul 1993 | A |
5240140 | Huen | Aug 1993 | A |
5248142 | Breeding et al. | Sep 1993 | A |
5257179 | DeMar et al. | Oct 1993 | A |
5259907 | Soules et al. | Nov 1993 | A |
5261667 | Breeding | Nov 1993 | A |
5267248 | Reyner | Nov 1993 | A |
5275411 | Breeding | Jan 1994 | A |
5276312 | McCarthy | Jan 1994 | A |
5283422 | Storch et al. | Feb 1994 | A |
5288081 | Breeding et al. | Feb 1994 | A |
5299089 | Lwee et al. | Mar 1994 | A |
5303921 | Breeding | Apr 1994 | A |
5344146 | Lee | Sep 1994 | A |
5356145 | Verschoor | Oct 1994 | A |
5362053 | Miller et al. | Nov 1994 | A |
5374061 | Albrecht et al. | Dec 1994 | A |
5377973 | Jones et al. | Jan 1995 | A |
5382024 | Blaha | Jan 1995 | A |
5382025 | Sklansky et al. | Jan 1995 | A |
5390910 | Mandel et al. | Feb 1995 | A |
5397128 | Hesse et al. | Mar 1995 | A |
5397133 | Penzias et al. | Mar 1995 | A |
5416308 | Hood et al. | May 1995 | A |
5431399 | Kelley et al. | Jul 1995 | A |
5431407 | Hofberg et al. | Jul 1995 | A |
5437462 | Breeding et al. | Aug 1995 | A |
5445377 | Steinbach | Aug 1995 | A |
5470079 | LeStrange et al. | Nov 1995 | A |
D365853 | Zadro | Jan 1996 | S |
5489101 | Moody et al. | Feb 1996 | A |
5515477 | Sutherland | May 1996 | A |
5524888 | Heidel | Jun 1996 | A |
5531448 | Moody et al. | Jul 1996 | A |
5544892 | Breeding et al. | Aug 1996 | A |
5575475 | Steinbach | Nov 1996 | A |
5584483 | Sines et al. | Dec 1996 | A |
5586936 | Bennett et al. | Dec 1996 | A |
5605334 | McCrea et al. | Feb 1997 | A |
5613912 | Slater et al. | Mar 1997 | A |
5632483 | Garczynski et al. | May 1997 | A |
5636843 | Roberts et al. | Jun 1997 | A |
5651548 | French et al. | Jul 1997 | A |
5655961 | Acres et al. | Aug 1997 | A |
5669816 | Garczynski et al. | Sep 1997 | A |
5676231 | Legras et al. | Oct 1997 | A |
5676372 | Sines et al. | Oct 1997 | A |
5681039 | Miller et al. | Oct 1997 | A |
5683085 | Johnson et al. | Nov 1997 | A |
5685543 | Garner et al. | Nov 1997 | A |
5690324 | Otomo et al. | Nov 1997 | A |
5692748 | Frisco et al. | Dec 1997 | A |
5695189 | Breeding et al. | Dec 1997 | A |
5701565 | Morgan | Dec 1997 | A |
5707286 | Carlson | Jan 1998 | A |
5707287 | McCrea et al. | Jan 1998 | A |
5711525 | Breeding et al. | Jan 1998 | A |
5718427 | Cranford et al. | Feb 1998 | A |
5719288 | Sens et al. | Feb 1998 | A |
5720484 | Hsu et al. | Feb 1998 | A |
5722893 | Hill et al. | Mar 1998 | A |
5735525 | McCrea et al. | Apr 1998 | A |
5735724 | Udagawa | Apr 1998 | A |
5735742 | French et al. | Apr 1998 | A |
5743798 | Adams et al. | Apr 1998 | A |
5768382 | Schneier et al. | Jun 1998 | A |
5770533 | Franchi et al. | Jun 1998 | A |
5770553 | Kroner et al. | Jun 1998 | A |
5772505 | Garczynski et al. | Jun 1998 | A |
5779546 | Meissner et al. | Jul 1998 | A |
5781647 | Fishbine et al. | Jul 1998 | A |
5785321 | Van Putten et al. | Jul 1998 | A |
5788574 | Ornstein et al. | Aug 1998 | A |
5791988 | Nomi et al. | Aug 1998 | A |
5802560 | Joseph et al. | Sep 1998 | A |
5803808 | Strisower | Sep 1998 | A |
5810355 | Trilli | Sep 1998 | A |
5813326 | Salomon et al. | Sep 1998 | A |
5813912 | Shultz et al. | Sep 1998 | A |
5814796 | Benson et al. | Sep 1998 | A |
5836775 | Hiyama et al. | Nov 1998 | A |
5839730 | Pike | Nov 1998 | A |
5845906 | Wirth et al. | Dec 1998 | A |
5851011 | Lott et al. | Dec 1998 | A |
5867586 | Liang | Feb 1999 | A |
5879233 | Stupero | Mar 1999 | A |
5883804 | Christensen | Mar 1999 | A |
5890717 | Rosewarne et al. | Apr 1999 | A |
5892210 | Levasseur | Apr 1999 | A |
5911626 | McCrea et al. | Jun 1999 | A |
5919090 | Mothwurf | Jul 1999 | A |
5936222 | Korsunsky et al. | Aug 1999 | A |
5941769 | Order | Aug 1999 | A |
5944310 | Johnson et al. | Aug 1999 | A |
D414527 | Tedham | Sep 1999 | S |
5957776 | Hoehne et al. | Sep 1999 | A |
5974150 | Kaish et al. | Oct 1999 | A |
5985305 | Peery et al. | Nov 1999 | A |
5989122 | Roblejo et al. | Nov 1999 | A |
5991308 | Fuhrmann et al. | Nov 1999 | A |
6015311 | Benjamin et al. | Jan 2000 | A |
6019368 | Sines et al. | Feb 2000 | A |
6019374 | Breeding et al. | Feb 2000 | A |
6039650 | Hill et al. | Mar 2000 | A |
6050569 | Taylor | Apr 2000 | A |
6053695 | Longoria et al. | Apr 2000 | A |
6061449 | Candelore et al. | May 2000 | A |
6068258 | Breeding et al. | May 2000 | A |
6069564 | Hatano et al. | May 2000 | A |
6071190 | Weiss et al. | Jun 2000 | A |
6093103 | McCrea et al. | Jul 2000 | A |
6113101 | Wirth et al. | Sep 2000 | A |
6117012 | McCrea et al. | Sep 2000 | A |
D432588 | Tedham | Oct 2000 | S |
6126166 | Lorson et al. | Oct 2000 | A |
6127447 | Mitry et al. | Oct 2000 | A |
6131817 | Miller | Oct 2000 | A |
6139014 | Breeding et al. | Oct 2000 | A |
6149154 | Grauzer et al. | Nov 2000 | A |
6154131 | Jones et al. | Nov 2000 | A |
6165069 | Sines et al. | Dec 2000 | A |
6165072 | Davis et al. | Dec 2000 | A |
6183362 | Boushy | Feb 2001 | B1 |
6186895 | Oliver | Feb 2001 | B1 |
6200218 | Lindsay | Mar 2001 | B1 |
6210274 | Carlson | Apr 2001 | B1 |
6213310 | Wennersten et al. | Apr 2001 | B1 |
6217447 | Lofink et al. | Apr 2001 | B1 |
6234900 | Cumbers | May 2001 | B1 |
6236223 | Brady et al. | May 2001 | B1 |
6250632 | Albrecht | Jun 2001 | B1 |
6254002 | Litman | Jul 2001 | B1 |
