1. Field of the Invention
The present invention relates to a shunt switch using MEMS (Micro Electro Mechanical Systems: micromachine), a semiconductor device, a module and an electronic device each of which includes the shunt switch.
2. Description of the Related Art
With a recent improvement in integration technology, technology for electronic devices to reduce their sizes and weights and achieve lower voltage operation, lower power consumption and higher frequency operation is advancing rapidly. In particular, in technology for mobile communication devices such as cellular phones, in addition to the above-described rigorous demands, higher performance is demanded, so as one of techniques for solving these conflicting issues, attention has been given to MEMS. The MEMS are systems in which a micro-mechanical element and an electronic circuit element are integrated by a silicon process technique, and in Japan, the MEMS are mostly called micromachine. Small and low-cost SoCs (Systems-on-a-chip) with higher performance are achievable by superior characteristics such as high precision processing of MEMS technology.
In the technology of mobile communication devices, various semiconductor devices using MEMS technology have been developed, and one of them is a switch for mechanically connecting and disconnecting a signal line which transmits a high-frequency signal. In switches for high frequency in related art, a shunt type switch in which a transmission line is connected to a ground through a shunt line in an OFF state as described in, for example, Japanese Unexamined Patent Application Publication No. 2003-264122 is used more widely than a series type switch in which a transmission line is physically disconnected in an OFF state.
For example, in a shunt switch in Japanese Unexamined Patent Application Publication No. 2003-264122, while a transmission line and a ground line are arranged on a substrate, a moving electrode as a shunt line is arranged above the substrate, and the transmission line is connected to a ground by bringing the moving electrode into contact with the transmission line and the ground line.
However, in such a shunt switch for high frequency in related art, typically, frequency characteristics of insertion loss are good, but frequency characteristics of isolation are poor. The isolation of the shunt switch is defined as 10 Log(Z1/Z2) with use of an impedance Z1 of a shunt line and an impedance Z2 of a transmission line, and typically an isolation of −20 dB to −40 dB is necessary. The impedance Z2 of the transmission line has an upper limit so as to keep an insertion loss approximately 1 dB, so in order to improve isolation, it is desirable to reduce only the impedance Z1 of the shunt line. However, in related art, it is difficult to reduce the impedance Z1 of the shunt line while maintaining the impedance Z2 of the transmission line.
In other words, the impedance Z1 of the shunt line is allowed to be reduced, for example, by increasing the dimensions of the moving electrode as the shunt line to increase a contact area with the transmission line. However, in such a case, the resistance of a path where a signal returns to the transmission line through the shunt line is also reduced, thereby a so-called return signal is easily generated.
It is desirable to provide a shunt switch allowed to improve isolation.
Moreover, it is desirable to provide a semiconductor device, a module and an electronic device each of which includes the shunt switch.
According to an embodiment of the invention, there is provided a shunt switch including: a transmission line, a ground; and a shunt line electrically coupling the transmission line and the ground, in which two or more of the shunt lines are arranged in parallel to one another, and an impedance between the two or more shunt lines is higher than an impedance of the transmission line.
According to an embodiment of the invention, there is provided a semiconductor device including the shunt switch according to the above-described embodiment of the invention. According to an embodiment of the invention, there are provided a module and an electronic device each including the semiconductor device according to the embodiment of the invention.
In the shunt switch, the semiconductor device, the module and the electronic device according to the embodiment of the invention, in an ON state (an open operation), the transmission line and the ground are not electrically coupled, and, for example, a high-frequency signal is transmitted in the transmission line. In an OFF state (a close operation), the transmission line is connected to the ground through the shunt line. In this case, two or more of the shunt lines are arranged in parallel to one another, and an impedance between the shunt lines is higher than an impedance of the transmission line, so the generation of a return signal through the shunt lines is reduced, and an impedance of each shunt line is reduced. Therefore, isolation in the OFF state (the close operation) is improved.
In the shunt switch according to the embodiment of the invention, two or more of the shunt lines are arranged in parallel to one another, and the impedance between the shunt lines is higher than the impedance of the transmission line, so isolation is improvable. Therefore, in the semiconductor device, the module and the electronic device each of which includes the shunt switch, an improvement in high-frequency characteristics are achievable.
Other and further objects, features and advantages of the invention will appear more fully from the following description.
Preferred embodiments will be described in detail below referring to the accompanying drawings.
