The described embodiments relate generally to electronic eyewear. More particularly, the described embodiments relate to apparatuses, methods and systems for shutter glasses.
In newborn children, the nerves and brain function that control eye movement and image processing begin to converge during the first 9 months after birth. Sometimes this natural process can go wrong and their eyes can start to cross inward (esotropia) or separate outwards (exotropia). This can prevent the brain from receiving simultaneous overlapping images from each eye to provide a true 3D depth realization. Surgery is sometimes needed to bring the eyes back into reasonable alignment but the brain still may suppress one eye or the other. In other situations, though the eyes are aligned, one eye can become dominant and the other “lazy” (amblyopia). Again the brain needs to learn how to process the images from both eyes simultaneously and equally. The nerves that control the eye muscles and receive the input of each eye need to be trained such as for binocular or stereo vision.
In small children with vision problems, the best results happen if therapy is started before the age of six when the wiring becomes mostly permanent. The older the child gets, the harder it is to correct the defects. So their defective eyesight should be corrected as early as possible. However, there are challenges in working with very young children. For example, they have more difficulty comprehending the need for the therapy; and they may not be able to execute instructions for vision therapy, particularly when the tasks are boring to them. The challenge is further exacerbated when the training session requires performing certain tasks repetitively for a long duration of time.
Instead of performing vision therapy, some parents opt for corrective eye surgery. For example, surgery could bring crossed eye back into near alignment. However, even after the surgery, their brain still prefers to use one eye over another. They need to be trained or to be retrained to see with both eyes.
Such eye defects are not limited to small children. Adults may need vision therapy also. For example, according to one study, two or more percent of the population in the United States do not have stereo vision.
It is desirable to have methods, systems and apparatuses for providing vision therapy to address the eye ailments described above.
An embodiment includes an apparatus. The apparatus includes a first lens operable to blank for a first blocking time, a second lens operable to blank for a second blocking time, and a controller for controllably setting at least one of the first blocking time and the second blocking time.
Another embodiment includes a method of providing vision therapy to a user. The method includes blanking a first lens of shutter glasses being worn by the user for a first blocking time, blanking a second lens of shutter glasses being worn by the user for a second blocking time, and controllably setting at least one of the first blocking time and the second blocking time.
One of the described embodiments encourages the use of both eyes simultaneously so that the brain does not suppress input from one eye. Another embodiment forces an amblyopic eye to work harder.
In one embodiment, the lenses could be LCD lenses.
One embodiment shutters the two lenses by alternately blanking the left and the right lens back and forth. For example, the shuttering speed of the lenses can be adjusted. This can be done, for example, by a knob, a slider or a small dial on the corresponding frame to program the frequency of the blanking. The switching speed can range from a few milliseconds to a short number of seconds. In another example, the switching frequency can range from 1 Hz to 15 Hz (such as in 1 Hz increment). In yet another example, the switching frequency can range from 6 to 10 Hz (such as in 0.5 Hz increment).
In another embodiment, the duty cycle of the blanking of the left and the right lens during the switching can be controlled. For example, their phase relationship can be 90 degrees, or at some other degrees. In another example, an amblyopic eye can be forced to work harder by having its corresponding lens turned on longer than the other lens. In yet another example, the shutter lenses can have different blocking times for each lens depending on which eye is more dominant or lazy.
In one embodiment, the different attributes of the shutter lenses can be programmable via switches on the corresponding frame or wirelessly via a remote control.
In one embodiment, the shutter lenses with the corresponding control circuitry and power source can be in a secondary frame (e.g., auxiliary frame), which is attachable to a primary frame (which can be a frame supporting prescription lenses) via different mechanisms, such as magnets or clips.
In one embodiment, the shutter lenses with the corresponding control circuitry and power source can be in a fit-over frame that can fit over another frame.
In one embodiment, the shutter lenses can be integrated into prescription lenses providing focal correction, such as bi-focal, tri-focal, prism, etc.
In one embodiment, the shutter lenses can auto-modulate to provide shading capability when used in sunny areas while still providing alternating vision blocking as described above.
In one embodiment, the shutter glasses are rechargeable or include power sources, such as a battery, to allow the glasses to perform its operation over a duration of time, such as a few hours.
In one embodiment, the shutter glasses may be secured from the back with a functional strap, such as a lanyard, that may contain the control circuitry and power source. This can provide additional ergonomic qualities and securing for active patients.
In one embodiment, the shutter glasses can be marketed to optometrists and ophthalmologists.
In yet another embodiment, the shutter frequency for the two lenses can be independently controlled.
For an embodiment, a controller 120 provides control of at least one of frequency or blocking period (blocking time) of at least one of the first lens 110 or the second lens 112. For an embodiment, the left lens 110 operable to blank for a first blocking time, the right lens operable to blank for a second blocking time, and the controller 120 controllably sets at least one of the first blocking time and the second blocking time. For an embodiment, the control of at least one of frequency or blocking period is adjustable. For an embodiment, the control of the first lens 110 is independent of the control of the second lens 112. For an embodiment, the controller 120 is at least partially controlled by switches 130 that provide at least one of on/off control, frequency control, and/or duty cycle control. For an embodiment, the frequency of the shuttering (switching from a non-block condition or state to a blocking condition or state) is the same for both lenses, but the blocking time or duty cycle of one lens is different than the blocking time or duty cycle of the other lens, thereby forcing one eye of a user to work harder than the other eye.
For an embodiment, the controller 120 is operable to access operational settings of at least the frequency and/or duty cycle from operational setting storage 140. For an embodiment, the operational settings can be adaptively updated depending upon an eye ailment a user of the shutter glasses is suffering from. Additionally, for an embodiment, the storage 140 is used for storing monitoring information that can be accessed.
An embodiment includes a controller 230 that controls at least one of frequency or blocking times of at least one of a left lens 210 and a right lens 212. The controller 230 can interface with an external controller.
For an embodiment, the controller 230 interfaces with a lens driver 220 that drives states of the left lens 210 and the right lens 212. For an embodiment, the lenses 210, 212 include LCD lenses. Accordingly, for this embodiment, the lens driver is an LDC lens driver.
For an embodiment, the states of the left lens 210 and the right lens 212 include a blocking state (the lens being opaque and not letting light pass through) and a non-blocking state (the lens being transparent and letting a majority of light pass through). An embodiment includes intermediate states that allow varying amount of light pass through the lenses depending upon the intermediate state. The process of blanking includes the lenses alternating between blocking and non-blocking.
