Shutterless calibration

Information

  • Patent Grant
  • 10742913
  • Patent Number
    10,742,913
  • Date Filed
    Wednesday, August 8, 2018
    5 years ago
  • Date Issued
    Tuesday, August 11, 2020
    3 years ago
Abstract
An imaging system includes a focal plane array including an array of pixels. An isothermal diaphragm covers a first portion of the pixels along a periphery of the array and exposing an imaging portion of the pixels. A controller is operatively connected to the focal plane array to read sensor data from the focal plane array, wherein the sensor data includes image data from the imaging portion of the pixels and non-uniformity data from the first portion of the pixels. The controller is operatively connected to the focal plane array to enhance the image data based on the non-uniformity data.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present disclosure relates to imaging systems, and more particularly to calibration of sensors for imaging systems.


2. Description of Related Art

Traditional uncooled Long Wave Infrared (LWIR) focal plane arrays (FPAs) produce highly non-uniform image data. The use of a non-uniformity correction (NUC) algorithm is traditionally required to improve image quality. Most traditional NUC algorithms use a thermally uniform shutter that is periodically placed in front of the FPA to correct for 1/f type drift which cannot be calibrated out of the image data. This method interrupts live video every time the shutter is closed, adds mechanical complexity, adds cost, and causes an audible sound.


The conventional techniques have been considered satisfactory for their intended purpose. However, there is an ever present need for improved calibration for imaging systems. This disclosure provides a solution for this need.


SUMMARY OF THE INVENTION

An imaging system includes a focal plane array including an array of pixels. An isothermal diaphragm covers a first portion of the pixels along a periphery of the array and exposing an imaging portion of the pixels. A controller is operatively connected to the focal plane array to read sensor data from the focal plane array, wherein the sensor data includes image data from the imaging portion of the pixels and non-uniformity data from the first portion of the pixels. The controller is operatively connected to the focal plane array to enhance the image data based on the non-uniformity data.


The array of pixels can be rectangular, wherein the isothermal diaphragm covers a portion of the pixels along at least two perpendicular edges of the periphery of the array. The array of pixels can be rectangular, wherein the isothermal diaphragm covers a portion of the pixels along four edges of the periphery of the array. The isothermal diaphragm can permanently covers the portion of the pixels along the periphery of the array. The focal plane array can be uncooled.


The focal plane array can be sensitive to wavelengths in a long wave infrared (LWIR) band. The focal plane array can be a first focal plane array that is sensitive to wavelengths in a first band and at least one additional focal plane array can be operatively connected to the first focal plane array for multi-band imagery, wherein the imaging portion of the pixels define an imaging array with an aspect ratio matched to that of the at least one additional focal plane array.


A method of correcting non-uniformity includes collecting sensor data from a focal plane array that includes an array of pixels, wherein an isothermal diaphragm covers a portion of the pixels along a periphery of the array and exposes an imaging portion of the pixels, wherein the sensor data includes an image portion of the sensor data from the imaging portion of the pixels and non-uniformity data from the portion of the pixels that are covered by the isothermal diaphragm. The method includes using the non-uniformity data to perform a non-uniformity correction on the image portion of the sensor data.


Performing the non-uniformity correction can include correcting for non-uniformity that is at least one of column correlated and row correlated. Performing the non-uniformity correction can include using a spatial estimation technique. Collecting sensor data can include acquiring an image in the LWIR band. Acquiring the image, collecting the sensor data, and performing the non-uniformity correction can be performed without actively cooling the focal plane array. The method can include obtaining images while the isothermal diaphragm covers the portion of the pixels along the periphery of the array.


Collecting sensor data can include acquiring a stream of video data from the imaging portion of the pixels and periodically collecting the correction portion of the sensor data from the portion of the pixels that are covered by the isothermal diaphragm while acquiring the stream of video data without interrupting the acquisition of the stream of video data. Acquiring the stream of video data can include acquiring the stream of video data without interruption from a mechanical shutter covering the focal plane array.