The transmission line 11 is a signal line transmitting a signal, for example, a high-frequency signal between an input port Vin and an output port Vout. The shunt lines 13 connect the transmission line 11 to the ground 12 by electrically coupling the transmission line 11 and the ground 12 to each other, and have a sufficiently small impedance Z1, compared to an impedance Z2 of the transmission line 11.
Two or more of the shunt lines 13 (in
The configuration of such a shunt switch 10 will be described below in comparison with a shunt switch in related art.
As described above, the isolation of the shunt switch 110 illustrated in
As one of methods of reducing the impedance Z1 of the shunt line 113, for example, as illustrated in
As a method of preventing the return signal, as illustrated in
On the other hand, in the shunt switch 10 according to the embodiment illustrated in
In addition, it is obvious that the same applies to the case where in
Next, functions of the shunt switch 10 will be described below.
In the shunt switch 10, in an ON state (an open operation), as illustrated in
In this case, two or more shunt lines 13 are arranged in parallel to one another, and each of the impedances Z3 between the shunt lines 13A to 13C is higher than the impedance Z2 of the transmission line 11, so the generation of a return signal having passed through the shunt lines 13A to 13C is reduced, and the impedance Z1 of each of the shunt lines 13A to 13C is reduced. Therefore, isolation in the OFF state (a close operation) is improved without impairing insertion loss characteristics in the ON state (an open operation).
Specific embodiments of the shunt switch 10 having the circuit configuration illustrated in
(1) Equivalent circuit
(2) First embodiment (an example in which two shunt lines are arranged in parallel to each other near an input port and an output port, respectively, and perform a horizontal operation)
(3) Modification 1 (an example in which two shunt lines are arranged in parallel to each other near an input port)
(4) Second embodiment (an example in which a projection for contact with a fixed electrode is included in a central part of a transmission line)
(5) Modification 2 (an example in which a fixed electrode includes a projection for contact with a central part of a transmission line)
(6) Modification 3 (an example using a bimetal)
(7) Modification 4 (an example performing a vertical operation)
(8) Application examples
Equivalent Circuit
Connection between the moving electrode 16, and the transmission line 11 and the ground 12 may be of a direct contact type in which surfaces of metals as illustrated in
Examples of the substrate 21 include substrates made of Si-based semiconductors such as silicon (Si), silicon carbide (SiC), silicon-germanium (SiGe) and silicon-germanium-carbon (SiGeC). Moreover, as the substrate 21, a non-Si-based substrate made of glass, a resin or plastic may be used. An insulating film 22 made of silicon oxide (SiO2), silicon nitride (SiN) or a laminate film including a SiN film and a SiO2 film is arranged on a surface of the substrate 21, and the substrate 21, the transmission line 11 and the ground line 17 are electrically separated from one another by the insulating film 22.
The transmission line 11 is arranged as a linear fixed electrode on the insulating film 22 on the surface of the substrate 21. The input port Vin and the output port Vout are arranged at one end and the other end of the transmission line 11, respectively.
The ground line 17 is arranged as a fixed electrode which is set to a ground potential on the insulating film 22 on the surface of the substrate 21. The ground line 17 has, for example, a rectangular shape without one side, and is arranged so that three sides of the transmission line 11 are surrounded by the ground line 17.
Two or more moving electrodes 16 are arranged separately from one another on a moving section 23 which is displaceable with respect to the transmission line 11 and the ground line 17. The two or more moving electrodes 16 are insulated from one another by the insulating film 22 arranged on a surface of the moving section 23. Thereby, in the shunt switch 10, as described above referring to
The moving section 23 is formed as one unit with the substrate 21 by processing the substrate 21 with use of a MEMS technique, and is displaceable in a horizontal direction with respect to the surface of the substrate 21. In other words, the shunt switch 10 is classified into a so-called lateral switch in which the transmission line 11, the ground line 17 and the moving electrode 16 are arranged in one horizontal plane, and the moving electrode 16 on the moving section 23 is displaced in the horizontal direction.
The moving section 23 is linearly arranged in parallel to the transmission line 11, and one moving electrode 16 is arranged at each of both ends of the moving section 23. In other words, two moving electrodes 16 are arranged near the input port Vin and the output port Vout of the transmission line 11, respectively, and are arranged in parallel to each other with respect to a transmission signal passing through the transmission line 11. The two moving electrodes 16 each include projected contact points 16A and 16B corresponding to the transmission line 11 and the ground line 17.