6254096 | Grauzer et al. | Jul 2001 | B1 |
6254484 | McCrea, Jr. | Jul 2001 | B1 |
6257981 | Acres et al. | Jul 2001 | B1 |
6267248 | Johnson et al. | Jul 2001 | B1 |
6267648 | Katayama et al. | Jul 2001 | B1 |
6267671 | Hogan | Jul 2001 | B1 |
6270404 | Sines et al. | Aug 2001 | B2 |
6272223 | Carlson | Aug 2001 | B1 |
6293546 | Hessing et al. | Sep 2001 | B1 |
6293864 | Romero | Sep 2001 | B1 |
6299167 | Sines et al. | Oct 2001 | B1 |
6299534 | Breeding et al. | Oct 2001 | B1 |
6299536 | Hill | Oct 2001 | B1 |
6308886 | Benson et al. | Oct 2001 | B1 |
6313871 | Schubert | Nov 2001 | B1 |
6325373 | Breeding et al. | Dec 2001 | B1 |
6334614 | Breeding | Jan 2002 | B1 |
6341778 | Lee | Jan 2002 | B1 |
6342830 | Want et al. | Jan 2002 | B1 |
6346044 | McCrea, Jr. | Feb 2002 | B1 |
6361044 | Block et al. | Mar 2002 | B1 |
6386973 | Yoseloff | May 2002 | B1 |
6402142 | Warren et al. | Jun 2002 | B1 |
6403908 | Stardust et al. | Jun 2002 | B2 |
6443839 | Stockdale | Sep 2002 | B2 |
6446864 | Kim et al. | Sep 2002 | B1 |
6454266 | Breeding et al. | Sep 2002 | B1 |
6460848 | Soltys et al. | Oct 2002 | B1 |
6464584 | Oliver | Oct 2002 | B2 |
6490277 | Tzotzkov | Dec 2002 | B1 |
6508709 | Karmarkar | Jan 2003 | B1 |
6514140 | Storch | Feb 2003 | B1 |
6517435 | Soltys et al. | Feb 2003 | B2 |
6517436 | Soltys et al. | Feb 2003 | B2 |
6520857 | Soltys et al. | Feb 2003 | B2 |
6527271 | Soltys et al. | Mar 2003 | B2 |
6530836 | Soltys et al. | Mar 2003 | B2 |
6530837 | Soltys et al. | Mar 2003 | B2 |
6532297 | Lindquist | Mar 2003 | B1 |
6533276 | Soltys et al. | Mar 2003 | B2 |
6533662 | Soltys et al. | Mar 2003 | B2 |
6561897 | Bourbour et al. | May 2003 | B1 |
6568678 | Breeding et al. | May 2003 | B2 |
6579180 | Soltys et al. | Jun 2003 | B2 |
6579181 | Soltys et al. | Jun 2003 | B2 |
6581747 | Charlier et al. | Jun 2003 | B1 |
6582301 | Hill | Jun 2003 | B2 |
6582302 | Romero | Jun 2003 | B2 |
6585586 | Romero | Jul 2003 | B1 |
6585588 | Hartl | Jul 2003 | B2 |
6585856 | Zwick et al. | Jul 2003 | B2 |
6588750 | Grauzer et al. | Jul 2003 | B1 |
6588751 | Grauzer et al. | Jul 2003 | B1 |
6595857 | Soltys et al. | Jul 2003 | B2 |
6609710 | Order | Aug 2003 | B1 |
6612928 | Bradford et al. | Sep 2003 | B1 |
6616535 | Nishizaki et al. | Sep 2003 | B1 |
6619662 | Miller | Sep 2003 | B2 |
6622185 | Johnson | Sep 2003 | B1 |
6626757 | Oliveras | Sep 2003 | B2 |
6629019 | Legge et al. | Sep 2003 | B2 |
6629591 | Griswold et al. | Oct 2003 | B1 |
6629889 | Mothwurf | Oct 2003 | B2 |
6629894 | Purton | Oct 2003 | B1 |
6637622 | Robinson | Oct 2003 | B1 |
6638161 | Soltys et al. | Oct 2003 | B2 |
6645068 | Kelly et al. | Nov 2003 | B1 |
6645077 | Rowe | Nov 2003 | B2 |
6651981 | Grauzer et al. | Nov 2003 | B2 |
6651982 | Grauzer et al. | Nov 2003 | B2 |
6651985 | Sines et al. | Nov 2003 | B2 |
6652379 | Soltys et al. | Nov 2003 | B2 |
6655684 | Grauzer et al. | Dec 2003 | B2 |
6655690 | Oskwarek | Dec 2003 | B1 |
6658135 | Morito et al. | Dec 2003 | B1 |
6659460 | Blaha et al. | Dec 2003 | B2 |
6659461 | Yoseloff et al. | Dec 2003 | B2 |
6659875 | Purton | Dec 2003 | B2 |
6663490 | Soltys et al. | Dec 2003 | B2 |
6666768 | Akers | Dec 2003 | B1 |
6671358 | Seidman et al. | Dec 2003 | B1 |
6676127 | Johnson et al. | Jan 2004 | B2 |
6676517 | Beavers | Jan 2004 | B2 |
6680843 | Farrow et al. | Jan 2004 | B2 |
6685564 | Oliver | Feb 2004 | B2 |
6685567 | Cockerille et al. | Feb 2004 | B2 |
6685568 | Soltys et al. | Feb 2004 | B2 |
6688597 | Jones | Feb 2004 | B2 |
6688979 | Soltys et al. | Feb 2004 | B2 |
6690673 | Jarvis | Feb 2004 | B1 |
6698756 | Baker et al. | Mar 2004 | B1 |
6698759 | Webb et al. | Mar 2004 | B2 |
6702289 | Feola | Mar 2004 | B1 |
6702290 | Buono-Correa et al. | Mar 2004 | B2 |
6709333 | Bradford et al. | Mar 2004 | B1 |
6712696 | Soltys et al. | Mar 2004 | B2 |
6719288 | Hessing et al. | Apr 2004 | B2 |
6719634 | Mishina et al. | Apr 2004 | B2 |
6722974 | Sines et al. | Apr 2004 | B2 |
6726205 | Purton | Apr 2004 | B1 |
6732067 | Powderly | May 2004 | B1 |
6733012 | Bui et al. | May 2004 | B2 |
6733388 | Mothwurf | May 2004 | B2 |
6746333 | Onda et al. | Jun 2004 | B1 |
6747560 | Stevens, III | Jun 2004 | B2 |
6749510 | Giobbi | Jun 2004 | B2 |
6758751 | Soltys et al. | Jul 2004 | B2 |
6758757 | Luciano, Jr. et al. | Jul 2004 | B2 |
6769693 | Huard et al. | Aug 2004 | B2 |
6774782 | Runyon et al. | Aug 2004 | B2 |
6789801 | Snow | Sep 2004 | B2 |
6802510 | Haber | Oct 2004 | B1 |
6804763 | Stockdale et al. | Oct 2004 | B1 |
6808173 | Snow | Oct 2004 | B2 |
6827282 | Silverbrook | Dec 2004 | B2 |
6834251 | Fletcher | Dec 2004 | B1 |
6840517 | Snow | Jan 2005 | B2 |
6842263 | Saeki | Jan 2005 | B1 |
6843725 | Nelson | Jan 2005 | B2 |
6848616 | Tsirline et al. | Feb 2005 | B2 |
6848844 | McCue, Jr. et al. | Feb 2005 | B2 |
6848994 | Knust et al. | Feb 2005 | B1 |
6857961 | Soltys et al. | Feb 2005 | B2 |
6874784 | Promutico | Apr 2005 | B1 |
6874786 | Bruno | Apr 2005 | B2 |
6877657 | Ranard et al. | Apr 2005 | B2 |
6877748 | Patroni | Apr 2005 | B1 |
6886829 | Hessing et al. | May 2005 | B2 |
6889979 | Blaha et al. | May 2005 | B2 |
6893347 | Zilliacus et al. | May 2005 | B1 |
