The present disclosure relates to imaging systems, and more particularly to calibration of sensors for imaging systems.
Traditional uncooled Long Wave Infrared (LWIR) focal plane arrays (FPAs) produce highly non-uniform image data. The use of a non-uniformity correction (NUC) algorithm is traditionally required to improve image quality. Most traditional NUC algorithms use a thermally uniform shutter that is periodically placed in front of the FPA to correct for 1/f type drift which cannot be calibrated out of the image data. This method interrupts live video every time the shutter is closed, adds mechanical complexity, adds cost, and causes an audible sound.
The conventional techniques have been considered satisfactory for their intended purpose. However, there is an ever present need for improved calibration for imaging systems. This disclosure provides a solution for this need.
An imaging system includes a focal plane array including an array of pixels. An isothermal diaphragm covers a first portion of the pixels along a periphery of the array and exposing an imaging portion of the pixels. A controller is operatively connected to the focal plane array to read sensor data from the focal plane array, wherein the sensor data includes image data from the imaging portion of the pixels and non-uniformity data from the first portion of the pixels. The controller is operatively connected to the focal plane array to enhance the image data based on the non-uniformity data.
The array of pixels can be rectangular, wherein the isothermal diaphragm covers a portion of the pixels along at least two perpendicular edges of the periphery of the array. The array of pixels can be rectangular, wherein the isothermal diaphragm covers a portion of the pixels along four edges of the periphery of the array. The isothermal diaphragm can permanently covers the portion of the pixels along the periphery of the array. The focal plane array can be uncooled.
The focal plane array can be sensitive to wavelengths in a long wave infrared (LWIR) band. The focal plane array can be a first focal plane array that is sensitive to wavelengths in a first band and at least one additional focal plane array can be operatively connected to the first focal plane array for multi-band imagery, wherein the imaging portion of the pixels define an imaging array with an aspect ratio matched to that of the at least one additional focal plane array.
A method of correcting non-uniformity includes collecting sensor data from a focal plane array that includes an array of pixels, wherein an isothermal diaphragm covers a portion of the pixels along a periphery of the array and exposes an imaging portion of the pixels, wherein the sensor data includes an image portion of the sensor data from the imaging portion of the pixels and non-uniformity data from the portion of the pixels that are covered by the isothermal diaphragm. The method includes using the non-uniformity data to perform a non-uniformity correction on the image portion of the sensor data.
Performing the non-uniformity correction can include correcting for non-uniformity that is at least one of column correlated and row correlated. Performing the non-uniformity correction can include using a spatial estimation technique. Collecting sensor data can include acquiring an image in the LWIR band. Acquiring the image, collecting the sensor data, and performing the non-uniformity correction can be performed without actively cooling the focal plane array. The method can include obtaining images while the isothermal diaphragm covers the portion of the pixels along the periphery of the array.
Collecting sensor data can include acquiring a stream of video data from the imaging portion of the pixels and periodically collecting the correction portion of the sensor data from the portion of the pixels that are covered by the isothermal diaphragm while acquiring the stream of video data without interrupting the acquisition of the stream of video data. Acquiring the stream of video data can include acquiring the stream of video data without interruption from a mechanical shutter covering the focal plane array.
These and other features of the systems and methods of the subject disclosure will become more readily apparent to those skilled in the art from the following detailed description of the preferred embodiments taken in conjunction with the drawings.
So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, preferred embodiments thereof will be described in detail herein below with reference to certain figures, wherein:
Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject disclosure. For purposes of explanation and illustration, and not limitation, a partial view of an exemplary embodiment of a system in accordance with the disclosure is shown in
The imaging system 100 includes a focal plane array 102 including an array 104 of pixels (labeled in
With continued reference to
With reference now to
A method of correcting non-uniformity includes collecting sensor data from a focal plane array, e.g., focal plane array 102, that includes an array of pixels, wherein an isothermal diaphragm, e.g., isothermal diaphragm 106, covers a portion, e.g., portion 108, of the pixels along a periphery of the array and exposes an imaging portion, e.g., imaging portion 110, of the pixels. The sensor data includes an image portion of the sensor data from the imaging portion of the pixels and non-uniformity data from the portion of the pixels that are covered by the isothermal diaphragm. The method includes using the no-uniformity data to perform a non-uniformity enhancement on the image portion of the sensor data.