The moving section 23 is coupled to one (for example, a comb electrode 24A) of a pair of comb electrodes 24A and 24B which are engaged with each other, and is displaceable by electrostatic force generated between the pair of comb electrodes 24A and 24B. The comb electrode 24B is fixed to the substrate 21. As in the case of the moving section 23, the comb electrodes 24A and 24B are formed by three-dimensionally processing a material of the substrate 21, for example, silicon (Si) with use of a known lithography technique. An electrode layer (not illustrated) is arranged on facing surfaces of comb-teeth parts of the comb electrodes 24A and 24B. In the comb electrodes 24A and 24B, in an ON operation, electromagnetic force as driving force is generated by voltage application from a power source (not illustrated), thereby the comb electrode 24A is attracted toward the comb electrode 24B, and the moving electrodes 16 are brought into contact with the transmission line 11 and the ground line 17 in synchronization with the comb electrode 24A.
The shunt switch 10 is manufacturable by, for example, the following steps.
First, as illustrated in
Next, as illustrated in
Then, as illustrated in
After the moving section 23 and the comb electrodes 24A and 24B are formed, the insulating film 22 made of the above-described material is formed on the surface of the substrate 21 by, for example, a CVD (Chemical Vapor Deposition) method or a PVD (Physical Vapor Deposition) method.
After that, as illustrated in
In the shunt switch 10, in the open operation (the ON state) illustrated in
After the close operation (the OFF state), when a command for the open operation (the ON state) is received, electromagnetic force between the comb electrodes 24A and 24B is released, and the moving electrodes 16 are separated from the transmission line 11 and the ground line 17 accordingly to return to positions in
Thus, in the embodiment, two or more moving electrodes 16 are arranged separately from one another on the moving section 23 which is displaceable with respect to the transmission line 11 and the ground line 17, and the two or more moving electrodes 16 are insulated from one another by the insulating film 22 arranged on the surface of the moving section 23, so isolation is improvable.
Next, modifications and other embodiments will be described below. In addition, like components are denoted by like numerals as of the first embodiment, and will not be further described.
Modification 1
The moving section 23 includes a pushing projection 26 facing the central part of the transmission line 11. The pushing projection 26 is brought into contact with the leaf spring 25 in response to displacement of the moving section 23 so as to deform the leaf spring 25, thereby the central part of the transmission line 11 is brought into contact with the ground line 17. The transmission line 11 preferably includes a contact projection 16C in a contact position between the transmission line 11 and the ground line 17, because the transmission line 11 and the ground line 17 are allowed to make contact with each other more firmly.
The pushing projection 26 is more preferably projected more toward the transmission line 11 than the moving electrodes 16. Thereby, the leaf spring 25 is pressed, and a side opposite to a side facing the pushing projection 26 of the leaf spring 25, that is, the central part of the transmission line 11 is allowed to be brought into contact with the ground line 17.
As in the case of the first embodiment, the impedance Z3 between the first and second shunt lines 13A and 13B is higher than the impedance Z2 of the transmission line 11. Moreover, an impedance Z5 between the third shunt line 13C and each of the first and second shunt lines 13A and 13B is higher than the impedance Z2 of the transmission line 11. Thereby, in the shunt switch 10B, isolation is improvable.
In the shunt switch 10B, in the case of the open operation (the ON state) illustrated in
In the open operation (the ON state), when a command for the close operation (the OFF state) is received, a predetermined voltage is applied to the comb electrodes 24A and 24B (not illustrated in
At this time, the pushing projection 26 arranged on the moving section 23 is brought into contact with the leaf spring 25 in response to displacement of the moving section 23 so as to bend and deform the leaf spring 25, thereby the central part (the third shunt line 13C) of the transmission line 11 is brought into contact with the ground line 17.
Thereby, as illustrated in
In this case, the impedance Z3 between the first and second shunt lines 13A and 13B is higher than the impedance Z2 of the transmission line 11. Moreover, the impedance Z5 between the third shunt line 13C and each of the first and second shunt lines 13A and 13B is higher than the impedance Z2 of the transmission line 11. Therefore, generation of a return signal passing through the first to third shunt lines 13A to 13C is reduced, and the impedances Z1 and Z4 of the shunt lines 13A to 13C are reduced. Therefore, isolation in the OFF state (the close operation) is improvable without impairing insertion loss characteristics in the ON state (the open operation).