These and other features of the systems and methods of the subject disclosure will become more readily apparent to those skilled in the art from the following detailed description of the preferred embodiments taken in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, preferred embodiments thereof will be described in detail herein below with reference to certain figures, wherein:



FIG. 1 is a schematic view of an exemplary embodiment of a system constructed in accordance with the present disclosure, showing the focal plane array (FPA) and isothermal diaphragm;



FIG. 2 is a schematic plan view of the FPA and isothermal diaphragm of FIG. 1, showing the imaging portion of the pixels and the pixels along the periphery of the array of pixels that are covered by the isothermal diaphragm; and



FIG. 3 is a schematic side elevation view of the FPA and isothermal diaphragm, showing the pixels that are covered by the isothermal diaphragm.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject disclosure. For purposes of explanation and illustration, and not limitation, a partial view of an exemplary embodiment of a system in accordance with the disclosure is shown in FIG. 1 and is designated generally by reference character 100. Other embodiments of systems in accordance with the disclosure, or aspects thereof, are provided in FIGS. 2-3, as will be described. The systems and methods described herein can be used to provide non-uniformity correction (NUC) in uncooled imaging sensor systems, e.g., uncooled long wave infrared (LWIR) imaging systems.


The imaging system 100 includes a focal plane array 102 including an array 104 of pixels (labeled in FIG. 3). An isothermal diaphragm 106 covers a portion 108 of the pixels along a periphery of the array 104. The opening 109 through the isothermal diaphragm 106 exposes an imaging portion 110 of the pixels (labeled in FIG. 3). Front end optics 112 optically coupled within a housing 114 with the focal plane array 102 focus images onto the pixels of the focal plane array 102. A controller 116 is operatively connected to the focal plane array 102 to read sensor data from the focal plane array 102 and to enhance, e.g., improve or correct, an image portion of the sensor data. The image portion of the sensor data is from the imaging portion 110 of the pixels. The controller enhances the image portion of the sensor data for non-uniformity based on non-uniformity data that is part of the sensor data, wherein the non-uniformity data is from the portion 108 of the pixels covered by the isothermal diaphragm 106.


With continued reference to FIG. 1, the focal plane array 102 can be sensitive to wavelengths in a long wave infrared (LWIR) band. The focal plane array 102 can be optically aligned on a common platform 118 with one or more additional focal plane arrays 120, e.g., each with respective front end optics 122 and controllers 124, for multi-band imagery, e.g. where the one or more additional focal plane arrays 102 are sensitive to different bands than that of the focal plane array 102. The imaging portion 110 (labeled in FIG. 2) of the pixels define an imaging array with an aspect ratio matched to that of the at least one additional focal plane array 120, e.g., for registration of images from each respective band.


With reference now to FIG. 2, the array 104 of pixels is rectangular. Since the isothermal diaphragm 106 covers the portion 108 of the pixels along at least two perpendicular edges of the periphery of the array 104, the non-uniformity correction can include correcting for non-uniformity that is at least one of column correlated and row correlated. Given that the isothermal diaphragm covers the portion 108 of the pixels along four edges of the periphery of the array 104, pixels from all for edges can be used in performing the non-uniformity correction, which include using a spatial estimation technique. The non-uniformity data from the portion 108 of the pixels is known to be isothermal because the diaphragm 106 is isothermal. Variations in the non-uniformity data reveal the non-uniformity resulting, e.g., from temperature variance across the focal plane array 102, random row and column flicker noise (1/f noise) introduced by the pixel readout circuit, and the like. Knowing this non-uniformity can allow the controller 116 to correct the image data from the imaging portion 110 of the pixels. The isothermal diaphragm 106 permanently covers the portion 108 of the pixels along the periphery of the array 104, and the focal plane array 102 can be uncooled and does not require mechanical movement of a calibration shutter for non-uniformity correction.