6899628 | Leen et al. | May 2005 | B2 |
6902167 | Webb | Jun 2005 | B2 |
6905121 | Timpano | Jun 2005 | B1 |
6923446 | Snow | Aug 2005 | B2 |
6938900 | Snow | Sep 2005 | B2 |
6941180 | Fischer et al. | Sep 2005 | B1 |
6950948 | Neff | Sep 2005 | B2 |
6955599 | Bourbour et al. | Oct 2005 | B2 |
6957746 | Martin et al. | Oct 2005 | B2 |
6959925 | Baker et al. | Nov 2005 | B1 |
6959935 | Buhl et al. | Nov 2005 | B2 |
6960134 | Hartl et al. | Nov 2005 | B2 |
6964612 | Soltys et al. | Nov 2005 | B2 |
6986514 | Snow | Jan 2006 | B2 |
6988516 | Debaes et al. | Jan 2006 | B2 |
7011309 | Soltys et al. | Mar 2006 | B2 |
7020307 | Hinton et al. | Mar 2006 | B2 |
7028598 | Teshima | Apr 2006 | B2 |
7029009 | Grauzer et al. | Apr 2006 | B2 |
7036818 | Grauzer et al. | May 2006 | B2 |
7046458 | Nakayama | May 2006 | B2 |
7046764 | Kump | May 2006 | B1 |
7048629 | Sines et al. | May 2006 | B2 |
7059602 | Grauzer et al. | Jun 2006 | B2 |
7066464 | Blad et al. | Jun 2006 | B2 |
7068822 | Scott | Jun 2006 | B2 |
7073791 | Grauzer et al. | Jul 2006 | B2 |
7084769 | Bauer et al. | Aug 2006 | B2 |
7089420 | Durst et al. | Aug 2006 | B1 |
7106201 | Tuttle | Sep 2006 | B2 |
7113094 | Garber et al. | Sep 2006 | B2 |
7114718 | Grauzer et al. | Oct 2006 | B2 |
7124947 | Storch | Oct 2006 | B2 |
7128652 | Lavoie et al. | Oct 2006 | B1 |
7137627 | Grauzer et al. | Nov 2006 | B2 |
7139108 | Andersen et al. | Nov 2006 | B2 |
7140614 | Snow | Nov 2006 | B2 |
7162035 | Durst et al. | Jan 2007 | B1 |
7165769 | Crenshaw et al. | Jan 2007 | B2 |
7165770 | Snow | Jan 2007 | B2 |
7175522 | Hartl | Feb 2007 | B2 |
7186181 | Rowe | Mar 2007 | B2 |
7201656 | Darder | Apr 2007 | B2 |
7202888 | Tecu et al. | Apr 2007 | B2 |
7203841 | Jackson et al. | Apr 2007 | B2 |
7213812 | Schubert et al. | May 2007 | B2 |
7222852 | Soltys et al. | May 2007 | B2 |
7222855 | Sorge | May 2007 | B2 |
7231812 | Lagare | Jun 2007 | B1 |
7234698 | Grauzer et al. | Jun 2007 | B2 |
7237969 | Bartman | Jul 2007 | B2 |
7243148 | Keir et al. | Jul 2007 | B2 |
7243698 | Siegel | Jul 2007 | B2 |
7246799 | Snow | Jul 2007 | B2 |
7255344 | Grauzer et al. | Aug 2007 | B2 |
7255351 | Yoseloff et al. | Aug 2007 | B2 |
7255642 | Sines et al. | Aug 2007 | B2 |
7257630 | Cole et al. | Aug 2007 | B2 |
7261294 | Grauzer et al. | Aug 2007 | B2 |
7264241 | Schubert et al. | Sep 2007 | B2 |
7264243 | Yoseloff et al. | Sep 2007 | B2 |
7277570 | Armstrong | Oct 2007 | B2 |
7278923 | Grauzer et al. | Oct 2007 | B2 |
7294056 | Lowell et al. | Nov 2007 | B2 |
7297062 | Gatto et al. | Nov 2007 | B2 |
7300056 | Gioia et al. | Nov 2007 | B2 |
7303473 | Rowe | Dec 2007 | B2 |
7309065 | Yoseloff et al. | Dec 2007 | B2 |
7316609 | Dunn et al. | Jan 2008 | B2 |
7316615 | Soltys et al. | Jan 2008 | B2 |
7322576 | Grauzer et al. | Jan 2008 | B2 |
7331579 | Snow | Feb 2008 | B2 |
7334794 | Snow | Feb 2008 | B2 |
7338044 | Grauzer et al. | Mar 2008 | B2 |
7338362 | Gallagher | Mar 2008 | B1 |
7341510 | Bourbour et al. | Mar 2008 | B2 |
7357321 | Yoshida et al. | Apr 2008 | B2 |
7360094 | Neff | Apr 2008 | B2 |
7367561 | Blaha et al. | May 2008 | B2 |
7367563 | Yoseloff et al. | May 2008 | B2 |
7367884 | Breeding et al. | May 2008 | B2 |
7374170 | Grauzer et al. | May 2008 | B2 |
7384044 | Grauzer et al. | Jun 2008 | B2 |
7387300 | Snow | Jun 2008 | B2 |
7389990 | Mourad | Jun 2008 | B2 |
7390256 | Soltys et al. | Jun 2008 | B2 |
7399226 | Mishra | Jul 2008 | B2 |
7407438 | Schubert et al. | Aug 2008 | B2 |
7413191 | Grauzer et al. | Aug 2008 | B2 |
7434805 | Grauzer et al. | Oct 2008 | B2 |
7436957 | Fischer et al. | Oct 2008 | B1 |
7448626 | Fleckenstein | Nov 2008 | B2 |
7458582 | Snow et al. | Dec 2008 | B2 |
7461843 | Baker et al. | Dec 2008 | B1 |
7464932 | Darling | Dec 2008 | B2 |
7464934 | Schwartz | Dec 2008 | B2 |
7472906 | Shai | Jan 2009 | B2 |
7500672 | Ho | Mar 2009 | B2 |
7506874 | Hall | Mar 2009 | B2 |
7510186 | Fleckenstein | Mar 2009 | B2 |
7510190 | Snow et al. | Mar 2009 | B2 |
7510194 | Soltys et al. | Mar 2009 | B2 |
7510478 | Benbrahim et al. | Mar 2009 | B2 |
7513437 | Douglas | Apr 2009 | B2 |
7515718 | Nguyen et al. | Apr 2009 | B2 |
7523935 | Grauzer et al. | Apr 2009 | B2 |
7523936 | Grauzer et al. | Apr 2009 | B2 |
7523937 | Fleckenstein | Apr 2009 | B2 |
7525510 | Beland et al. | Apr 2009 | B2 |
7537216 | Soltys et al. | May 2009 | B2 |
7540497 | Tseng | Jun 2009 | B2 |
7540498 | Crenshaw et al. | Jun 2009 | B2 |
7549643 | Quach | Jun 2009 | B2 |
7554753 | Wakamiya | Jun 2009 | B2 |
7556197 | Yoshida et al. | Jul 2009 | B2 |
7556266 | Blaha et al. | Jul 2009 | B2 |
7575237 | Snow | Aug 2009 | B2 |
7578506 | Lambert | Aug 2009 | B2 |
7584962 | Breeding et al. | Sep 2009 | B2 |
7584963 | Krenn et al. | Sep 2009 | B2 |
7584966 | Snow | Sep 2009 | B2 |
7591728 | Gioia et al. | Sep 2009 | B2 |
7593544 | Downs, III et al. | Sep 2009 | B2 |
7594660 | Baker et al. | Sep 2009 | B2 |
7597623 | Grauzer et al. | Oct 2009 | B2 |
7644923 | Dickinson et al. | Jan 2010 | B1 |
7661676 | Smith et al. | Feb 2010 | B2 |
7666090 | Hettinger | Feb 2010 | B2 |
7669852 | Baker et al. | Mar 2010 | B2 |
7669853 | Jones | Mar 2010 | B2 |
7677565 | Grauzer et al. | Mar 2010 | B2 |
7677566 | Krenn et al. | Mar 2010 | B2 |