Moreover, as illustrated in
After the close operation (the OFF state), when a command for the open operation (the ON state) is received, electromagnetic force between the comb electrodes 24A and 24B is released, and accordingly, the moving electrodes 16 are separated from the transmission line 11 and the ground line 17, and the central part of the transmission line 11 is separated from the ground line 17 to return to a position in
Moreover, in the first embodiment, it was obvious from a part A in
Modification 2
Modification 3
Two or more (in
The moving electrodes 16 also have a function as a high-refractive index material layer in the bimetal, and is preferably made of, for example, aluminum (Al), copper (Cu) or gold (Au), or an alloy including them as a base material, because processing is performed at low cost, and these materials are suitable for mass production.
The moving section 23 has a function as a low-expansion material layer in the bimetal, and one end of the moving section 23 is a fixed end fixed to the substrate 21 by a supporting section 31, and the other end of the moving section 23 is a moving end which is allowed to expand and contract or bend in a vertical direction by the bimetal. The moving section 23 is made of, for example, silicon (Si), polycrystalline silicon (polysilicon), a resin material such as polyimide or BCB (benzocyclobutene), or a dielectric film such as SiN or SiO2. The supporting section 31 is made of silicon, polycrystalline silicon or the like, and is grounded.
These two or more moving electrodes 16 are insulated from one another, for example, by forming the moving section 23 of an insulating material or by arranging an insulating film (not illustrated) on a surface of the moving section 23. Thereby, in the shunt switch 10D, as described referring to
The transmission line 11 and two ground lines 17 are arranged on the substrate 21 to face the moving end of the moving section 23. The two ground lines 17 are arranged on both sides of the transmission line 11, respectively. One of the moving electrodes 16 faces the transmission line 11 and one of the two ground lines 17. The other moving electrode 16 faces the transmission line 11 and the other one of the two ground lines 17.
In the shunt switch 10D, at room temperature, the moving section 23 and the moving electrode 16 forming the bimetal are in a straight state as illustrated in
In addition, this modification is applicable to the case where the moving electrodes 16 are deformed by not only heat drive such as bimetal but also piezoelectric drive, electrostatic drive and electromagnetic drive.
Moreover, as illustrated in
Modification 4
In the shunt switch 10E, in an open operation (an ON state) illustrated in
After the close operation (the OFF state), when a command for the open operation (the ON state) is received, electromagnetic force between the electrostatic drive moving electrode 28 and the ground line 17 is released, and the moving electrodes 16 are separated from the transmission line 11 and the ground line 17 accordingly to return to positions in
In addition, the modification is applicable to not only the above-described electrostatic actuator but also any other drive system using an actuator by a so-called MEMS function such as a piezo actuator, an electromagnetic actuator or a bimetal actuator.
Next, referring to
In the communication device illustrated in
The transmission circuit 300A includes two digital/analogue converters (DAC) 311I and 311Q and two bandpass filters 312I and 312Q corresponding to I-channel transmission data and Q-channel transmission data, respectively, a modulator 320 and a transmission PLL (Phase-Locked Loop) circuit 313, and a power amplifier 314. The modulator 320 includes two buffer amplifiers 321I and 321Q and two mixers 322I and 322Q corresponding to the above-described two bandpass filters 312I and 312Q, respectively, a phase shifter 323, an adder 324 and a buffer amplifier 325.
The reception circuit 300B includes a high-frequency section 330, a bandpass filter 341 and a channel selection PLL circuit 342, an intermediate-frequency circuit 350 and a bandpass filter 343, a demodulator 360 and an intermediate-frequency PLL circuit 344, and two bandpass filters 345I and 345Q and two analogue/digital converters (ADCs) 346I and 346Q corresponding to I-channel reception data and Q-channel reception data, respectively. The high-frequency section 330 includes a low-noise amplifier 331, buffer amplifiers 332 and 334 and a mixer 333, and the intermediate-frequency circuit 350 includes buffer amplifiers 351 and 353 and an auto gain controller (AGC) circuit 352. The demodulator 360 includes a buffer amplifier 361, two mixers 362I and 362Q and two buffer amplifiers 363I and 363Q corresponding to the above-described two bandpass filters 345I and 345Q, respectively, and a phase shifter 364.