For an embodiment, the controller 230 interfaces with memory 250. For an embodiment, the controller 230 accesses from the memory 250 stored operational modes of the states of the left lens 210 and the right lens 212. For an embodiment, the controller 230 stores operational information of the shuttering glasses in the memory 250 for future access. For an embodiment, the operational information includes user usage of the shuttering glasses. For an embodiment, the operational information includes monitored or collected information of the user. The monitored information can be access by an external controller, thereby allowing determination of compliance by the user of the shutter glasses. That is, compliance by the user properly wearing the shutter glasses for a prescribed duration of time can be determined by accessed storage of wearing times and patterns by the user of the shutter glasses.
An embodiment includes power management 240 of the shuttering glasses. For an embodiment, the shuttering glasses include a battery. For an embodiment, a charging unit 242 controls charging of the battery. An embodiment includes a power switch 244. For an embodiment, the power management 240 provides and distributes electrical power to, for example, at least one of the lens driver 220, the controller 230, the memory 250, wireless communication circuitry, a touch sensor 235, an LED (light emitting diode) 236, a USB (universal serial bit) interface 232, a contact sensor 233 and/or a buzzer 234.
An embodiment includes wireless communication circuitry 260 that allows the controller 230 to communicate with an external controller. For an embodiment, wireless communication circuitry 260 is two-way in that the controller 230 can either provide the external controller with information, or the controller 230 can receive information from the external controller. An embodiment further includes an antenna 262 for enabling the wireless communication. The wireless communication can be continuous or intermittent.
An embodiment includes the touch sensor 235. For an embodiment the touch sensor 235 allows a user to communicate with the controller 230. For an embodiment, the touch sensor 235 allows the controller 230 to monitor the user of the shutter glasses.
An embodiment includes the LED 236. For an embodiment, the LED 236 allows the shutter glasses to provide visual communication to, for example, the user. For an embodiment, the LED 236 provides a visual indicator that the shutter glasses have electrical power indicating, for example, that the shutter glasses are electrically turned on.
An embodiment includes the USB port 232 for providing wired communication to or from the controller 230. For example, an external controller can communicate with the controller 230 through the USB port 232.
An embodiment includes the contact/proximity sensor 233. For an embodiment, the contact/proximity sensor 233 provides an indication that the shutter glasses are being worn. For an embodiment, the controller 230 monitors the usage (wearing of the shutter glasses) based on the contact/proximity sensor 233.
An embodiment includes the buzzer 234. For an embodiment, the buzzer 234 provides audible communication to, for example, the user. For an embodiment, the buzzer indicates to the user that the battery is low. For at least some embodiments, the buzzer is used to provide guidance to the user. For example, the buzzer can provide an indicator to the user to either take off or put the shutter glasses on.
At least one embodiment includes adjusting the level according to any desired sequence. For example, the level of block can be increased or decreased as desired or programmed. The level of blocking of either lens can be dependently or independently controlled.
One embodiment of the invention encourages the use of both eyes simultaneously so that the brain does not suppress input from one eye. Another embodiment helps an amblyopic eye to work harder. Other embodiments address other issues regarding the eyes.
As previously described, in a number of embodiments, the lenses of a pair of eyewear can be shuttered, and the shutter frequency can be adjusted. For example, the two lenses can be shuttered by alternately blanking the left and the right lens back and forth, with one lens shut and the other open, and vice versa. To illustrate, the shutter frequency can range from a few milliseconds to a few seconds. In one example, the shutter frequency can range from 1 Hz to 15 Hz. In another example, the shutter frequency can range from 6 to 10 Hz. In yet another example, the shutter frequency does not exceed the frequency where the shutter can be visually perceived by an average person. As to the increment within a range, the increment can be, for example, in 0.5 Hz, 1 Hz, 2 Hz, 3 Hz, or other increments.
In at least some embodiments, various ranges of shutter frequency for one or both of the two lenses are selectable. One embodiment includes a doctor or physician (or other) selecting the range or ranges of shutter frequency based at least in part on a vision or eye ailment of a patient or user. For example, a therapy of a first ailment may be optimally provided with a first range of shutter frequencies, and a therapy of a second ailment may be optimally provided with a second range of shutter frequencies. Other factors can influence the selected range of shutter frequency as well. For example, experimentation may determine that the desired shutter frequency changes with, for example, age, time, environment, race etc. One embodiment includes a doctor or physician (or other) selecting the shutter frequency based upon the results of one or more tests performed on the patient. For example, various ranges of shutter frequency may be tested by having the patient wear a pair of shutter glasses, and while wearing the shutter glasses operating at various shutter frequencies, having the patient perform one or more tests. As illustrations, one selected range can be from one to ten hertz. Another can extend the low end of the range to a period of one or more days.
One embodiment includes sensing when the patient is actually wearing a pair of shutter glasses. This can be done, for example, by incorporating a being-worn sensor in the glasses. The sensor can determine, for example, if the temples of the glasses are in the extended position. One embodiment further includes monitoring if the user is wearing the glasses. In one embodiment, a pair of shutter glasses includes a time sensor that times at least one of how long and how frequently the patient wears the glasses. For an embodiment, the time sensor is attached to, integral with, or being a part of the shutter glasses. For an embodiment, information related to the monitoring/sensing of the glasses is stored, such as in the glasses. For an embodiment, after stored, the monitoring information can be later retrieved, for example, by a doctor or physician to allow the physician to determine or gauge the compliance (e.g. duration of time of wearing the glasses) by the patient with the therapy suggested by the doctor of physician. The retrieval can be performed wired (e.g. via an electrical connector at the glasses) or wirelessly (e.g. via an infrared sensor at the glasses).
For one embodiment, a time sensor senses when the patient puts the shutter glasses on his/her head. As described, for an embodiment, this includes a “being worn” sensor. Another embodiment includes the time sensor being activated by a triggered event, such as, pressing a button or a switch located on the glasses.
In one embodiment, a motion detector is used as the “being worn” sensor. A threshold can be set, such that if the amount of motion exceeds the threshold, the eyewear is assumed to be worn. The motion detector can, for example, be achieved by a mechanical means or an accelerometer.
In another embodiment, the “being worn” sensor includes two thermal sensors. One sensor can be at approximately the middle of a temple, such as in a region that touches the head of the user wearing the glasses. The other sensor can be at the end of the temple, close to its hinge. If the temperature differential between the two sensors is beyond a certain preset value, the eyewear would be assumed to be worn. The differential is presumed to be caused by a person wearing the pair of glasses.