Collecting sensor data can include acquiring an image in the LWIR band. Acquiring the image, collecting the sensor data, and performing the non-uniformity correction can all be performed without actively cooling the focal plane array.
The method can include obtaining images while the isothermal diaphragm covers the portion of the pixels along the periphery of the array. Collecting sensor data can include acquiring a stream of video data from the imaging portion of the pixels. The method can include periodically collecting the correction portion of the sensor data from the portion of the pixels that are covered by the isothermal diaphragm while acquiring the stream of video data without interrupting the acquisition of the stream of video data. The only need to limit how often the non-uniformity data is acquired is the computational resources of the controller 116. Acquiring the stream of video data can include acquiring the stream of video data without interruption from a mechanical shutter covering the focal plane array.
The methods and systems of the present disclosure, as described above and shown in the drawings, provide for non-uniformity correction, e.g., in uncooled LWIR imaging systems, with superior properties relative to traditional systems including elimination of interruption of live video for shutter-based calibration, reduced mechanical complexity, lower cost, and elimination of audible shutter noises. While the apparatus and methods of the subject disclosure have been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the scope of the subject disclosure.
Number | Name | Date | Kind |
---|---|---|---|
2452592 | Meyer | Nov 1948 | A |
2627659 | Murr | Feb 1953 | A |
2901750 | McMurry | Sep 1959 | A |
2901751 | Gales et al. | Sep 1959 | A |
2908943 | Miller | Oct 1959 | A |
3320619 | Lastnik et al. | May 1967 | A |
3413656 | Vogliano et al. | Dec 1968 | A |
3419334 | Hubbard | Dec 1968 | A |
3594062 | Disley | Jul 1971 | A |
3640635 | Von Hollen | Feb 1972 | A |
3669523 | Edwards | Jun 1972 | A |
4044399 | Morton | Aug 1977 | A |
4183646 | Tsunefuji | Jan 1980 | A |
4584776 | Shepherd | Apr 1986 | A |
4601540 | Karning et al. | Jul 1986 | A |
4605281 | Hellewell | Aug 1986 | A |
4698489 | Morley | Oct 1987 | A |
4758719 | Sasaki et al. | Jul 1988 | A |
4786966 | Hanson et al. | Nov 1988 | A |
4792206 | Skuratovsky | Dec 1988 | A |
4840451 | Sampson et al. | Jun 1989 | A |
5005213 | Hanson et al. | Apr 1991 | A |
5035472 | Hansen | Jul 1991 | A |
5125394 | Chatenever et al. | Jun 1992 | A |
5128807 | Blackmon | Jul 1992 | A |
5140151 | Weiner et al. | Aug 1992 | A |
5303606 | Kokinda | Apr 1994 | A |
5303688 | Chiuminatta et al. | Apr 1994 | A |
5359675 | Siwoff | Oct 1994 | A |
5448161 | Byerley, III et al. | Sep 1995 | A |
5463495 | Murg | Oct 1995 | A |
5513440 | Murg | May 1996 | A |
5535053 | Baril et al. | Jul 1996 | A |
5584137 | Teetzel | Dec 1996 | A |
5651081 | Blew et al. | Jul 1997 | A |