A method of correcting non-uniformity includes collecting sensor data from a focal plane array, e.g., focal plane array 102, that includes an array of pixels, wherein an isothermal diaphragm, e.g., isothermal diaphragm 106, covers a portion, e.g., portion 108, of the pixels along a periphery of the array and exposes an imaging portion, e.g., imaging portion 110, of the pixels. The sensor data includes an image portion of the sensor data from the imaging portion of the pixels and non-uniformity data from the portion of the pixels that are covered by the isothermal diaphragm. The method includes using the no-uniformity data to perform a non-uniformity enhancement on the image portion of the sensor data.


Collecting sensor data can include acquiring an image in the LWIR band. Acquiring the image, collecting the sensor data, and performing the non-uniformity correction can all be performed without actively cooling the focal plane array.


The method can include obtaining images while the isothermal diaphragm covers the portion of the pixels along the periphery of the array. Collecting sensor data can include acquiring a stream of video data from the imaging portion of the pixels. The method can include periodically collecting the correction portion of the sensor data from the portion of the pixels that are covered by the isothermal diaphragm while acquiring the stream of video data without interrupting the acquisition of the stream of video data. The only need to limit how often the non-uniformity data is acquired is the computational resources of the controller 116. Acquiring the stream of video data can include acquiring the stream of video data without interruption from a mechanical shutter covering the focal plane array.


The methods and systems of the present disclosure, as described above and shown in the drawings, provide for non-uniformity correction, e.g., in uncooled LWIR imaging systems, with superior properties relative to traditional systems including elimination of interruption of live video for shutter-based calibration, reduced mechanical complexity, lower cost, and elimination of audible shutter noises. While the apparatus and methods of the subject disclosure have been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the scope of the subject disclosure.