In yet another embodiment, the “being worn” sensor includes a stress sensor at the hinge of the temple. The assumption is that when the eyewear is worn, the hinge is typically slightly stretched because typically, the width of the head of the user is slightly wider than the width between the temples when the two temples are in the extended positions. If the value of the stress sensor is beyond a certain preset value, the glasses would be assumed to be worn.
In a further embodiment, the “being worn” sensor can be a switch. For example, at the hinge between a temple and its corresponding lens holder, there is a switch. When that temple is fully extended outwards, the switch is turned on. The switch can be a pin. When the temple is fully extended outwards, the pin is pressed. When both temples are fully extended outwards, in one embodiment, the glasses would be assumed to be worn by the user.
In addition to monitoring pertaining to the wearing of a pair of glasses by a patient, the monitoring can include monitoring the therapies applied to the patient. In yet another embodiment, the monitoring further includes monitoring characteristics of a patient. For example, eye movement or head movements of the patient while therapy is being applied through different types of sensors in the shutter glasses. Again, the monitoring information can be stored for later retrieval. For example, a doctor or physician can retrieve the monitoring information for not only a determination of compliance by the patient, but also to obtain additional patient information obtained while the patient is wearing the glasses and being treated with therapy provided by the shutter glasses.
In one embodiment with two lenses, the shuttering of each lens is controlled by a waveform, such as a voltage waveform, and the phase relationship between the waveforms of the two lenses can be adjusted. In one example, the phase can be approximately 90 degrees. In another example, the phase relationship can be at some other degrees.
In one embodiment, the shutter frequency of the two lenses can be independently controlled.
In one embodiment, the shutter lenses described herein can also modify its transmission or tint amount. As an example, the shutter lenses can auto-modulate to provide shading capability when used in sunny areas. As another example, the amount of transmission can be reduced manually, such as via a switch at the corresponding frame, if used before a bright monitor. It has been found that in some situations, the monitor brightness is directly related to computer-inflicted eye strain. In another embodiment, the two lenses of a frame can be independently adjustable for their transmission amount.
There can be different applications to changing the transmission coefficient. One example is for amblyopic eyes. The transmission coefficient of the lens for the good eye can be reduced to a very low level, such as 10% or less, or around 5%, instead of substantially blocking all the light to the good eye. Some users may feel more comfortable if their eyes could see something, instead of having all their vision blocked.
Another application regarding tinting or mirroring the lenses of a pair of shutter glasses is to make the shuttering less conspicuous. The low-frequency shuttering of the glasses may be visible to others who are proximate to the patient, thereby potentially drawing unwanted attention to the patient. This unwanted attention may cause the patient to not wear the glasses or wear the glasses less. By tinting or mirroring the lenses of the glasses, the effects of the shuttering may be at least partially disguised, thereby reducing the potential of unwanted attention by others. The tinting or mirroring of the lenses can be realized by, for example, coating the lenses with a mirror coat. In one embodiment, such coating can be known as a flash coating or a REVO coating.
In one embodiment, the transmission coefficient of a lens is not uniform across the lens. For example, the lens can be separated into zones. Using liquid crystal as an example, a lens driver circuit can provide electrical signals to one or more zones as in addressing liquid crystal display panels. To illustrate, the zones can be columns or vertical zones. As another illustration, the zones can be rows across a lens. In yet another illustration, a zone can be a region where a row intersects a column. With columns as an example, each column can be individually addressable by its corresponding conductors to control its transmission coefficient. One application of such an implementation is to train the brain to move an eye to areas of a lens where the eye could see. Assume that each of the two lenses of a pair of glasses is separated into ten evenly-spaced columns. After detailed analysis, an optometrist decides to block light, or at least a portion of the light, coming into the left side of the left eye so as to encourage the left eye to move more towards the nose. Then the optometrist operates the lens driver circuit so that the left three columns of the left lens block off light, with the remaining seven columns allowing light to go through. In another implementation, the lens driver circuit could implement a discrete gradient change in any direction using programmable transmission for each column.
In one embodiment, the transition for shuttering is not abrupt, but is gradual. In other words, the rate of change of the transmission coefficient can be gradually, such as in a linear or sinusoidal fashion, or via other types of waveforms. In some situations, a more gradual change in the transmission coefficient, such as during shuttering, can be more soothing to the eyes.
In one embodiment where the shuttering transition is more abrupt, such as in the waveform of a substantially rectangular wave, the on/off duty cycle of the shuttering of the lenses can be controlled. In one example, the duty cycle is 50%. In another example, the duty cycle is at some other percentages. In another embodiment with two lenses, the duty cycle of each of the lenses can be independently controlled.
In one example, an amblyopic eye can be forced to work harder by having its corresponding lens turned on longer than the other lens. In another example, there can be different blocking times for each lens, depending on which eye is more dominant or lazy. In yet another example, the lens for the normal eye can be shuttered, while the lens for the amblyopic eye is left unblocked, or does not shutter.
In one embodiment with two lenses, the change in transmission characteristics of each lens is controlled by a waveform, and the waveforms for the two lenses can be different. The two waveforms can differ in frequency, transmission amount, the abruptness of the shuttering if applicable, and/or the on/off duty cycle if applicable.
In one embodiment, the one or more attributes of the shutter lenses can be programmable via one or more switches on the corresponding frame. Examples of switches on a frame can include a knob, a slider or a small dial on the corresponding frame to program, such as the frequency of the shuttering or blanking. In another example, the one or more attributes of the shutter lenses can be programmed wirelessly, such as by a remote control.
In one embodiment, the shutter lenses can be integrated into prescription lenses, providing focal correction, such as bi-focal, tri-focal, prism, etc.
In one embodiment, the shutter lenses are based on liquid crystal lens technologies.
In one embodiment, an eyewear includes a single lens. As an example, the lens could be a single wrap-around lens.
In one embodiment, a distance between each lens of, for example, a pair of shutter glasses is no less than 13 mm. That is, for shortest distance between lenses is no less than 13 mm.
In one embodiment, the electronics for the shutter lenses are in an eyewear frame with the shutter lenses. In another embodiment, the shutter lenses with the corresponding electronics, such as the control circuitry, can be in a secondary frame, which is attachable to a primary frame via different mechanisms, such as magnets. The primary frame can include a pair of prescription lenses. To illustrate, there can be a housing or a chassis holding prescription lenses, with the shutter lenses provided on the outside, such as via a clip-on. In another example, the shutter lenses with the corresponding control circuitry can be in a fit-over frame that can fit over another frame.
In one embodiment, the electronic eyewear with shutter glasses is rechargeable or includes power sources, such as a battery, to allow the glasses to perform its operation over a duration of time, such as a few hours.