5653034 | Bindon | Aug 1997 | A |
5668904 | Sutherland et al. | Sep 1997 | A |
5687271 | Rabinowitz | Nov 1997 | A |
5711104 | Schmitz | Jan 1998 | A |
5847753 | Gabello et al. | Dec 1998 | A |
5881449 | Ghosh et al. | Mar 1999 | A |
5903996 | Morley | May 1999 | A |
5946132 | Phillips | Aug 1999 | A |
5949565 | Ishida | Sep 1999 | A |
5953761 | Jurga et al. | Sep 1999 | A |
5956444 | Duda et al. | Sep 1999 | A |
6020994 | Cook | Feb 2000 | A |
6057966 | Carroll et al. | May 2000 | A |
6200041 | Gaio et al. | Mar 2001 | B1 |
6272692 | Abraham | Aug 2001 | B1 |
6311576 | Pletschet | Nov 2001 | B1 |
6327381 | Rogina et al. | Dec 2001 | B1 |
6369941 | Zadravec | Apr 2002 | B2 |
6381081 | Ford | Apr 2002 | B1 |
6404961 | Bonja et al. | Jun 2002 | B1 |
6456497 | Palmer | Sep 2002 | B1 |
6519890 | Otterman | Feb 2003 | B1 |
6560029 | Dobbie et al. | May 2003 | B1 |
6574053 | Spinali | Jun 2003 | B1 |
6615531 | Holmberg | Sep 2003 | B1 |
6690866 | Bonja et al. | Feb 2004 | B2 |
6714708 | McAlpine et al. | Mar 2004 | B2 |
6807742 | Schick et al. | Oct 2004 | B2 |
6898192 | Chheda et al. | May 2005 | B2 |
6901221 | Jiang et al. | May 2005 | B1 |
7016579 | Militaru et al. | Mar 2006 | B2 |
7062796 | Dixon | Jun 2006 | B1 |
D524785 | Huang | Jul 2006 | S |
7069685 | Houde-Walter | Jul 2006 | B2 |
7096512 | Blair | Aug 2006 | B2 |
7128475 | Kesler | Oct 2006 | B2 |
7132648 | Ratiff et al. | Nov 2006 | B2 |
7166812 | White et al. | Jan 2007 | B2 |
7171776 | Staley, III | Feb 2007 | B2 |
7194012 | Mason et al. | Mar 2007 | B2 |
7210262 | Florence et al. | May 2007 | B2 |
7210392 | Greene et al. | May 2007 | B2 |
7219370 | Teetzel et al. | May 2007 | B1 |
7278734 | Jannard et al. | Oct 2007 | B2 |
7292262 | Towery et al. | Nov 2007 | B2 |
7298941 | Palen et al. | Nov 2007 | B2 |
7319557 | Tai | Jan 2008 | B2 |
7369302 | Gaber | May 2008 | B2 |
7409792 | Narcy et al. | Aug 2008 | B2 |
7437848 | Chang | Oct 2008 | B2 |
7462035 | Lee et al. | Dec 2008 | B2 |
7488294 | Torch | Feb 2009 | B2 |
7552559 | Day | Jun 2009 | B2 |
7609467 | Blanding et al. | Oct 2009 | B2 |
7612956 | Blanding et al. | Nov 2009 | B2 |
7627975 | Hines | Dec 2009 | B1 |
7649550 | Ishiyama et al. | Jan 2010 | B2 |
7676137 | Schick et al. | Mar 2010 | B2 |
7690849 | Scharf et al. | Apr 2010 | B2 |
7701493 | Mauritzson | Apr 2010 | B2 |
7705855 | Brown Elliott | Apr 2010 | B2 |
7710654 | Ashkenazi et al. | May 2010 | B2 |
7730820 | Vice et al. | Jun 2010 | B2 |
7740499 | Willey et al. | Jun 2010 | B1 |
7744286 | Lu et al. | Jun 2010 | B2 |
7787012 | Scales et al. | Aug 2010 | B2 |
7795574 | Kennedy et al. | Sep 2010 | B2 |
7800852 | Blanding et al. | Sep 2010 | B2 |
7827723 | Zaderey et al. | Nov 2010 | B1 |
7832023 | Crisco | Nov 2010 | B2 |
7842922 | Leneke et al. | Nov 2010 | B2 |
7899332 | Shindou et al. | Mar 2011 | B2 |
7911687 | Scholz | Mar 2011 | B2 |
7916156 | Brown Elliott et al. | Mar 2011 | B2 |
7933464 | Zhang et al. | Apr 2011 | B2 |