Claims
  • 1. An imaging system comprising: a focal plane array including an array of pixels configured to detect long wavelength infrared radiation;a diaphragm covering a first portion of the pixels along a periphery of the array and exposing an imaging portion of the pixels, the diaphragm configured to have a uniform temperature across a surface of the diaphragm, anda controller operatively connected to the focal plane array to read sensor data from the focal plane array, wherein the sensor data includes image data from the imaging portion of the pixels and non-uniformity data from the first portion of the pixels, wherein the controller is operatively connected to the focal plane array to enhance the image data based on the non-uniformity data,wherein the array of pixels is rectangular, and wherein the diaphragm covers a portion of the pixels along at least two perpendicular edges of the periphery of the array, and wherein the controller is configured to correct for column-correlated and row-correlated non-uniformity.
  • 2. The system as recited in claim 1, wherein the array of pixels is rectangular, and wherein the diaphragm covers a portion of the pixels along four edges of the periphery of the array.
  • 3. The system as recited in claim 1, wherein the focal plane array is sensitive to wavelengths in a long wave infrared (LWIR) band.
  • 4. The system as recited in claim 1, wherein the focal plane array is a first focal plane array that is sensitive to wavelengths in a first band and further comprising at least one additional focal plane array operatively connected to the first focal plane array for multi-band imagery, wherein the imaging portion of the pixels define an imaging array with an aspect ratio matched to that of the at least one additional focal plane array.
  • 5. The system as recited in claim 1, wherein the focal plane array is uncooled.
  • 6. The system as recited in claim 1, wherein the diaphragm permanently covers the portion of the pixels along the periphery of the array.
  • 7. The system as recited in claim 1, wherein the controller is configured to perform a non-uniformity correction on the imaging portion of the pixels based at least in part on the row-correlated non-uniformity, the column-correlated non-uniformity, or both.
  • 8. The system as recited in claim 7, wherein the non-uniformity correction on the imaging portion of the pixels comprises compensating for a non-uniformity comprising a 1/f type drift.
US Referenced Citations (271)
Number Name Date Kind
2452592 Meyer Nov 1948 A
2627659 Murr Feb 1953 A
2901750 McMurry Sep 1959 A
2901751 Gales et al. Sep 1959 A
2908943 Miller Oct 1959 A
3320619 Lastnik et al. May 1967 A
3413656 Vogliano et al. Dec 1968 A
3419334 Hubbard Dec 1968 A
3594062 Disley Jul 1971 A
3640635 Von Hollen Feb 1972 A
3669523 Edwards Jun 1972 A
4044399 Morton Aug 1977 A
4183646 Tsunefuji Jan 1980 A
4584776 Shepherd Apr 1986 A
4601540 Karning et al. Jul 1986 A
4605281 Hellewell Aug 1986 A
4698489 Morley Oct 1987 A
4758719 Sasaki et al. Jul 1988 A
4786966 Hanson et al. Nov 1988 A
4792206 Skuratovsky Dec 1988 A
4840451 Sampson et al. Jun 1989 A
5005213 Hanson et al. Apr 1991 A
5035472 Hansen Jul 1991 A
5125394 Chatenever et al. Jun 1992 A
5128807 Blackmon Jul 1992 A
5140151 Weiner et al. Aug 1992 A
5303606 Kokinda Apr 1994 A
5303688 Chiuminatta et al. Apr 1994 A