In one embodiment, the shutter glasses may be secured from the back with a functional strap, such as a lanyard, that may contain the control circuitry and power source. This can provide additional ergonomic qualities and securing for active patients.
In one embodiment, the shutter glasses can be marketed to optometrists and ophthalmologists.
At least some embodiments (as shown in
Following the claims and Abstract is an Appendix A, providing additional embodiments and also being part of this disclosure.
This patent application claims priority to U.S. patent application Ser. No. 61/722,760, filed Nov. 5, 2012, which is hereby incorporated herein by reference. The patent application claims priority to U.S. patent application Ser. No. 13/615,447, filed Sep. 13, 2012, which is hereby incorporated herein by reference. The patent application claims priority to U.S. Provisional Patent Application No. 61/700,852, filed Sep. 13, 2012, which is hereby incorporated herein by reference. The patent application claims priority to U.S. Provisional Patent Application No. 61/535,341, filed Sep. 15, 2011, and U.S. Provisional Patent Application No. 61/556,083, filed Nov. 4, 2011 which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
320558 | Hull | Jun 1885 | A |
669949 | Underwood | Mar 1901 | A |
1255265 | Zachara | Feb 1918 | A |
1917745 | Weiss | Jul 1933 | A |
2249572 | Lieber | Jul 1941 | A |
2638532 | Brady | May 1953 | A |
2794085 | De Angelis | May 1957 | A |
2818511 | Ullery et al. | Dec 1957 | A |
2830132 | Borg | Apr 1958 | A |
2874230 | Carlson | Feb 1959 | A |
2904670 | Calmes | Sep 1959 | A |
3060308 | Fortuna | Oct 1962 | A |
3597054 | Winter | Aug 1971 | A |
3710115 | Jubb | Jan 1973 | A |
3883701 | Delorenzo | May 1975 | A |
4165487 | Corderman | Aug 1979 | A |
4254451 | Cochran, Jr. | Mar 1981 | A |
4283127 | Rosenwinkel et al. | Aug 1981 | A |
4322585 | Liautaud | Mar 1982 | A |
4348664 | Boschetti et al. | Sep 1982 | A |
4389217 | Baughman et al. | Jun 1983 | A |
4526473 | Zahn, III | Jul 1985 | A |
4535244 | Burnham | Aug 1985 | A |
4608492 | Burnham | Aug 1986 | A |
4683587 | Silverman | Jul 1987 | A |
4751691 | Perera | Jun 1988 | A |
4757714 | Purdy et al. | Jul 1988 | A |
4773095 | Zwicker et al. | Sep 1988 | A |
4806011 | Bettinger | Feb 1989 | A |
4822160 | Tsai | Apr 1989 | A |
4822161 | Jimmy | Apr 1989 | A |
4851686 | Pearson | Jul 1989 | A |
4856086 | McCullough | Aug 1989 | A |
4859047 | Badewitz | Aug 1989 | A |
4882769 | Gallimore | Nov 1989 | A |
4942629 | Stadlmann | Jul 1990 | A |
4962469 | Ono et al. | Oct 1990 | A |
4967268 | Lipton et al. | Oct 1990 | A |
4985632 | Bianco et al. | Jan 1991 | A |
5008548 | Gat | Apr 1991 | A |
5015086 | Okaue et al. | May 1991 | A |
5020150 | Shannon | May 1991 | A |
5026151 | Waltuck et al. | Jun 1991 | A |
5036311 | Moran et al. | Jul 1991 | A |
5050150 | Ikeda | Sep 1991 | A |
5064410 | Frenkel et al. | Nov 1991 | A |
5093576 | Edmond et al. | Mar 1992 | A |
5106179 | Kamaya et al. | Apr 1992 | A |
5148023 | Hayashi et al. | Sep 1992 | A |
5151600 | Black | Sep 1992 | A |
5161250 | Ianna et al. | Nov 1992 | A |
5172256 | Sethofer et al. | Dec 1992 | A |
5264877 | Hussey | Nov 1993 | A |
5306917 | Black et al. | Apr 1994 | A |
5353378 | Hoffman et al. | Oct 1994 | A |
5359370 | Mugnier | Oct 1994 | A |
5359444 | Piosenka et al. | Oct 1994 | A |
5367345 | da Silva | Nov 1994 | A |
5379464 | Schleger et al. | Jan 1995 | A |
5382986 | Black et al. | Jan 1995 | A |
5394005 | Brown et al. | Feb 1995 | A |
5452026 | Marcy, III | Sep 1995 | A |
5452480 | Ryden | Sep 1995 | A |
5455640 | Gertsikov | Oct 1995 | A |
5457751 | Such | Oct 1995 | A |
5463428 | Lipton et al. | Oct 1995 | A |
5500532 | Kozicki | Mar 1996 | A |
D369167 | Hanson et al. | Apr 1996 | S |
5510961 | Peng | Apr 1996 | A |
5513384 | Brennan et al. | Apr 1996 | A |
5533130 | Staton | Jul 1996 | A |
5581090 | Goudjil | Dec 1996 | A |
5585871 | Linden | Dec 1996 | A |
5589398 | Krause et al. | Dec 1996 | A |
5590417 | Rydbeck | Dec 1996 | A |
5606743 | Vogt et al. | Feb 1997 | A |
5608808 | da Silva | Mar 1997 | A |
5634201 | Mooring | May 1997 | A |
5671035 | Barnes | Sep 1997 | A |
5686727 | Reenstra et al. | Nov 1997 | A |
5694475 | Boyden | Dec 1997 | A |
5715323 | Walker | Feb 1998 | A |
5737436 | Boyden et al. | Apr 1998 | A |
5818381 | Williams | Oct 1998 | A |
5835185 | Kallman et al. | Nov 1998 | A |
5900720 | Kallman et al. | May 1999 | A |
5903395 | Rallison et al. | May 1999 | A |
5941837 | Amano et al. | Aug 1999 | A |
5946071 | Feldman | Aug 1999 | A |
5949516 | McCurdy | Sep 1999 | A |
5966746 | Reedy et al. | Oct 1999 | A |
5980037 | Conway | Nov 1999 | A |
5988812 | Wingate | Nov 1999 | A |
5991085 | Rallison et al. | Nov 1999 | A |