7952059 | Vitale et al. | May 2011 | B2 |
7972067 | Haley et al. | Jul 2011 | B2 |
7990523 | Schlierbach et al. | Aug 2011 | B2 |
8014679 | Yamazaki | Sep 2011 | B2 |
8063934 | Donato | Nov 2011 | B2 |
8067735 | King et al. | Nov 2011 | B2 |
8082688 | Elpedes et al. | Dec 2011 | B2 |
8085482 | Frankovich et al. | Dec 2011 | B2 |
8093992 | Jancic et al. | Jan 2012 | B2 |
8112185 | Wu | Feb 2012 | B2 |
8153975 | Hollander et al. | Apr 2012 | B2 |
8225542 | Houde-Walter | Jul 2012 | B2 |
8253105 | Warnke et al. | Aug 2012 | B1 |
8312667 | Thomas et al. | Nov 2012 | B2 |
8336776 | Horvath et al. | Dec 2012 | B2 |
8337036 | Soto et al. | Dec 2012 | B2 |
8350796 | Tomizawa et al. | Jan 2013 | B2 |
8375620 | Staley, III | Feb 2013 | B2 |
D677298 | Hallgren | Mar 2013 | S |
8411346 | Sapir | Apr 2013 | B2 |
8488969 | Masarik | Jul 2013 | B1 |
8531592 | Teetzel et al. | Sep 2013 | B2 |
8532490 | Smith et al. | Sep 2013 | B2 |
8656628 | Jock et al. | Feb 2014 | B2 |
8717392 | Levola | May 2014 | B2 |
8773766 | Jannard et al. | Jul 2014 | B2 |
8776422 | Dodd et al. | Jul 2014 | B2 |
8781273 | Benjamin et al. | Jul 2014 | B2 |
8826583 | Kepler et al. | Sep 2014 | B2 |
8849379 | Abreu | Sep 2014 | B2 |
8886046 | Masarik | Nov 2014 | B2 |
8908045 | Stewart | Dec 2014 | B2 |
8923703 | Masarik | Dec 2014 | B2 |
8928878 | Jaeschke et al. | Jan 2015 | B2 |
8942632 | Shen | Jan 2015 | B2 |
8963573 | Achkir et al. | Feb 2015 | B2 |
9042736 | Masarik | May 2015 | B2 |
9052153 | Oh et al. | Jun 2015 | B2 |
9057583 | Matthews et al. | Jun 2015 | B2 |
9069001 | Braman et al. | Jun 2015 | B2 |
9113061 | Morley | Aug 2015 | B1 |
9225419 | Masarik | Dec 2015 | B2 |
9310163 | Bay | Apr 2016 | B2 |
9316462 | Varshneya | Apr 2016 | B2 |
9319143 | El-Ahmadi et al. | Apr 2016 | B2 |
9335122 | Choiniere | May 2016 | B2 |
9366504 | Hester et al. | Jun 2016 | B2 |
9373277 | Sagan | Jun 2016 | B2 |
9389677 | Hobby et al. | Jul 2016 | B2 |
9429391 | Walker | Aug 2016 | B2 |
9438774 | Masarik | Sep 2016 | B2 |
9466120 | Maryfield et al. | Oct 2016 | B2 |
9506725 | Maryfield et al. | Nov 2016 | B2 |
9516202 | Masarik et al. | Dec 2016 | B2 |
9593913 | Wright et al. | Mar 2017 | B1 |
9615004 | Masarik | Apr 2017 | B2 |
9622529 | Teetzel et al. | Apr 2017 | B2 |
9658423 | Gustafson et al. | May 2017 | B2 |
9696111 | Saadon | Jul 2017 | B2 |
9705605 | Masarik | Jul 2017 | B2 |
9769902 | Cain et al. | Sep 2017 | B1 |
9823043 | Compton et al. | Nov 2017 | B2 |
9861263 | Kwan et al. | Jan 2018 | B2 |
9897411 | Compton et al. | Feb 2018 | B2 |
9910259 | Armbruster et al. | Mar 2018 | B2 |
9921028 | Compton et al. | Mar 2018 | B2 |
9934739 | Hogan | Apr 2018 | B2 |
9948878 | Simolon et al. | Apr 2018 | B2 |
9995901 | Petersen | Jun 2018 | B2 |
10003756 | Masarik et al. | Jun 2018 | B2 |
10024631 | Portoghese et al. | Jul 2018 | B2 |
10036869 | Fahr et al. | Jul 2018 | B2 |
10095089 | Po et al. | Oct 2018 | B2 |
10113837 | Masarik et al. | Oct 2018 | B2 |
10190848 | VanBecelaere | Jan 2019 | B2 |