5359675 Siwoff Oct 1994 A
5448161 Byerley, III et al. Sep 1995 A
5463495 Murg Oct 1995 A
5513440 Murg May 1996 A
5535053 Baril et al. Jul 1996 A
5584137 Teetzel Dec 1996 A
5651081 Blew et al. Jul 1997 A
5653034 Bindon Aug 1997 A
5668904 Sutherland et al. Sep 1997 A
5687271 Rabinowitz Nov 1997 A
5711104 Schmitz Jan 1998 A
5847753 Gabello et al. Dec 1998 A
5881449 Ghosh et al. Mar 1999 A
5903996 Morley May 1999 A
5946132 Phillips Aug 1999 A
5949565 Ishida Sep 1999 A
5953761 Jurga et al. Sep 1999 A
5956444 Duda et al. Sep 1999 A
6020994 Cook Feb 2000 A
6057966 Carroll et al. May 2000 A
6200041 Gaio et al. Mar 2001 B1
6272692 Abraham Aug 2001 B1
6311576 Pletschet Nov 2001 B1
6327381 Rogina et al. Dec 2001 B1
6369941 Zadravec Apr 2002 B2
6381081 Ford Apr 2002 B1
6404961 Bonja et al. Jun 2002 B1
6456497 Palmer Sep 2002 B1
6519890 Otterman Feb 2003 B1
6560029 Dobbie et al. May 2003 B1
6574053 Spinali Jun 2003 B1
6615531 Holmberg Sep 2003 B1
6690866 Bonja et al. Feb 2004 B2
6714708 McAlpine et al. Mar 2004 B2
6807742 Schick et al. Oct 2004 B2
6898192 Chheda et al. May 2005 B2
6901221 Jiang et al. May 2005 B1
7016579 Militaru et al. Mar 2006 B2
7062796 Dixon Jun 2006 B1
D524785 Huang Jul 2006 S
7069685 Houde-Walter Jul 2006 B2
7096512 Blair Aug 2006 B2
7128475 Kesler Oct 2006 B2
7132648 Ratiff et al. Nov 2006 B2
7166812 White et al. Jan 2007 B2
7171776 Staley, III Feb 2007 B2
7194012 Mason et al. Mar 2007 B2
7210262 Florence et al. May 2007 B2
7210392 Greene et al. May 2007 B2
7219370 Teetzel et al. May 2007 B1
7278734 Jannard et al. Oct 2007 B2
7292262 Towery et al. Nov 2007 B2
7298941 Palen et al. Nov 2007 B2
7319557 Tai Jan 2008 B2
7369302 Gaber May 2008 B2
7409792 Narcy et al. Aug 2008 B2
7437848 Chang Oct 2008 B2
7462035 Lee et al. Dec 2008 B2
7488294 Torch Feb 2009 B2
7552559 Day Jun 2009 B2
7609467 Blanding et al. Oct 2009 B2
7612956 Blanding et al. Nov 2009 B2
7627975 Hines Dec 2009 B1
7649550 Ishiyama et al. Jan 2010 B2
7676137 Schick et al. Mar 2010 B2
7690849 Scharf et al. Apr 2010 B2
7701493 Mauritzson Apr 2010 B2
7705855 Brown Elliott Apr 2010 B2
7710654 Ashkenazi et al. May 2010 B2
7730820 Vice et al. Jun 2010 B2
7740499 Willey et al. Jun 2010 B1
7744286 Lu et al. Jun 2010 B2
7787012 Scales et al. Aug 2010 B2
7795574 Kennedy et al. Sep 2010 B2
7800852 Blanding et al. Sep 2010 B2
7827723 Zaderey et al. Nov 2010 B1
7832023 Crisco Nov 2010 B2
7842922 Leneke et al. Nov 2010 B2
7899332 Shindou et al. Mar 2011 B2
7911687 Scholz Mar 2011 B2
7916156 Brown Elliott et al. Mar 2011 B2
7933464 Zhang et al. Apr 2011 B2
7952059 Vitale et al. May 2011 B2
7972067 Haley et al. Jul 2011 B2
7990523 Schlierbach et al. Aug 2011 B2
8014679 Yamazaki Sep 2011 B2
8063934 Donato Nov 2011 B2
8067735 King et al. Nov 2011 B2
8082688 Elpedes et al. Dec 2011 B2
8085482 Frankovich et al. Dec 2011 B2
8093992 Jancic et al. Jan 2012 B2
8112185 Wu Feb 2012 B2
8153975 Hollander et al. Apr 2012 B2
8225542 Houde-Walter Jul 2012 B2
8253105 Warnke et al. Aug 2012 B1
8312667 Thomas et al. Nov 2012 B2
8336776 Horvath et al. Dec 2012 B2
8337036 Soto et al. Dec 2012 B2
8350796 Tomizawa et al. Jan 2013 B2
8375620 Staley, III Feb 2013 B2
D677298 Hallgren Mar 2013 S
8411346 Sapir Apr 2013 B2
8488969 Masarik Jul 2013 B1
8531592 Teetzel et al. Sep 2013 B2
8532490 Smith et al. Sep 2013 B2
8656628 Jock et al. Feb 2014 B2
8717392 Levola May 2014 B2