5992996 | Sawyer | Nov 1999 | A |
5995592 | Shirai et al. | Nov 1999 | A |
6010216 | Jesiek | Jan 2000 | A |
6013919 | Schneider et al. | Jan 2000 | A |
6028627 | Helmsderfer | Feb 2000 | A |
6046455 | Ribi et al. | Apr 2000 | A |
6060321 | Hovorka | May 2000 | A |
6061580 | Altschul et al. | May 2000 | A |
6091546 | Spitzer | Jul 2000 | A |
6091832 | Shurman et al. | Jul 2000 | A |
6115177 | Vossler | Sep 2000 | A |
6132681 | Faran et al. | Oct 2000 | A |
6145983 | Schiffer | Nov 2000 | A |
6154552 | Koroljow et al. | Nov 2000 | A |
6176576 | Green et al. | Jan 2001 | B1 |
6225897 | Doyle et al. | May 2001 | B1 |
6231181 | Swab | May 2001 | B1 |
6236969 | Ruppert et al. | May 2001 | B1 |
6243578 | Koike | Jun 2001 | B1 |
6259367 | Klein | Jul 2001 | B1 |
6270466 | Weinstein et al. | Aug 2001 | B1 |
6292213 | Jones | Sep 2001 | B1 |
6292685 | Pompei | Sep 2001 | B1 |
6301367 | Boyden et al. | Oct 2001 | B1 |
6307526 | Mann | Oct 2001 | B1 |
6343858 | Zelman | Feb 2002 | B1 |
6349001 | Spitzer | Feb 2002 | B1 |
6349422 | Schleger et al. | Feb 2002 | B1 |
6409335 | Lipawsky | Jun 2002 | B1 |
6409338 | Jewell | Jun 2002 | B1 |
6426719 | Nagareda et al. | Jul 2002 | B1 |
6431705 | Linden | Aug 2002 | B1 |
6474816 | Butler et al. | Nov 2002 | B2 |
6478736 | Mault | Nov 2002 | B1 |
6506142 | Itoh et al. | Jan 2003 | B2 |
6511175 | Hay et al. | Jan 2003 | B2 |
6513532 | Mault et al. | Feb 2003 | B2 |
6517203 | Blum et al. | Feb 2003 | B1 |
6539336 | Vock et al. | Mar 2003 | B1 |
6542081 | Torch | Apr 2003 | B2 |
6546101 | Murray et al. | Apr 2003 | B1 |
6554763 | Amano et al. | Apr 2003 | B1 |
6582075 | Swab et al. | Jun 2003 | B1 |
6619799 | Blum et al. | Sep 2003 | B1 |
6629076 | Haken | Sep 2003 | B1 |
6729726 | Miller et al. | May 2004 | B2 |
6736759 | Stubbs et al. | May 2004 | B1 |
6764194 | Cooper | Jul 2004 | B1 |
6769767 | Swab et al. | Aug 2004 | B2 |
6792401 | Nigro et al. | Sep 2004 | B1 |
6824265 | Harper | Nov 2004 | B1 |
6871951 | Blum et al. | Mar 2005 | B2 |
6912386 | Himberg et al. | Jun 2005 | B1 |
6929365 | Swab et al. | Aug 2005 | B2 |
6932090 | Reschke et al. | Aug 2005 | B1 |
6947219 | Ou | Sep 2005 | B1 |
7004582 | Jannard et al. | Feb 2006 | B2 |
7013009 | Warren | Mar 2006 | B2 |
7030902 | Jacobs | Apr 2006 | B2 |
7031667 | Horiguchi | Apr 2006 | B2 |
7033025 | Winterbotham | Apr 2006 | B2 |
7059717 | Bloch | Jun 2006 | B2 |
7073905 | Da Pra' | Jul 2006 | B2 |
7079876 | Levy | Jul 2006 | B2 |
7123215 | Nakada | Oct 2006 | B2 |
7192136 | Howell et al. | Mar 2007 | B2 |
7255437 | Howell et al. | Aug 2007 | B2 |
7265358 | Fontaine | Sep 2007 | B2 |
7274292 | Velhal et al. | Sep 2007 | B2 |
7289767 | Lai | Oct 2007 | B2 |
7312699 | Chornenky | Dec 2007 | B2 |
7331666 | Swab et al. | Feb 2008 | B2 |
7376238 | Rivas et al. | May 2008 | B1 |
7380936 | Howell et al. | Jun 2008 | B2 |
7401918 | Howell et al. | Jul 2008 | B2 |
7405801 | Jacobs | Jul 2008 | B2 |
7429965 | Weiner | Sep 2008 | B2 |
7438409 | Jordan | Oct 2008 | B2 |
7438410 | Howell et al. | Oct 2008 | B1 |
7445332 | Jannard et al. | Nov 2008 | B2 |
7481531 | Howell et al. | Jan 2009 | B2 |
7500746 | Howell et al. | Mar 2009 | B1 |
7500747 | Howell et al. | Mar 2009 | B2 |
7512414 | Jannard et al. | Mar 2009 | B2 |
7527374 | Chou | May 2009 | B2 |
7543934 | Howell et al. | Jun 2009 | B2 |
7581833 | Howell et al. | Sep 2009 | B2 |
7621634 | Howell et al. | Nov 2009 | B2 |
7648236 | Dobson | Jan 2010 | B1 |
7677723 | Howell et al. | Mar 2010 | B2 |
7760898 | Howell et al. | Jul 2010 | B2 |
7771046 | Howell et al. | Aug 2010 | B2 |
7792552 | Thomas et al. | Sep 2010 | B2 |
7806525 | Howell et al. | Oct 2010 | B2 |
7922321 | Howell et al. | Apr 2011 | B2 |
7976159 | Jacobs et al. | Jul 2011 | B2 |
8109629 | Howell et al. | Feb 2012 | B2 |
8142015 | Paolino | Mar 2012 | B2 |
8337013 | Howell et al. | Dec 2012 | B2 |
8430507 | Howell et al. | Apr 2013 | B2 |
8434863 | Howell et al. | May 2013 | B2 |
8465151 | Howell et al. | Jun 2013 | B2 |
8485661 | Yoo et al. | Jul 2013 | B2 |
8500271 | Howell et al. | Aug 2013 | B2 |
8770742 | Howell et al. | Jul 2014 | B2 |
8905542 | Howell et al. | Dec 2014 | B2 |
9033493 | Howell et al. | May 2015 | B2 |
20010005230 | Ishikawa | Jun 2001 | A1 |
20010028309 | Torch | Oct 2001 | A1 |
20020017997 | Felkowitz | Feb 2002 | A1 |
20020021407 | Elliot | Feb 2002 | A1 |
20020081982 | Schwartz et al. | Jun 2002 | A1 |
20020084990 | Peterson, III | Jul 2002 | A1 |
20020089639 | Starner et al. | Jul 2002 | A1 |
20020090103 | Calisto, Jr. | Jul 2002 | A1 |
20020098877 | Glezerman | Jul 2002 | A1 |
20020101568 | Eberl et al. | Aug 2002 | A1 |
20020109600 | Mault et al. | Aug 2002 | A1 |
20020140899 | Blum et al. | Oct 2002 | A1 |
20020159023 | Swab | Oct 2002 | A1 |