In the communication device, when I-channel transmission data and Q-channel transmission data are inputted into the transmission circuit 300A, the transmission data are processed in the following order. First, the transmission data are converted into analog signals in the DAC 311I and 311Q, and signal components except for frequency bands of transmission signals are removed from the analog signals in the bandpass filters 312I and 312Q, and then the analog signals are supplied to the modulator 320. Next, in the modulator 320, the analog signals are supplied to the mixers 322I and 322Q through the buffer amplifiers 321I and 321Q, and are modulated by mixing the analog signals with a frequency signal corresponding to a transmission frequency supplied from transmission PLL circuit 313 to form mixed signals, and the mixed signals are added in the adder 324 to form a transmission signal of one channel. At this time, the phase of a frequency signal supplied to the mixer 322I is shifted by 90° in the phase shifter 323 so that an I-channel signal and a Q-channel signal are quadrature-modulated with each other. Finally, the signal is supplied to the power amplifier 314 through the buffer amplifier 325 so that the signal is amplified to be predetermined transmission electric power. A signal amplified in the power amplifier 314 is supplied to the antenna 303 through the transmit/receive switching device 301 and the high-frequency filter 302 to be transmitted through the antenna 303 by radio. The high-frequency filter 302 functions as a bandpass filter removing a signal component except for a frequency band from a signal to be transmitted or received in the communication device.
On the other hand, when a signal is received in the reception circuit 300B from the antenna 303 through the high-frequency filter 302 and the transmit/receive switching device 301, the signal is processed in the following steps. First, in the high-frequency section 330, the received signal is amplified in the low-noise amplifier 331, and a signal component except for a reception frequency band is removed from the signal in the bandpass filter 341, and then the signal is supplied to the mixer 333 through the buffer amplifier 332. Next, the signal is mixed with a frequency signal supplied from the channel selection PPL circuit 342 so that a predetermined transmission channel signal is formed as a intermediate-frequency signal, thereby the intermediate-frequency signal is supplied to the intermediate-frequency circuit 350 through the buffer amplifier 344. Next, in the intermediate-frequency circuit 350, the intermediate-frequency signal is supplied to the bandpass filter 343 through the buffer amplifier 351 to remove a signal component except for a band of the intermediate-frequency signal to form a substantially constant gain signal in the AGC circuit 352, and the gain signal is supplied to the demodulator 360 through the buffer amplifier 353. Next, in the demodulator 360, the signal is supplied to the mixers 362I and 362Q through the buffer amplifier 361, and then the signal is mixed with a frequency signal supplied from the intermediate-frequency PPL circuit 344 to demodulate an I-channel signal component and a Q-channel signal component. At this time, the signal phase of the frequency signal supplied to the mixer 362I is shifted by 90° in the phase shifter 364, thereby the I-channel signal component and the Q-channel signal component which are quadrature-modulated with each other are demodulated. Finally, the I-channel signal and the Q-channel signal are supplied to the bandpass filters 345I and 345Q, respectively, to remove signal components except for the I-channel signal and the Q-channel signal, and then the I-channel signal and the Q-channel signal are supplied to the ADCs 346I and 346Q, respectively, as digital data. Thereby, I-channel reception data and Q-channel reception data are obtained.
The communication device includes the shunt switch described in the above-described respective embodiment as the transmit/receive switching device 301, so the communication device has superior high-frequency characteristics by functions described in the above-described embodiments.
In addition, in the communication device illustrated in
Although the present invention is described referring to the embodiments, the invention is not limited thereto, and may be variously modified. For example, the material, thickness of each layer, the film formation method of each layer, and the like are not limited to those described in the above-described embodiments, and each layer may be made of any other material with any other thickness by any other film formation method.
Moreover, in the above-described embodiments, the configurations of the shunt switches 10 and 10A to 10E are described in detail, but it is not necessary to include all components, or any other component may be further included.
The present application contains subject matter related to that disclosed in Japanese Priority Patent Application JP 2009-175190 filed in the Japan Patent Office on Jul. 28, 2009, the entire content of which is hereby incorporated by reference.
It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and alterations may occur depending on design requirements and other factors insofar as they are within the scope of the appended claims or the equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
2009-175190 | Jul 2009 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7061315 | Merrill | Jun 2006 | B2 |
20080078662 | Naito et al. | Apr 2008 | A1 |
20080111652 | Abbaspour-Tamijani et al. | May 2008 | A1 |
Number | Date | Country |
---|---|---|
2003-264122 | Sep 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20110024273 A1 | Feb 2011 | US |