8773766 Jannard et al. Jul 2014 B2
8776422 Dodd et al. Jul 2014 B2
8781273 Benjamin et al. Jul 2014 B2
8826583 Kepler et al. Sep 2014 B2
8849379 Abreu Sep 2014 B2
8886046 Masarik Nov 2014 B2
8908045 Stewart Dec 2014 B2
8923703 Masarik Dec 2014 B2
8928878 Jaeschke et al. Jan 2015 B2
8942632 Shen Jan 2015 B2
8963573 Achkir et al. Feb 2015 B2
9042736 Masarik May 2015 B2
9052153 Oh et al. Jun 2015 B2
9057583 Matthews et al. Jun 2015 B2
9069001 Braman et al. Jun 2015 B2
9113061 Morley Aug 2015 B1
9225419 Masarik Dec 2015 B2
9310163 Bay Apr 2016 B2
9316462 Varshneya Apr 2016 B2
9319143 El-Ahmadi et al. Apr 2016 B2
9335122 Choiniere May 2016 B2
9366504 Hester et al. Jun 2016 B2
9373277 Sagan Jun 2016 B2
9389677 Hobby et al. Jul 2016 B2
9429391 Walker Aug 2016 B2
9438774 Masarik Sep 2016 B2
9466120 Maryfield et al. Oct 2016 B2
9506725 Maryfield et al. Nov 2016 B2
9516202 Masarik et al. Dec 2016 B2
9593913 Wright et al. Mar 2017 B1
9615004 Masarik Apr 2017 B2
9622529 Teetzel et al. Apr 2017 B2
9658423 Gustafson et al. May 2017 B2
9696111 Saadon Jul 2017 B2
9705605 Masarik Jul 2017 B2
9769902 Cain et al. Sep 2017 B1
9823043 Compton et al. Nov 2017 B2
9861263 Kwan et al. Jan 2018 B2
9897411 Compton et al. Feb 2018 B2
9910259 Armbruster et al. Mar 2018 B2
9921028 Compton et al. Mar 2018 B2
9934739 Hogan Apr 2018 B2
9948878 Simolon et al. Apr 2018 B2
9995901 Petersen Jun 2018 B2
10003756 Masarik et al. Jun 2018 B2
10024631 Portoghese et al. Jul 2018 B2
10036869 Fahr et al. Jul 2018 B2
10095089 Po et al. Oct 2018 B2
10113837 Masarik et al. Oct 2018 B2
10190848 VanBecelaere Jan 2019 B2
10309749 Hamilton Jun 2019 B2
10379135 Maryfield et al. Aug 2019 B2
20020027690 Bartur et al. Mar 2002 A1
20040031184 Hope Feb 2004 A1
20050058444 Watanabe et al. Mar 2005 A1
20050114710 Cornell et al. May 2005 A1
20050225575 Brown Elliott et al. Oct 2005 A1
20050232512 Luk Oct 2005 A1
20050254126 Lin et al. Nov 2005 A1
20050268519 Pikielny Dec 2005 A1
20060165413 Schemmann et al. Jul 2006 A1
20060192864 Mauritzson Aug 2006 A1
20070003562 Druilhe Jan 2007 A1
20070035626 Randall et al. Feb 2007 A1
20070213586 Hirose et al. Sep 2007 A1
20070257944 Miller et al. Nov 2007 A1
20080107346 Zhang May 2008 A1
20080216883 Leneke Sep 2008 A1
20080263752 Solinsky et al. Oct 2008 A1
20080309586 Vitale Dec 2008 A1
20080317474 Wang et al. Dec 2008 A1
20090052023 Winker et al. Feb 2009 A1
20090181729 Griffin, Jr. et al. Jul 2009 A1
20100027943 Armani et al. Feb 2010 A1
20100149073 Chaum et al. Jun 2010 A1
20100225673 Miller et al. Sep 2010 A1
20100266245 Sabo Oct 2010 A1
20100308999 Chornenky Dec 2010 A1
20100328420 Roman Dec 2010 A1
20110030264 Davidson et al. Feb 2011 A1
20110041377 Thomas et al. Feb 2011 A1
20110067288 Hakansson et al. Mar 2011 A1
20110145981 Teetzel Jun 2011 A1
20110187563 Sanders-Reed Aug 2011 A1
20110213664 Osterhout et al. Sep 2011 A1
20110214082 Osterhout et al. Sep 2011 A1
20110239354 Celona et al. Oct 2011 A1
20120030985 Mauricio et al. Feb 2012 A1
20120033195 Tai Feb 2012 A1
20120097741 Karcher Apr 2012 A1
20120159833 Hakanson et al. Jun 2012 A1
20120182417 Everett Jul 2012 A1
20120182610 O'Hara et al. Jul 2012 A1
20120192476 Compton et al. Aug 2012 A1
20120212414 Osterhout et al. Aug 2012 A1
20120238208 Bienas et al. Sep 2012 A1
20120255213 Panos Oct 2012 A1
20120311910 Mironichev et al. Dec 2012 A1
20120317706 Lebel et al. Dec 2012 A1