10309749 | Hamilton | Jun 2019 | B2 |
10379135 | Maryfield et al. | Aug 2019 | B2 |
20020027690 | Bartur et al. | Mar 2002 | A1 |
20040031184 | Hope | Feb 2004 | A1 |
20050058444 | Watanabe et al. | Mar 2005 | A1 |
20050114710 | Cornell et al. | May 2005 | A1 |
20050225575 | Brown Elliott et al. | Oct 2005 | A1 |
20050232512 | Luk | Oct 2005 | A1 |
20050254126 | Lin et al. | Nov 2005 | A1 |
20050268519 | Pikielny | Dec 2005 | A1 |
20060165413 | Schemmann et al. | Jul 2006 | A1 |
20060192864 | Mauritzson | Aug 2006 | A1 |
20070003562 | Druilhe | Jan 2007 | A1 |
20070035626 | Randall et al. | Feb 2007 | A1 |
20070213586 | Hirose et al. | Sep 2007 | A1 |
20070257944 | Miller et al. | Nov 2007 | A1 |
20080107346 | Zhang | May 2008 | A1 |
20080216883 | Leneke | Sep 2008 | A1 |
20080263752 | Solinsky et al. | Oct 2008 | A1 |
20080309586 | Vitale | Dec 2008 | A1 |
20080317474 | Wang et al. | Dec 2008 | A1 |
20090052023 | Winker et al. | Feb 2009 | A1 |
20090181729 | Griffin, Jr. et al. | Jul 2009 | A1 |
20100027943 | Armani et al. | Feb 2010 | A1 |
20100149073 | Chaum et al. | Jun 2010 | A1 |
20100225673 | Miller et al. | Sep 2010 | A1 |
20100266245 | Sabo | Oct 2010 | A1 |
20100308999 | Chornenky | Dec 2010 | A1 |
20100328420 | Roman | Dec 2010 | A1 |
20110030264 | Davidson et al. | Feb 2011 | A1 |
20110041377 | Thomas et al. | Feb 2011 | A1 |
20110067288 | Hakansson et al. | Mar 2011 | A1 |
20110145981 | Teetzel | Jun 2011 | A1 |
20110187563 | Sanders-Reed | Aug 2011 | A1 |
20110213664 | Osterhout et al. | Sep 2011 | A1 |
20110214082 | Osterhout et al. | Sep 2011 | A1 |
20110239354 | Celona et al. | Oct 2011 | A1 |
20120030985 | Mauricio et al. | Feb 2012 | A1 |
20120033195 | Tai | Feb 2012 | A1 |
20120097741 | Karcher | Apr 2012 | A1 |
20120159833 | Hakanson et al. | Jun 2012 | A1 |
20120182417 | Everett | Jul 2012 | A1 |
20120182610 | O'Hara et al. | Jul 2012 | A1 |
20120192476 | Compton et al. | Aug 2012 | A1 |
20120212414 | Osterhout et al. | Aug 2012 | A1 |
20120238208 | Bienas et al. | Sep 2012 | A1 |
20120255213 | Panos | Oct 2012 | A1 |
20120311910 | Mironichev et al. | Dec 2012 | A1 |
20120317706 | Lebel et al. | Dec 2012 | A1 |
20120320340 | Coleman, III | Dec 2012 | A1 |
20120327247 | Mironichev et al. | Dec 2012 | A1 |
20130016215 | Bitar et al. | Jan 2013 | A1 |
20130033746 | Brumfield | Feb 2013 | A1 |
20130036646 | Rubac et al. | Feb 2013 | A1 |
20130072120 | Wu | Mar 2013 | A1 |
20130088604 | Hamrelius et al. | Apr 2013 | A1 |
20130167425 | Crispin | Jul 2013 | A1 |
20130188943 | Wu | Jul 2013 | A1 |
20130215395 | Li | Aug 2013 | A1 |
20140007485 | Castejon, Sr. | Jan 2014 | A1 |
20140104449 | Masarik et al. | Apr 2014 | A1 |
20140260748 | Traver | Sep 2014 | A1 |
20140285882 | Gotz et al. | Sep 2014 | A1 |
20150016817 | Hara et al. | Jan 2015 | A1 |
20150101234 | Priest et al. | Apr 2015 | A1 |
20150226613 | Bauer et al. | Aug 2015 | A1 |
20150282549 | Lebel et al. | Oct 2015 | A1 |