7686681 | Soltys et al. | Mar 2010 | B2 |
7699694 | Hill | Apr 2010 | B2 |
7735657 | Johnson | Jun 2010 | B2 |
7740244 | Ho | Jun 2010 | B2 |
7744452 | Cimring et al. | Jun 2010 | B2 |
7753373 | Grauzer et al. | Jul 2010 | B2 |
7753374 | Ho | Jul 2010 | B2 |
7753798 | Soltys et al. | Jul 2010 | B2 |
7762554 | Ho | Jul 2010 | B2 |
7764836 | Downs, III et al. | Jul 2010 | B2 |
7766332 | Grauzer et al. | Aug 2010 | B2 |
7766333 | Stardust et al. | Aug 2010 | B1 |
7769232 | Downs, III | Aug 2010 | B2 |
7769853 | Nezamzadeh | Aug 2010 | B2 |
7773749 | Durst et al. | Aug 2010 | B1 |
7780529 | Rowe et al. | Aug 2010 | B2 |
7784790 | Grauzer et al. | Aug 2010 | B2 |
7804982 | Howard et al. | Sep 2010 | B2 |
7846020 | Walker et al. | Dec 2010 | B2 |
7867080 | Nicely et al. | Jan 2011 | B2 |
7890365 | Hettinger | Feb 2011 | B2 |
7900923 | Toyama et al. | Mar 2011 | B2 |
7901285 | Tran et al. | Mar 2011 | B2 |
7908169 | Hettinger | Mar 2011 | B2 |
7909689 | Lardie | Mar 2011 | B2 |
7931533 | LeMay et al. | Apr 2011 | B2 |
7933448 | Downs, III | Apr 2011 | B2 |
7946586 | Krenn et al. | May 2011 | B2 |
7967294 | Blaha et al. | Jun 2011 | B2 |
7976023 | Hessing et al. | Jul 2011 | B1 |
7988152 | Sines | Aug 2011 | B2 |
7988554 | LeMay et al. | Aug 2011 | B2 |
7995196 | Fraser | Aug 2011 | B1 |
8002638 | Grauzer et al. | Aug 2011 | B2 |
8011661 | Stasson | Sep 2011 | B2 |
8016663 | Soltys et al. | Sep 2011 | B2 |
8021231 | Walker et al. | Sep 2011 | B2 |
8025294 | Grauzer et al. | Sep 2011 | B2 |
8038521 | Grauzer et al. | Oct 2011 | B2 |
RE42944 | Blaha et al. | Nov 2011 | E |
8057302 | Wells et al. | Nov 2011 | B2 |
8062134 | Kelly et al. | Nov 2011 | B2 |
8070574 | Grauzer et al. | Dec 2011 | B2 |
8092307 | Kelly | Jan 2012 | B2 |
8092309 | Bickley | Jan 2012 | B2 |
8141875 | Grauzer et al. | Mar 2012 | B2 |
8150158 | Downs, III | Apr 2012 | B2 |
8171567 | Fraser et al. | May 2012 | B1 |
8210536 | Blaha et al. | Jul 2012 | B2 |
8221244 | French | Jul 2012 | B2 |
8251293 | Nagata et al. | Aug 2012 | B2 |
8267404 | Grauzer et al. | Sep 2012 | B2 |
8270603 | Durst et al. | Sep 2012 | B1 |
8287347 | Snow et al. | Oct 2012 | B2 |
8287386 | Miller et al. | Oct 2012 | B2 |
8319666 | Weinmann et al. | Nov 2012 | B2 |
8337296 | Grauzer et al. | Dec 2012 | B2 |
8342525 | Scheper et al. | Jan 2013 | B2 |
8342526 | Sampson et al. | Jan 2013 | B1 |
8342529 | Snow | Jan 2013 | B2 |
8353513 | Swanson | Jan 2013 | B2 |
8381918 | Johnson | Feb 2013 | B2 |
8419521 | Grauzer et al. | Apr 2013 | B2 |
8444147 | Grauzer et al. | May 2013 | B2 |
8469360 | Sines | Jun 2013 | B2 |
8480088 | Toyama et al. | Jul 2013 | B2 |
8485527 | Sampson et al. | Jul 2013 | B2 |
8490973 | Yoseloff et al. | Jul 2013 | B2 |
8498444 | Sharma | Jul 2013 | B2 |
8505916 | Grauzer et al. | Aug 2013 | B2 |
8511684 | Grauzer et al. | Aug 2013 | B2 |
8556263 | Grauzer et al. | Oct 2013 | B2 |
8579289 | Rynda et al. | Nov 2013 | B2 |
8616552 | Czyzewski et al. | Dec 2013 | B2 |
8628086 | Krenn et al. | Jan 2014 | B2 |
8662500 | Swanson | Mar 2014 | B2 |
8695978 | Ho | Apr 2014 | B1 |
8702100 | Snow et al. | Apr 2014 | B2 |
8702101 | Scheper et al. | Apr 2014 | B2 |
8720891 | Hessing et al. | May 2014 | B2 |
8758111 | Lutnick | Jun 2014 | B2 |
8777710 | Grauzer et al. | Jul 2014 | B2 |
8820745 | Grauzer et al. | Sep 2014 | B2 |
8899587 | Grauzer et al. | Dec 2014 | B2 |
8919775 | Wadds et al. | Dec 2014 | B2 |
20010036231 | Easwar et al. | Nov 2001 | A1 |
20010036866 | Stockdale et al. | Nov 2001 | A1 |
20020017481 | Johnson et al. | Feb 2002 | A1 |
20020030425 | Tiramani et al. | Mar 2002 | A1 |
20020045478 | Soltys et al. | Apr 2002 | A1 |
20020045481 | Soltys et al. | Apr 2002 | A1 |
20020063389 | Breeding et al. | May 2002 | A1 |
20020068635 | Hill | Jun 2002 | A1 |
20020070499 | Breeding et al. | Jun 2002 | A1 |
20020094869 | Harkham | Jul 2002 | A1 |
20020107067 | McGlone et al. | Aug 2002 | A1 |
20020107072 | Giobbi | Aug 2002 | A1 |
20020113368 | Hessing et al. | Aug 2002 | A1 |
20020135692 | Fujinawa | Sep 2002 | A1 |
20020142820 | Bartlett | Oct 2002 | A1 |
20020155869 | Soltys et al. | Oct 2002 | A1 |
20020163125 | Grauzer et al. | Nov 2002 | A1 |
20020187821 | Soltys et al. | Dec 2002 | A1 |
20020187830 | Stockdale et al. | Dec 2002 | A1 |
20030003997 | Vuong et al. | Jan 2003 | A1 |
20030007143 | McArthur et al. | Jan 2003 | A1 |
20030047870 | Blaha et al. | Mar 2003 | A1 |
20030048476 | Yamakawa | Mar 2003 | A1 |
20030052449 | Grauzer et al. | Mar 2003 | A1 |
20030052450 | Grauzer et al. | Mar 2003 | A1 |
20030064798 | Grauzer et al. | Apr 2003 | A1 |
20030067112 | Grauzer et al. | Apr 2003 | A1 |
20030071413 | Blaha et al. | Apr 2003 | A1 |
20030073498 | Grauzer et al. | Apr 2003 | A1 |
20030075865 | Grauzer et al. | Apr 2003 | A1 |
20030075866 | Blaha et al. | Apr 2003 | A1 |
20030087694 | Storch | May 2003 | A1 |
20030090059 | Grauzer et al. | May 2003 | A1 |
20030094756 | Grauzer et al. | May 2003 | A1 |
20030151194 | Hessing et al. | Aug 2003 | A1 |
20030195025 | Hill | Oct 2003 | A1 |
20040015423 | Walker et al. | Jan 2004 | A1 |
20040036214 | Baker et al. | Feb 2004 | A1 |
20040067789 | Grauzer et al. | Apr 2004 | A1 |