20020197961 | Warren | Dec 2002 | A1 |
20030018274 | Takahashi et al. | Jan 2003 | A1 |
20030022690 | Beyda et al. | Jan 2003 | A1 |
20030032449 | Giobbi | Feb 2003 | A1 |
20030062046 | Wiesmann et al. | Apr 2003 | A1 |
20030065257 | Mault et al. | Apr 2003 | A1 |
20030067585 | Miller et al. | Apr 2003 | A1 |
20030068057 | Miller et al. | Apr 2003 | A1 |
20030083591 | Edwards et al. | May 2003 | A1 |
20030214630 | Winterbotham | Nov 2003 | A1 |
20030226978 | Ribi et al. | Dec 2003 | A1 |
20040000733 | Swab et al. | Jan 2004 | A1 |
20040029582 | Swab et al. | Feb 2004 | A1 |
20040063378 | Nelson | Apr 2004 | A1 |
20040096078 | Lin | May 2004 | A1 |
20040100384 | Chen et al. | May 2004 | A1 |
20040128737 | Gesten | Jul 2004 | A1 |
20040150986 | Chang | Aug 2004 | A1 |
20040156012 | Jannard et al. | Aug 2004 | A1 |
20040157649 | Jannard et al. | Aug 2004 | A1 |
20040160571 | Jannard | Aug 2004 | A1 |
20040160572 | Jannard | Aug 2004 | A1 |
20040160573 | Jannard et al. | Aug 2004 | A1 |
20040197002 | Atsumi et al. | Oct 2004 | A1 |
20040227219 | Su | Nov 2004 | A1 |
20050067580 | Fontaine | Mar 2005 | A1 |
20050078274 | Howell et al. | Apr 2005 | A1 |
20050088365 | Yamazaki et al. | Apr 2005 | A1 |
20050201585 | Jannard et al. | Sep 2005 | A1 |
20050213026 | Da Pra' | Sep 2005 | A1 |
20050230596 | Howell et al. | Oct 2005 | A1 |
20050238194 | Chornenky | Oct 2005 | A1 |
20050239502 | Swab et al. | Oct 2005 | A1 |
20050248717 | Howell et al. | Nov 2005 | A1 |
20050248718 | Howell et al. | Nov 2005 | A1 |
20050248719 | Howell et al. | Nov 2005 | A1 |
20050264752 | Howell et al. | Dec 2005 | A1 |
20060001827 | Howell et al. | Jan 2006 | A1 |
20060003803 | Thomas et al. | Jan 2006 | A1 |
20060023158 | Howell et al. | Feb 2006 | A1 |
20060107822 | Bowen | May 2006 | A1 |
20060132382 | Jannard | Jun 2006 | A1 |
20070030442 | Howell et al. | Feb 2007 | A1 |
20070046887 | Howell et al. | Mar 2007 | A1 |
20070055888 | Miller et al. | Mar 2007 | A1 |
20070098192 | Sipkema | May 2007 | A1 |
20070109491 | Howell et al. | May 2007 | A1 |
20070186330 | Howell et al. | Aug 2007 | A1 |
20070208531 | Darley et al. | Sep 2007 | A1 |
20070270663 | Ng et al. | Nov 2007 | A1 |
20070271065 | Gupta et al. | Nov 2007 | A1 |
20070271116 | Wysocki et al. | Nov 2007 | A1 |
20070271387 | Lydon et al. | Nov 2007 | A1 |
20070279584 | Howell et al. | Dec 2007 | A1 |
20080062338 | Herzog et al. | Mar 2008 | A1 |
20080068559 | Howell et al. | Mar 2008 | A1 |
20080144854 | Abreu | Jun 2008 | A1 |
20080151179 | Howell et al. | Jun 2008 | A1 |
20080158506 | Fuziak | Jul 2008 | A1 |
20080218684 | Howell et al. | Sep 2008 | A1 |
20080262392 | Ananny et al. | Oct 2008 | A1 |
20080278678 | Howell et al. | Nov 2008 | A1 |
20090059159 | Howell et al. | Mar 2009 | A1 |
20090141233 | Howell et al. | Jun 2009 | A1 |
20090147215 | Howell et al. | Jun 2009 | A1 |
20090156128 | Franson et al. | Jun 2009 | A1 |
20090296044 | Howell et al. | Dec 2009 | A1 |
20100061579 | Rickards et al. | Mar 2010 | A1 |
20100079356 | Hoellwarth | Apr 2010 | A1 |
20100110368 | Chaum | May 2010 | A1 |
20100245754 | Matsumoto et al. | Sep 2010 | A1 |
20100296045 | Agnoli et al. | Nov 2010 | A1 |
20100309426 | Howell et al. | Dec 2010 | A1 |
20110102734 | Howell et al. | May 2011 | A1 |
20110187990 | Howell et al. | Aug 2011 | A1 |
20120050668 | Howell et al. | Mar 2012 | A1 |
20120133885 | Howell et al. | May 2012 | A1 |
20130308089 | Howell et al. | Nov 2013 | A1 |
20140176902 | Sweis et al. | Jun 2014 | A1 |
20140198293 | Sweis et al. | Jul 2014 | A1 |
20140268008 | Howell et al. | Sep 2014 | A1 |
20140268013 | Howell et al. | Sep 2014 | A1 |
20140268017 | Chao et al. | Sep 2014 | A1 |
20140361185 | Howell et al. | Dec 2014 | A1 |
20150085245 | Howell et al. | Mar 2015 | A1 |
20150230988 | Chao et al. | Aug 2015 | A1 |
20150253590 | Howell et al. | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
2 487 391 | Dec 2003 | CA |
88203065 | Nov 1988 | CN |
89214222.7 | Mar 1990 | CN |
90208199.3 | Nov 1990 | CN |
10123226 | Nov 2002 | DE |
1134491 | Sep 2001 | EP |
2530039 | Jan 1984 | FR |
1467982 | Mar 1977 | GB |
58-113912 | Jul 1983 | JP |
58-113914 | Jul 1983 | JP |
02-181722 | Jul 1990 | JP |
09-017204 | Jan 1997 | JP |
10-161072 | Jun 1998 | JP |
2000-039595 | Feb 2000 | JP |
2002 341059 | Nov 2002 | JP |
2002-151292 | Jun 2005 | JP |
484711 | Jun 2001 | TW |
WO 9712205 | Apr 1997 | WO |
WO 9950706 | Oct 1999 | WO |
WO 0106298 | Jan 2001 | WO |
WO 0206881 | Jan 2002 | WO |
WO 03069394 | Aug 2003 | WO |
WO 03100368 | Dec 2003 | WO |
WO 2004012477 | Feb 2004 | WO |
WO 2004025554 | Mar 2004 | WO |
WO 2010014154 | Dec 2010 | WO |
Entry |
---|
Election Requirement for U.S. Appl. No. 14/211,491, dated Jul. 16, 2015. |
Office Action for U.S. Appl. No. 14/211,491, dated Oct. 19, 2015. |