20150316351 | Choiniere | Nov 2015 | A1 |
20150375865 | Fischer et al. | Dec 2015 | A1 |
20160033234 | Swift et al. | Feb 2016 | A1 |
20160327365 | Collin et al. | Nov 2016 | A1 |
20170010073 | Downing | Jan 2017 | A1 |
20170078022 | Masarik et al. | Mar 2017 | A1 |
20170153713 | Niinuma et al. | Jun 2017 | A1 |
20170237919 | Lamesch | Aug 2017 | A1 |
20170302386 | Masarik | Oct 2017 | A1 |
20180232952 | Hiranandani et al. | Aug 2018 | A1 |
20180246135 | Pan et al. | Aug 2018 | A1 |
20180302576 | Masarik et al. | Oct 2018 | A1 |
20190033039 | Masarik et al. | Jan 2019 | A1 |
20190094981 | Bradski et al. | Mar 2019 | A1 |
20190166174 | Moseman | May 2019 | A1 |
20190353461 | Neal et al. | Nov 2019 | A1 |
20190353462 | Neal | Nov 2019 | A1 |
20200014887 | Moseman et al. | Jan 2020 | A1 |
20200051481 | Masarik et al. | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
202057884 | Nov 2011 | CN |
204730844 | Oct 2015 | CN |
204944509 | Jan 2016 | CN |
106612141 | May 2017 | CN |
0 176 169 | Apr 1986 | EP |
2 722 632 | Apr 2014 | EP |
2 812 749 | Dec 2014 | EP |
3 172 524 | May 2017 | EP |
3 205 974 | Aug 2017 | EP |
3 239 754 | Nov 2017 | EP |
2162654 | Feb 1986 | GB |
H07-295682 | Nov 1995 | JP |
WO 2005121688 | Dec 2005 | WO |
WO 2013080058 | Jun 2013 | WO |
WO 2013102869 | Jul 2013 | WO |
WO 2013119983 | Aug 2013 | WO |
WO 2014062725 | Apr 2014 | WO |
WO 2014150076 | Sep 2014 | WO |
WO 2016014655 | Jan 2016 | WO |
WO 2019222422 | Nov 2019 | WO |
WO 2019222426 | Nov 2019 | WO |
Entry |
---|
Aebi, V. et al., “EBAPS: Next Generation, Low Power, Digital Night Vision”, Presented at the OPTRO 2005 International Symposium, May 10, 2005, pp. 1-10, Paris, France, in 10 pages. |
Ackerman, S., “It Only Took the Army 16 Years and 2 Wars to Deploy this Network”,Wired.com, Jun. 28, 2012, in 7 pages. URL: http://www.wired.com/dangerrom/2012/06/army-data-network-war/all/. |
Armstrong, S. C., “Project Manager Soldier Weapons Program Overview NDIA”, May 15, 2012, in 38 pages. |
Schott—Glass Made of Ideas, GBPS-MC-GOF-Demo, dated Jan. 2006, pp. S.1-S.8, in 8 pages. |
Sklarek, W., “High Data Rate Capabilities of Multicore Glass Optical Fiber Cables, 22 FGT ‘Otische Polymerfasern’”, dated Oct. 25, 2006, in 19 pages. URL: http://www.pofac.de/downloads/itgfg/fgt2.2/FGT2.2_Munchen_Sklarek_GOF-Buendel. |
Tao, R. et al., “10 Gb/s CMOS Limiting Amplifier for Optical links”, Proceedings of the 29th European Solid-State Circuits Conference, Sep. 16-18, 2013, pp. 285-287, Estoril, Portugal, in 3 pages. |
Zhu, Z. et al., “AR-Weapon: Live Augmented Reality Based First-Person Shooting System”, 2015 IEEE Winter Conference on Applications of Computer Vision, Feb. 2015, in 8 pages. |
U.S. Appl. No. 13/674,895, filed Nov. 12, 2012, titled Intrapersonal Data Communication System, listing David Michael Masarik as an inventor, in 95 pages, and its entire prosecution history. |
Number | Date | Country | |
---|---|---|---|
20200053303 A1 | Feb 2020 | US |