20120320340 Coleman, III Dec 2012 A1
20120327247 Mironichev et al. Dec 2012 A1
20130016215 Bitar et al. Jan 2013 A1
20130033746 Brumfield Feb 2013 A1
20130036646 Rubac et al. Feb 2013 A1
20130072120 Wu Mar 2013 A1
20130088604 Hamrelius et al. Apr 2013 A1
20130167425 Crispin Jul 2013 A1
20130188943 Wu Jul 2013 A1
20130215395 Li Aug 2013 A1
20140007485 Castejon, Sr. Jan 2014 A1
20140104449 Masarik et al. Apr 2014 A1
20140260748 Traver Sep 2014 A1
20140285882 Gotz et al. Sep 2014 A1
20150016817 Hara et al. Jan 2015 A1
20150101234 Priest et al. Apr 2015 A1
20150226613 Bauer et al. Aug 2015 A1
20150282549 Lebel et al. Oct 2015 A1
20150316351 Choiniere Nov 2015 A1
20150375865 Fischer et al. Dec 2015 A1
20160033234 Swift et al. Feb 2016 A1
20160327365 Collin et al. Nov 2016 A1
20170010073 Downing Jan 2017 A1
20170078022 Masarik et al. Mar 2017 A1
20170153713 Niinuma et al. Jun 2017 A1
20170237919 Lamesch Aug 2017 A1
20170302386 Masarik Oct 2017 A1
20180232952 Hiranandani et al. Aug 2018 A1
20180246135 Pan et al. Aug 2018 A1
20180302576 Masarik et al. Oct 2018 A1
20190033039 Masarik et al. Jan 2019 A1
20190094981 Bradski et al. Mar 2019 A1
20190166174 Moseman May 2019 A1
20190353461 Neal et al. Nov 2019 A1
20190353462 Neal Nov 2019 A1
20200014887 Moseman et al. Jan 2020 A1
20200051481 Masarik et al. Feb 2020 A1
Foreign Referenced Citations (21)
Number Date Country
202057884 Nov 2011 CN
204730844 Oct 2015 CN
204944509 Jan 2016 CN
106612141 May 2017 CN
0 176 169 Apr 1986 EP
2 722 632 Apr 2014 EP
2 812 749 Dec 2014 EP
3 172 524 May 2017 EP
3 205 974 Aug 2017 EP
3 239 754 Nov 2017 EP
2162654 Feb 1986 GB
H07-295682 Nov 1995 JP
WO 2005121688 Dec 2005 WO
WO 2013080058 Jun 2013 WO
WO 2013102869 Jul 2013 WO
WO 2013119983 Aug 2013 WO
WO 2014062725 Apr 2014 WO
WO 2014150076 Sep 2014 WO
WO 2016014655 Jan 2016 WO
WO 2019222422 Nov 2019 WO
WO 2019222426 Nov 2019 WO
Non-Patent Literature Citations (8)
Entry
Aebi, V. et al., “EBAPS: Next Generation, Low Power, Digital Night Vision”, Presented at the OPTRO 2005 International Symposium, May 10, 2005, pp. 1-10, Paris, France, in 10 pages.
Ackerman, S., “It Only Took the Army 16 Years and 2 Wars to Deploy this Network”,Wired.com, Jun. 28, 2012, in 7 pages. URL: http://www.wired.com/dangerrom/2012/06/army-data-network-war/all/.
Armstrong, S. C., “Project Manager Soldier Weapons Program Overview NDIA”, May 15, 2012, in 38 pages.
Schott—Glass Made of Ideas, GBPS-MC-GOF-Demo, dated Jan. 2006, pp. S.1-S.8, in 8 pages.
Sklarek, W., “High Data Rate Capabilities of Multicore Glass Optical Fiber Cables, 22 FGT ‘Otische Polymerfasern’”, dated Oct. 25, 2006, in 19 pages. URL: http://www.pofac.de/downloads/itgfg/fgt2.2/FGT2.2_Munchen_Sklarek_GOF-Buendel.
Tao, R. et al., “10 Gb/s CMOS Limiting Amplifier for Optical links”, Proceedings of the 29th European Solid-State Circuits Conference, Sep. 16-18, 2013, pp. 285-287, Estoril, Portugal, in 3 pages.
Zhu, Z. et al., “AR-Weapon: Live Augmented Reality Based First-Person Shooting System”, 2015 IEEE Winter Conference on Applications of Computer Vision, Feb. 2015, in 8 pages.
U.S. Appl. No. 13/674,895, filed Nov. 12, 2012, titled Intrapersonal Data Communication System, listing David Michael Masarik as an inventor, in 95 pages, and its entire prosecution history.
Related Publications (1)
Number Date Country
20200053303 A1 Feb 2020 US