“±1.5g Dual Axis Micromachined Accelerometer”, Freescale Semiconductor, Inc., Motorola Semiconductor Technical Data, MMA6260Q, Jun. 2004, pp. 1-7. |
“APA Announces Shipment of the SunUV™ Personal UV Monitor”, Press Release, Nov. 7, 2003, pp. 1-3. |
“Camera Specs Take Candid Snaps”, BBC News, Sep. 18, 2003, pp. 1-3. |
“Cardo Wireless Attaching Clips and Wearing Headset”, Cardo Systems, Inc., http://www.cardowireless.com/clips.php, downloaded Nov. 27, 2004, pp. 1-3. |
“Environmental Health Criteria 14: Ultraviolet Radiation”, International Programme on Chemical Safety, World Health Organization Geneva, 1979 http://www.ichem.org., pp. 1-102. |
“Exclusive Media Event Marks Debut of Oakley Thump: World's First Digital Audio Eyewear”, Oakley Investor Relations, Press Release, Nov. 15, 2004, pp. 1-2. |
“Eyetop”, Product-Features, eyetop eyewear, eyetop belt worn, http://www.eyetop.net/products/eyetop/features.asp., downloaded Nov. 6, 2003, pp. 1-2. |
“Heart Rate Monitors”, http://www.healthgoods.com, downloaded Dec. 4, 2004. |
“How is the UV Index Calculated”, SunWise Program, U.S. Environmental Protection Agency, http://www.epa.gov/sunwise/uvcalc.html, downloaded Oct. 14, 2004, pp. 1-2. |
“Industrial UV Measurements”, APA Optics, Inc., http://www.apaoptics.com/uv/, downloaded Jul. 12, 2004, p. 1. |
“Motorola and Oakley Introduce First Bluetooth Sunglasses-Cutting Edge RAZRWire Line Offers Consumers On-The-Go Connections”, Motorola Mediacenter-Press Release, Feb. 14, 2005, pp. 1-2. |
“Oakley Thump: Sunglasses Meet MP3 Player”, with image, http://news.designtechnica.com/article4665.html, Jul. 13, 2004. |
“Personal UV monitor,” Optics.org, http://optics.org/articles/news/6/6/7/1 (downloaded Dec. 20, 2003), Jun. 9, 2000, pp. 1-2. |
“SafeSun Personal Ultraviolet Light Meter”, http://healthchecksystems.com/safesun.htm, downloaded Jul. 12, 2004, pp. 1-4. |
“SafeSun Personal UV Meter”, Introduction, Optix Tech Inc., http://www.safesun.com, downloaded Feb. 5, 2004, pp. 1-2. |
SafeSun Personal UV Meter, features, Optix Tech Inc., http://www.safesun.com/features.html, downloaded May 1, 2004, pp. 1-2. |
“Sharper Image—The FM Pedometer”, e-Corporate Gifts.com, http://www.e-corporategifts.com/sr353.html, downloaded Jan. 22, 2005, pp. 1-2. |
“Sun UV™ Personal UV Monitor”, APA Optics, Inc., http://www.apaoptics.com/sunuv/uvfacts.html, downloaded Dec. 20, 2003, pp. 1-3. |
“Ultraviolet Light and Sunglasses”, Oberon's Frequently Asked Questions, http://www.oberoncompany.com/OBEnglish/FAQUV.html, downloaded Feb. 5, 2004, pp. 1-2. |
“Ultraviolet Light Sensor”, Barrett & Associates Engineering, http://www.barrettengineering.com/project—uvs.htm, downloaded Feb. 5, 2004, pp. 1-3. |
“Ultraviolet Radiation (UVR)”, Forum North, Ontario Ministry of Labour, http://www3.mb.sympatico.ca/˜ericc/ULTRAVIOLET%20RADIATION.htm, downloaded Feb. 5, 2004, pp. 1-6. |
“What Are Gripples?”, Gripping Eyewear, Inc., http://www.grippingeyewear.com/whatare.html, downloaded Nov. 2, 2005. |
“With Racing Heart”, Skaloud et al., GPS World, Oct. 1, 2001, http://www.gpsworld.com/gpsworld/content/printContentPopup.jsp?id=1805, pp. 1-5. |
Abrisa Product Information: Cold Mirrors, Abrisa, Jun. 2001, p. 1. |
Abrisa Product Information: Commercial Hot Mirror, Abrisa, Jun. 2001, p. 1. |
Alps Spectacle, Air Conduction Glass, Bone Conduction Glass, http://www.alps-inter.com/spec.htm, downloaded Dec. 10, 2003, pp. 1-2. |
Altimeter and Compass Watches, http://store.yahoo.com/snowshack/altimeter-watches.html, downloaded May 3, 2004, pp. 1-2. |
Pediatric Eye Disease Group,“Randomized Trial of Treatment of Amblyopia in Children Aged 7 to 17 Years,” Roy W. Beck, M.D., Ph.D. Section Ed., Originally Published and Reprinted from Arch Ophthalmol, v. 123, Apr. 2005, pp. 437-447, http;//archopht.jamanetwork.com/ by a new England College of Optometry User on Dec. 20, 2012. |
Bone Conduction Headgear HG16 Series, “Voiceducer,” http://www.temco-j.co.jp/html/English/HG16.html, downloaded Dec. 10, 2003, pp. 1-3. |
Carnoy, David, “The Ultimate MP3 Player for Athletes? Could be.”, CNET Reviews, May 14, 2004, pp. 1-4. |
Clifford, Michelle A., “Accelerometers Jump into the Consumer Goods Market”, Sensors Online, http://www.sensorsmag.com, Aug. 2004. |
Comfees.com, Adjustable Sports Band Style No. 1243, http://shop.store.yahoo.com/comfees/adsportbansty.html, downloaded Apr. 18, 2003, pp. 1-2. |
Cool Last Minute Gift Ideas!, UltimateFatBurner Reviews and Articles, http://www.ultimatefatburner.com/gift-ideas.html, downloaded May 10, 2005, pp. 1-3. |
Dickie et al. “Eye Contact Sensing Glasses for Attention-Sensitive Wearable Video Blogging,” Human Media Lab, Queen's University, Kingston, ON K7L 3N6, Canada, est. Apr. 2004, pp. 1-2. |