20040100026 | Haggard | May 2004 | A1 |
20040108654 | Grauzer et al. | Jun 2004 | A1 |
20040116179 | Nicely et al. | Jun 2004 | A1 |
20040169332 | Grauzer et al. | Sep 2004 | A1 |
20040180722 | Giobbi | Sep 2004 | A1 |
20040224777 | Smith et al. | Nov 2004 | A1 |
20040245720 | Grauzer et al. | Dec 2004 | A1 |
20040259618 | Soltys et al. | Dec 2004 | A1 |
20050012671 | Bisig | Jan 2005 | A1 |
20050023752 | Grauzer et al. | Feb 2005 | A1 |
20050026680 | Gururajan | Feb 2005 | A1 |
20050035548 | Yoseloff et al. | Feb 2005 | A1 |
20050037843 | Wells et al. | Feb 2005 | A1 |
20050040594 | Krenn et al. | Feb 2005 | A1 |
20050051955 | Schubert et al. | Mar 2005 | A1 |
20050051956 | Grauzer et al. | Mar 2005 | A1 |
20050062227 | Grauzer et al. | Mar 2005 | A1 |
20050062228 | Grauzer et al. | Mar 2005 | A1 |
20050062229 | Grauzer et al. | Mar 2005 | A1 |
20050082750 | Grauzer et al. | Apr 2005 | A1 |
20050093231 | Grauzer et al. | May 2005 | A1 |
20050104289 | Grauzer et al. | May 2005 | A1 |
20050104290 | Grauzer et al. | May 2005 | A1 |
20050110210 | Soltys et al. | May 2005 | A1 |
20050113166 | Grauzer et al. | May 2005 | A1 |
20050113171 | Hodgson | May 2005 | A1 |
20050119048 | Soltys et al. | Jun 2005 | A1 |
20050137005 | Soltys et al. | Jun 2005 | A1 |
20050140090 | Breeding et al. | Jun 2005 | A1 |
20050146093 | Grauzer et al. | Jul 2005 | A1 |
20050148391 | Tain | Jul 2005 | A1 |
20050192092 | Breckner et al. | Sep 2005 | A1 |
20050206077 | Grauzer et al. | Sep 2005 | A1 |
20050242500 | Downs | Nov 2005 | A1 |
20050272501 | Tran et al. | Dec 2005 | A1 |
20050288083 | Downs | Dec 2005 | A1 |
20050288086 | Schubert et al. | Dec 2005 | A1 |
20060027970 | Kyrychenko | Feb 2006 | A1 |
20060033269 | Grauzer et al. | Feb 2006 | A1 |
20060033270 | Grauzer et al. | Feb 2006 | A1 |
20060046853 | Black | Mar 2006 | A1 |
20060063577 | Downs et al. | Mar 2006 | A1 |
20060066048 | Krenn et al. | Mar 2006 | A1 |
20060181022 | Grauzer et al. | Aug 2006 | A1 |
20060183540 | Grauzer et al. | Aug 2006 | A1 |
20060189381 | Daniel et al. | Aug 2006 | A1 |
20060199649 | Soltys et al. | Sep 2006 | A1 |
20060205508 | Green | Sep 2006 | A1 |
20060220312 | Baker et al. | Oct 2006 | A1 |
20060220313 | Baker et al. | Oct 2006 | A1 |
20060252521 | Gururajan et al. | Nov 2006 | A1 |
20060252554 | Gururajan et al. | Nov 2006 | A1 |
20060279040 | Downs et al. | Dec 2006 | A1 |
20060281534 | Grauzer et al. | Dec 2006 | A1 |
20070001395 | Gioia et al. | Jan 2007 | A1 |
20070006708 | Laakso | Jan 2007 | A1 |
20070015583 | Tran | Jan 2007 | A1 |
20070018389 | Downs | Jan 2007 | A1 |
20070045959 | Soltys | Mar 2007 | A1 |
20070049368 | Kuhn et al. | Mar 2007 | A1 |
20070057469 | Grauzer et al. | Mar 2007 | A1 |
20070066387 | Matsuno et al. | Mar 2007 | A1 |
20070069462 | Downs et al. | Mar 2007 | A1 |
20070072677 | Lavoie et al. | Mar 2007 | A1 |
20070102879 | Stasson | May 2007 | A1 |
20070111773 | Gururajan et al. | May 2007 | A1 |
20070184905 | Gatto et al. | Aug 2007 | A1 |
20070197294 | Gong | Aug 2007 | A1 |
20070197298 | Rowe | Aug 2007 | A1 |
20070202941 | Miltenberger et al. | Aug 2007 | A1 |
20070222147 | Blaha et al. | Sep 2007 | A1 |
20070225055 | Weisman | Sep 2007 | A1 |
20070233567 | Daly | Oct 2007 | A1 |
20070238506 | Ruckle | Oct 2007 | A1 |
20070259709 | Kelly et al. | Nov 2007 | A1 |
20070267812 | Grauzer et al. | Nov 2007 | A1 |
20070272600 | Johnson | Nov 2007 | A1 |
20070278739 | Swanson | Dec 2007 | A1 |
20070290438 | Grauzer et al. | Dec 2007 | A1 |
20080006997 | Scheper et al. | Jan 2008 | A1 |
20080006998 | Grauzer et al. | Jan 2008 | A1 |
20080022415 | Kuo et al. | Jan 2008 | A1 |
20080032763 | Giobbi | Feb 2008 | A1 |
20080039192 | Laut | Feb 2008 | A1 |
20080039208 | Abrink et al. | Feb 2008 | A1 |
20080096656 | LeMay et al. | Apr 2008 | A1 |
20080111300 | Czyzewski et al. | May 2008 | A1 |
20080113700 | Czyzewski et al. | May 2008 | A1 |
20080113783 | Czyzewski et al. | May 2008 | A1 |
20080136108 | Polay | Jun 2008 | A1 |
20080143048 | Shigeta | Jun 2008 | A1 |
20080176627 | Lardie | Jul 2008 | A1 |
20080217218 | Johnson | Sep 2008 | A1 |
20080234046 | Kinsley | Sep 2008 | A1 |
20080234047 | Nguyen | Sep 2008 | A1 |
20080248875 | Beatty | Oct 2008 | A1 |
20080284096 | Toyama et al. | Nov 2008 | A1 |
20080303210 | Grauzer et al. | Dec 2008 | A1 |
20080315517 | Toyama | Dec 2008 | A1 |
20090026700 | Shigeta | Jan 2009 | A2 |
20090048026 | French | Feb 2009 | A1 |
20090054161 | Schubert et al. | Feb 2009 | A1 |
20090072477 | Tseng | Mar 2009 | A1 |
20090091078 | Grauzer et al. | Apr 2009 | A1 |
20090100409 | Toneguzzo | Apr 2009 | A1 |
20090104963 | Burman | Apr 2009 | A1 |
20090121429 | Walsh | May 2009 | A1 |
20090140492 | Yoseloff et al. | Jun 2009 | A1 |
20090166970 | Rosh | Jul 2009 | A1 |
20090176547 | Katz | Jul 2009 | A1 |
20090179378 | Amaitis et al. | Jul 2009 | A1 |
20090186676 | Amaitis et al. | Jul 2009 | A1 |
20090189346 | Krenn et al. | Jul 2009 | A1 |
20090191933 | French | Jul 2009 | A1 |
20090194988 | Wright et al. | Aug 2009 | A1 |
20090197662 | Wright et al. | Aug 2009 | A1 |
20090224476 | Grauzer et al. | Sep 2009 | A1 |
20090227318 | Wright et al. | Sep 2009 | A1 |
20090227360 | Gioia et al. | Sep 2009 | A1 |
20090250873 | Jones | Oct 2009 | A1 |
20090253478 | Walker et al. | Oct 2009 | A1 |
20090253503 | Krise et al. | Oct 2009 | A1 |
20090267296 | Ho | Oct 2009 | A1 |
20090267297 | Blaha et al. | Oct 2009 | A1 |
20090283969 | Tseng | Nov 2009 | A1 |
20090298577 | Gagner et al. | Dec 2009 | A1 |
20090302535 | Ho | Dec 2009 | A1 |
20090302537 | Ho | Dec 2009 | A1 |
20090312093 | Walker et al. | Dec 2009 | A1 |
20090314188 | Toyama et al. | Dec 2009 | A1 |
20100013152 | Grauzer et al. | Jan 2010 | A1 |
20100038849 | Scheper et al. | Feb 2010 | A1 |
20100048304 | Boesen | Feb 2010 | A1 |
20100069155 | Schwartz et al. | Mar 2010 | A1 |
20100178987 | Pacey | Jul 2010 | A1 |
20100197410 | Leen et al. | Aug 2010 | A1 |
20100234110 | Clarkson | Sep 2010 | A1 |
20100240440 | Szrek et al. | Sep 2010 | A1 |
20100244376 | Johnson | Sep 2010 | A1 |
20100244382 | Snow | Sep 2010 | A1 |
20100252992 | Sines | Oct 2010 | A1 |
20100255899 | Paulsen | Oct 2010 | A1 |
20100276880 | Grauzer et al. | Nov 2010 | A1 |
20100311493 | Miller et al. | Dec 2010 | A1 |
20100311494 | Miller et al. | Dec 2010 | A1 |
20100314830 | Grauzer et al. | Dec 2010 | A1 |
20100320685 | Grauzer et al. | Dec 2010 | A1 |
20110006480 | Grauzer et al. | Jan 2011 | A1 |
20110012303 | Kourgiantakis et al. | Jan 2011 | A1 |
20110024981 | Tseng | Feb 2011 | A1 |
20110052049 | Rajaraman et al. | Mar 2011 | A1 |
20110062662 | Ohta et al. | Mar 2011 | A1 |
20110078096 | Bounds | Mar 2011 | A1 |
20110105208 | Bickley | May 2011 | A1 |
20110109042 | Rynda et al. | May 2011 | A1 |
20110130185 | Walker | Jun 2011 | A1 |
20110130190 | Hamman et al. | Jun 2011 | A1 |
20110159952 | Kerr | Jun 2011 | A1 |
20110159953 | Kerr | Jun 2011 | A1 |
20110165936 | Kerr | Jul 2011 | A1 |
20110172008 | Alderucci | Jul 2011 | A1 |
20110183748 | Wilson et al. | Jul 2011 | A1 |
20110230268 | Williams | Sep 2011 | A1 |
20110269529 | Baerlocher | Nov 2011 | A1 |
20110272881 | Sines | Nov 2011 | A1 |
20110285081 | Stasson | Nov 2011 | A1 |
20110287829 | Clarkson et al. | Nov 2011 | A1 |
20120015724 | Ocko et al. | Jan 2012 | A1 |
20120015725 | Ocko et al. | Jan 2012 | A1 |
20120015743 | Lam et al. | Jan 2012 | A1 |
20120015747 | Ocko et al. | Jan 2012 | A1 |
20120021835 | Keller et al. | Jan 2012 | A1 |
20120034977 | Kammler | Feb 2012 | A1 |
20120062745 | Han et al. | Mar 2012 | A1 |
20120074646 | Grauzer et al. | Mar 2012 | A1 |
20120091656 | Blaha et al. | Apr 2012 | A1 |
20120095982 | Lennington et al. | Apr 2012 | A1 |
20120161393 | Krenn et al. | Jun 2012 | A1 |
20120175841 | Grauzer et al. | Jul 2012 | A1 |
20120181747 | Grauzer et al. | Jul 2012 | A1 |
20120187625 | Downs, III et al. | Jul 2012 | A1 |
20120242782 | Huang | Sep 2012 | A1 |
20120286471 | Grauzer et al. | Nov 2012 | A1 |
20120306152 | Krishnamurty et al. | Dec 2012 | A1 |
20130020761 | Sines et al. | Jan 2013 | A1 |
20130085638 | Weinmann et al. | Apr 2013 | A1 |
20130099448 | Scheper et al. | Apr 2013 | A1 |
20130109455 | Grauzer et al. | May 2013 | A1 |
20130132306 | Kami et al. | May 2013 | A1 |
20130161905 | Grauzer et al. | Jun 2013 | A1 |
20130228972 | Grauzer et al. | Sep 2013 | A1 |
20130300059 | Sampson et al. | Nov 2013 | A1 |
20130337922 | Kuhn | Dec 2013 | A1 |
20140027979 | Stasson et al. | Jan 2014 | A1 |
20140094239 | Grauzer et al. | Apr 2014 | A1 |
20140103606 | Grauzer et al. | Apr 2014 | A1 |
20140138907 | Rynda et al. | May 2014 | A1 |
20140145399 | Krenn et al. | May 2014 | A1 |
20140171170 | Krishnamurty et al. | Jun 2014 | A1 |
20140175724 | Huhtala et al. | Jun 2014 | A1 |
20140183818 | Czyzewski et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
5025479 | Mar 1980 | AU |
757636 | Feb 2003 | AU |
2266555 | Apr 1998 | CA |
2284017 | Sep 1998 | CA |
2612138 | Dec 2006 | CA |
2848303 | Dec 2006 | CN |
2855481 | Jan 2007 | CN |
200954370 | Oct 2007 | CN |
101099896 | Jan 2008 | CN |
101127131 | Feb 2008 | CN |
201085907 | Jul 2008 | CN |
201139926 | Oct 2008 | CN |
202983149 | Jun 2013 | CN |
24952 | Feb 2013 | CZ |
672616 | Mar 1939 | DE |
2757341 | Jun 1978 | DE |
3807127 | Sep 1989 | DE |
777514 | Feb 2000 | EP |
1194888 | Apr 2002 | EP |
1502631 | Feb 2005 | EP |
1713026 | Oct 2006 | EP |
2228106 | Sep 2010 | EP |
1575261 | Aug 2012 | EP |
2375918 | Jul 1978 | FR |
337147 | Oct 1930 | GB |
414014 | Jul 1934 | GB |
10063933 | Mar 1998 | JP |
11045321 | Feb 1999 | JP |
2000251031 | Sep 2000 | JP |
2001327647 | Nov 2001 | JP |
2002165916 | Jun 2002 | JP |
2003250950 | Sep 2003 | JP |
2005198668 | Jul 2005 | JP |
2008-246061 | Oct 2008 | JP |
M359356 | Jun 2009 | TW |
8700764 | Feb 1987 | WO |
9221413 | Dec 1992 | WO |
9528210 | Oct 1995 | WO |
9607153 | Mar 1996 | WO |
9710577 | Mar 1997 | WO |
9814249 | Apr 1998 | WO |
9840136 | Sep 1998 | WO |
9943404 | Sep 1999 | WO |
9952610 | Oct 1999 | WO |
9952611 | Oct 1999 | WO |
0051076 | Aug 2000 | WO |
0156670 | Aug 2001 | WO |
0205914 | Jan 2002 | WO |
2004067889 | Aug 2004 | WO |
2004112923 | Dec 2004 | WO |
2006031472 | Mar 2006 | WO |
2006039308 | Apr 2006 | WO |
2008005286 | Jan 2008 | WO |
2008006023 | Jan 2008 | WO |
2008091809 | Jul 2008 | WO |
2009137541 | Nov 2009 | WO |
2010001032 | Jan 2010 | WO |
2010052573 | May 2010 | WO |