Dixen, Brian, “ear-catching”, Supertesten, Mobil, Apr. 2003 (estimated), pp. 37-41. |
Global Solar UV Index, A Practical Guide, World Health Organization, 2002, pp. 1-28. |
Grobart, Sam, “Digit-Sizing Your Computer Data”, News Article, Sep. 2004, p. 1. |
Holmes, JM et al. “A randomized trial of prescribed patching regimens for treatment of severe amblyopia in children.” Ophthalmology, v. 110, Iss.11, Nov. 2003, pp. 2075-2087. |
Life Monitor V1.1, Rhusoft Technologies Inc., http://www.rhusoft.com/lifemonitor/, Mar. 1, 2003, pp. 1-6. |
Manes, Stephen, “Xtreme Cam”, Forbes Magazine, Sep. 5, 2005, p. 96. |
Mio, PhysiCal, http://www.gophysical.com/, downloaded Jan. 27, 2004, 5 pages. |
Monitoring Athletes Performance—2002 Winter Olympic News from KSL, Jan. 23, 2002, http://2002.ksl.com/news-3885i, pp. 1-3. |
Niwa, “UV Index Information”, http://www.niwa.cri.nz/services/uvozone/uvi-info, downloaded Jul. 15, 2004, pp. 1-2. |
NuVision 60GX Steroscopic Wireless Glasses, Product Information, NuVision by MacNaughton, c. 1997, MacNaughton, Inc., pp. 1-2. |
Pärkkä, Juha, et al., “A Wireless Wellness Monitor for Personal Weight Management”, VTT Information Technology, Tampere, Finland, Nov. 2000, p. 1. |
Pedometer, Model HJ-112, Omron Instruction Manual, Omron Healthcare, Inc., 2003, pp. 1-27. |
PNY Announces Executive Attaché USB 2.0 Flash Drive and Pen Series, Press Release, PNY Technologies, Las Vegas, Jan. 8, 2004, pp. 1-2. |
PNY Technologies, “Executive Attaché” http://www.pny.com/products/flash/execattache.asp downloaded Nov. 16, 2005. |
Polar WM41 and 42 weight management monitor, http://www.simplysports/polar/weight—management/wm41-42.htm, downloaded Jan. 28, 2004, pp. 1-3. |
Questions Answers, Pedometer.com, http://www.pedometer.com, downloaded May 5, 2005. |
RazrWire, copyright Motorola, Inc., Jul. 2005, 1 page. |
Repka MX et al. “A randomized trial of patching regimens for treatment of moderate amblyopia in children.” Arch Ophthalmology v. 121, No. 5, May 2003, pp. 603-611. |
SafeSun Personal UV Meter, Scientific Data, Optix Tech Inc., http://www.safesun.com/scientific.html, downloaded May 1, 2004, pp. 1-3. |
SafeSun Sensor, User's Manual, Optix Tech Inc., Jun. 1998, 2 pages. |
SafeSun, Personal UV Meter, “Technical Specifications”, Optix Tech Inc., http://www.safesun.com/technical.html, downloaded Jul. 12, 2004, pp. 1-2. |
SafeSun, Personal UV Meter, Experiments, Optix Tech Inc., http://www.safesun.com/experiments.html, downloaded Feb. 5, 2004, pp. 1-2. |
Shades of Fun, Blinking Light Glasses, http://www.shadesoffun.com/Nov/Novpgs-14.html, downloaded Jul. 9, 2005, pp. 1-4. |
SportLine Fitness Pedometer-Model 360, UltimateFatBurner Superstore, http://www.ultimatefatburner-store.com/ac—004.html, downloaded May 10, 2005, pp. 1-2. |
Steele, Bonnie G. et al., “Bodies in motion: Monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease”, VA Research & Development, Journal of Rehabilitation Research & Development, vol. 40, No. 5, Sep./Oct. 2003, Supplement 2, pp. 45-58. |
Stevens, Kathy, “Should I Use a Pedometer When I Walk?”, Healtheon/WebMD, Apr. 14, 2000. |
Sundgot, Jørgen “2nd-gen Motorola Bluetooth headset”, InfoSync World, Mar. 1, 2003, http://www.infosync.no/news/2002/n/2841.html, pp. 1-2. |
SunSensors, Segan Industries, Inc., http://www.segan-ind.com/sunsensor.htm, downloaded Feb. 5, 2004, pp. 1-3. |
SunUV™, Personal UV Monitor User's Guide, APA Optics, Inc., 2003 pp. 1-52. |
SunUV™, Personal UV Monitor, APA Optics, Inc., http://www.apaoptics.com/sunuv/models.html, downloaded Dec. 20, 2003. |
Talking Pedometer, Sportline, Inc., Jun. 2001 (Possibly earlier), 1 page. |
The unofficial ELSA 3D Revelator page, Dec. 30, 1999, pp. 1-15. |
Top Silicon PIN Photodiode, PD93-21C, Technical Data Sheet, Everlight Electronics Co., Ltd., 2004, pp. 1-9. |
UV Light Meter, UVA and UVB measurement, UV-340, Instruction Manual, Lutron, Jun. 2003 (estimated), pp. 1-5. |
UV-Smart, UVA/B Monitor, Model EC-960-PW, Instruction Manual, Tanita Corporation of America, Inc., downloaded Nov. 16, 2001. |
Vitaminder Personal Carb Counter, http://www.auravita.com/products/AURA/ORBU11420.asp. Downloaded Nov. 15, 2005, pp. 1-4. |
Wallace DK et al. “A randomized trial to evaluate 2 hours of daily patching for strabismic and anisometropic amblyopia in children.” Ophthalmology v. 113, No. 6, Jun. 2006, pp. 904-912. |
Yamada et al. “Development of an eye-movement analyser possessing functions for wireless transmission and autocalibration,” Med. Biol. Eng. Comput., No. 28, v.4, Jul. 28, 1990, http://link.springer.com/article/10.1007%2FBF02446149?LI=true, pp. 1-2. |
Number | Date | Country | |
---|---|---|---|
20140132913 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
61722760 | Nov 2012 | US |