2010055328 | May 2010 | WO |
2010055328 | May 2010 | WO |
2010117446 | Oct 2010 | WO |
2013019677 | Feb 2013 | WO |
Entry |
---|
Canadian Office Action for CA 2,580,309 dated Mar. 20, 2012 (6 pages). |
PCT International Search Report of the International Searching Authority for PCT/US05/31400, dated Sep. 25, 2007, 2 pages. |
Scarne's Encyclopedia of Games by John Scarne, 1973, “Super Contract Bridge”, p. 153. |
Specification of Australian Patent Application No. 31577/95, filed Jan. 17, 1995, Applicants: Rodney G. Johnson et al., Title: Card Handling Apparatus. |
Specification of Australian Patent Application No. Not Listed, filed Aug. 15, 1994, Applicants: Rodney G. Johnson et al., Title: Card Handling Apparatus. |
Statement of Relevance of Cited References, Submitted as Part of a Third-Party Submission Under 37 CFR 1.290 on Dec. 7, 2012 (12 pages). |
DVD Labeled “Luciano Decl. Ex. K”. This is the video taped live Declaration of Mr. Luciano (see list of patents on the 1449 or of record in the file history) taken during preparation of litigation (Oct. 23, 2003). DVD sent to Examiner by US Postal Service with this PTO/SB/08 form. |
DVD labeled Morrill Decl. Ex. A:. This is the video taped live Declaration of Mr. Robert Morrill, a lead trial counsel for the defense, taken during preparation for litigation. He is describing the operation of the Roblejo Prototype device. See Roblejo patent in 1449 or of record (Jan. 15, 2004). DVD sent to Examiner by US Postal Service with this PTO/SB/08 form. |
DVD Labeled “Solberg Decl. Ex. C”. Exhibit C to Declaration of Hal Solberg, a witness in litigation, signed Dec. 1, 2003. DVD sent to Examiner by US Postal Service with this PTO/SB/08 form. |
DVD labeled “Exhibit 1”. This is a video taken by Shuffle Master personnel of the live operation of a CARD One2Six™ Shuffler (Oct. 7, 2003). DVD sent to Examiner by US Postal Service with this PTO/SB/08 form. |
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 1 of 23 (Master Index and Binder 1, 1 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 2 of 23 (Master Index and Binder 1, 2 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 3 of 23 (Binder 2, 1 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 4 of 23 (Binder 2, 2 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 5 of 23 (Binder 3, 1 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 6 of 23 (Binder 3, 2 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 7 of 23 (Binder 4, 1 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 8 of 23 (Binder 4, 2 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 9 of 23 (Binder 5 having no. contents; Binder 6, 1 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 10 of 23 (Binder 6, 2 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 11 of 23 (Binder 7, 1 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 12 of 23 (Binder 7, 2 of 2). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 13 of 23 (Binder 8, 1 of 5). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 14 of 23 (Binder 8, 2 of 5). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 15 of 23 (Binder 8, 3 of 5). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 16 of 23 (Binder 8, 4 of 5). |
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 17 of 23 (Binder 8, 5 of 5). |
Documents submitted in case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 18 of 23 (color copies from Binder 1). |
Documents submitted in case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 19 of 23 (color copies from Binder 3). |
Documents submitted in case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 20 of 23 (color copies from Binder 4). |
Documents submitted in case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 21 of 23 (color copies from Binder 6). |
Documents submitted in case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 22 of 23 (color copies from Binder 8, part 1 of 2). |
Documents submitted in case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 23 of 23 (color copies from Binder 8, part 2 of 2). |
PCT International Written Opinion of the International Searching Authority for PCT/US05/31400, dated Sep. 25, 2007, 6 pages. |
PCT International Preliminary Report on Patentability of the International Searching Authority for PCT/US05/31400, dated Oct. 16, 2007, 7 pages. |
“ACE, Single Deck Shuffler,” Shuffle Master, Inc., (2005), 2 pages. |
“Automatic casino card shuffle,” Alibaba.com, (last visited Jul. 22, 2014), 2 pages. |
“Error Back propagation,” http://willamette.edu˜gorr/classes/cs449/backprop.html (4 pages), Nov. 13, 2008. |
“i-Deal,” Bally Technologies, Inc., (2014), 2 pages. |
“shufflers—SHFL entertainment,” Gaming Concepts Group, (2012), 6 pages. |
“Tag Archives: Shuffle Machine,” Gee Wiz Online, (Mar. 25, 2013), 4 pages. |
1/3″ B/W CCD Camera Module EB100 by EverFocus Electronics Corp., Jul. 31, 2001, 3 pgs. |
Christos Stergiou and Dimitrios Siganos, “Neural Networks,” http://www.doc.ic.ac.uk/˜nd/surprise—96/journal/vol4/cs11/report.html (13 pages), Dec. 15, 2011. |
European Patent Application Search Report—European Patent Application No. 06772987.1, Dec. 21, 2009. |
Genevieve Orr, CS-449: Neural Networks Willamette University, http://www.willamette.edu/˜gorr/classes/cs449/intro.html (4 pages), Fall 1999. |
http://www.google.com/search?tbm=pts&q=Card+handling+devicve+with+input+and+outpu . . . Jun. 8, 2012. |
http://www.google.com/search?tbm=pts&q=shuffling+zone+onOopposite+site+of+input+. . . Jul. 18, 2012. |
Litwiller, Dave, CCD vs. CMOS: Facts and Fiction reprinted from Jan. 2001 Issue of Photonics Spectra, Laurin Publishing Co. Inc. (4 pages). |
Malaysian Patent Application Substantive Examination Adverse Report—Malaysian Patent Application Serial No. PI 20062710, Sep. 6, 2006. |
PCT International Preliminary Examination Report for corresponding International Application No. PCT/US02/31105 filed Sep. 27, 2002. |
PCT International Search Report and Written Opinion—International Patent Application No. PCT/US2006/22911, Dec. 28, 2006. |
PCT International Search Report and Written Opinion for International Application No. PCT/US2007/023168, dated Sep. 12, 2008, 8 pages. |
PCT International Search Report and Written Opinion for International Application No. PCT/US2007/022858, mailed Apr. 18, 2008, 7 pages. |
PCT International Search Report and Written Opinion for PCT/US07/15036, dated Sep. 23, 2008, 3 pages. |
PCT International Search Report and Written Opinion for PCT/US07/15035, dated Sep. 29, 2008, 3 pages. |
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/GB2011/051978, dated Jan. 17, 2012, 11 pages. |
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/IB2013/001756, dated Jan. 10, 2014, 7 pages. |
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US11/59797, datedMar. 27, 2012, 14 pages. |
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US13/59665, dated Apr. 25, 2014, 21 pages. |
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US2008/007069, dated Sep. 8, 2008, 10 pages. |
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US2010/001032, dated Jun. 16, 2010, 11 pages. |
PCT International Search Report and Written Opinion, PCT Application No. PCT/US2013/062391, Dec. 17, 2013, 13 pages. |
PCT International Search Report and Written Opinion, PCT/US12/48706, Oct. 16, 2012, 12 pages. |
PCT International Search Report for International Application No. PCT/US2003/015393, mailed Oct. 6, 2003. |
PCT International Search Report for PCT/US2005/034737 dated Apr. 7, 2006 (WO06/039308). |
PCT International Search Report for PCT/US2007/022894, dated Jun. 11, 2008, 2 pages. |
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US05/31400, dated Sep. 25, 2007, 8 pages. |
Philippines Patent Application Formality Examination Report—Philippines Patent Application No. 1-2006-000302, Jun. 13, 2006. |
Press Release for Alliance Gaming Corp., Jul. 26, 2004—Alliance Gaming Announces Control with Galaxy Macau for New Mind Play Baccarat Table Technology, http://biz.yahoo.com/prnews. |
Service Manual/User Manual for Single Deck Shufflers: BG1, BG2 and BG3 by Shuffle Master © 1996. |
Shuffle Master Gaming, Service Manual, ACETM Single Deck Card Shuffler, (1998), 63 pages. |
Shuffle Master Gaming, Service Manual, Let It Ride Bonus® With Universal Keypad, 112 pages, © 2000 Shuffle Master, Inc. |
Shuffle Master's Reply Memorandum in Support of Shuffle Master's Motion for Preliminary Injunction for Shuffle Master, Inc. vs. VendingData Corporation, in the U.S. District Court, District of Nevada, No. CV-S-04-1373-JCM-LRL, Nov. 29, 2004. |
Singapore Patent Application Examination Report—Singapore Patent Application No. SE 2008 01914 A, Aug. 6, 2006. |
tbm=pts&hl=en Google Search for card handling device with storage area, card removing system pivoting arm and processor . . . ; http://www—google.com/? tbm=pts&hl=en; Jul. 28, 2012. |
Tracking the Tables, by Jack Bularsky, Casino Journal, May 2004, vol. 17, No. 5, pp. 44-47. |
United States Court of Appeals for the Federal Circuit Decision Decided Dec. 27, 2005 for Preliminary Injuction for Shuffle Master, Inc. vs. VendingData Corporation, in the U.S. District Court, District of Nevada, No. CV-S-04-1373-JCM-LRL. |
VendingData Corporation's Answer and Counterclaim Jury Trial Demanded for Shuffle Master, Inc. vs. VendingData Corporation, in the U.S. District Court, District of Nevada, No. CV-S-04-1373-JCM-LRL, Oct. 25, 2004. |
VendingData Corporation's Opposition to Shuffle Master Inc.'s Motion for Preliminary Injection for Shuffle Master, Inc. vs. VendingData Corporation, in the U.S. District Court, District of Nevada, No. CV-S-04-1373-JCM-LRL, Nov. 12, 2004. |
VendingData Corporation's Responses to Shuffle Master, Inc.'s First set of interrogatories for Shuffler Master, Inc. vs. VendingData Corporation, in the U.S. District Court, District of Nevada, No. CV-S-04-1373-JCM-LRL, Mar. 14, 2005. |
PCT International Search Report and Written Opinion, PCT Application No. PCT/US2015/022158, Jun. 17, 2015, 13 pages. |
PCT International Search Report and Written Opinion, PCT Application No. PCT/US2015/040196, Jan. 15, 2016, 20 pages. |
Number | Date | Country | |
---|---|---|---|
20140125010 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13411922 | Mar 2012 | US |
Child | 14154059 | US | |
Parent | 10940420 | Sep 2004 | US |
Child | 13411922 | US |