Shuttle pump with controlled geometry

Information

  • Patent Grant
  • 8382447
  • Patent Number
    8,382,447
  • Date Filed
    Thursday, December 31, 2009
    14 years ago
  • Date Issued
    Tuesday, February 26, 2013
    11 years ago
Abstract
An infusion pump uses an improved shuttle mechanism to more reliably pump liquids in low volumes for medical and other purposes. The improved shuttle uses linear translation and wider, symmetric jaws to grasp infusate tubing and pump liquid infusate through the tubing. Adjustment of the linear motion allows a user to also adjust a pumping volume of the infusion pump. Other shuttles with wider jaws may also pump infusate using a rotary motion. In addition, more than one shuttle, such as two or three shuttles, may be used to approximate continuous pumping. A series of several smaller linear shuttles with sequential actuation may be used as a linear peristaltic pump for general peristaltic pump applications.
Description
BACKGROUND

The field of the invention is infusion pumps and relates generally to systems, apparatuses, and methods for pumping or infusing volumes of medical fluids to a patient, typically via an intravenous route.


Infusion pumps are used to infuse drugs and liquids into patients, typically via intravenous lines. While some infusion pumps deal with relatively large volumes, there may be more interest in pumps with a capability of delivering only very small controlled volumes of liquid. The drugs used may be very important, such as analgesics, anesthetics including opiates, anti-inflammatory agents, insulin, anti-spasmodic drugs, antibiotics, chemotherapy agents, cardiovascular drugs, and the like. Many of these drugs are needed in very low doses on a continuous basis, so that the patient has a steady, reliable stream over a long period of time, such as 0.1 ml per hour. If pulses are used, the dosage rate may be measured in terms of nanoliters or microliters per pulse or bolus. Patients thus depend on infusion pumps for reliable, consistent delivery of very small volumes.


Some infusion pumps propel or pump the liquid of interest by admitting a quantity of liquid into a length of tubing and isolating that quantity, as by occluding a valve at an inlet of the tubing. A mechanism then opens a valve at an outlet of the tubing and another mechanism compresses or otherwise massages the length of tubing in question. Since the inlet is blocked by the closed valve, the liquid can only exit through the outlet, with an open valve. This method works. However, there are at least two drawbacks to this method. Present day infusion pumps, using this type of shuttle mechanism, may squeeze the length of tubing by pressing a moving shuttle against a stationary block.


In cross-section, the tube resides in a diamond-shaped groove or pumping chamber formed by the opposed shuttle and block. Typically, the profiles of the shuttle and the block, or stationary portion, are not very well suited for maintaining the tube in an ideal position throughout the entire compression cycle. Because of this, the profile of the shuttle and block do not always achieve full compression of the tube at any given point during the pumping cycle. For example, prior art infusion pumps operate by occluding tubing between a moving shuttle and a stationary block. The tubing is not completely occluded because prior art pumps do not entirely compress the tubing, leaving the ends of the tubing non-occluded. This situation has at least two disadvantages: an unpredictable amount of liquid remains in the tubing, negatively affecting pump accuracy, and full pumping capacity is not utilized. Over-squeezing the tubing to complete the occlusion can adversely affect tubing life, while under-squeezing lessens the pumping capacity and may adversely affect pumping volume control accuracy.


Typically, the inlet valve, shuttle, and outlet valves previously mentioned are operated via a single motor or actuator. The timing of the operation of each is accomplished by a mechanical linkage. Accordingly, each stroke of the shuttle mechanism pumps a fixed amount of fluid. Therefore, it is difficult or impossible to adjust the pumping capacity or other pumping characteristic of the pump.


SUMMARY

An improved infusion pump is provided in several embodiments.


One embodiment is an infusion pump. The infusion pump includes an inlet valve, an outlet valve, and a shuttle including a shuttle stationary portion and a shuttle moveable portion configured for squeezing a length of tubing between the shuttle stationary portion and the shuttle movable portion, wherein the shuttle moveable portion moves toward and away from the shuttle stationary portion to operate the infusion pump, wherein the shuttle stationary portion and the shuttle moveable portion each include a symmetrical groove for holding and squeezing the length of tubing, the groove symmetrical about a central axis of the groove.


Another embodiment is an infusion pump. The infusion pump includes a housing and contained within the housing, an inlet valve, an outlet valve, and a shuttle including a shuttle stationary portion and a shuttle moveable portion configured for squeezing a length of tubing between the shuttle stationary portion and the shuttle movable portion, wherein the shuttle moveable portion moves toward and away from the shuttle stationary portion to squeeze the tubing, wherein the shuttle stationary portion and the shuttle moveable portion each include a base with a symmetric channel for containing the tubing, each of the shuttle stationary portion and the shuttle movable portion including a plurality of transverse ridges and transverse recesses rising from the base and the channel, wherein a height of the ridges above the channel is less than an outer diameter of the tubing.


Another embodiment is a method of pumping an infusate. The method includes the steps of furnishing an infusion pump, the infusion pump including at least one shuttle having a shuttle stationary portion and a shuttle moving portion, wherein the shuttle stationary portion and the shuttle moveable portion each include a base with a symmetric channel and a plurality of ridges and recesses rising from the base and the channel, wherein the ridges on both sides of the channel are symmetrical. The method also includes controlling operation of the infusion pump by entering commands through at least one input to a controller of the pump, pumping infusate by periodically moving the shuttle moveable portion with respect to the shuttle stationary portion, whereby substantially all of an outer circumference of the tubing is in contact with the portions of the shuttle stationary portion and the shuttle moving portion, and sequentially opening and closing at least one valve of the infusion pump to admit the infusate and to allow the infusion pump to pump the infusate.


Another embodiment is a linear shuttle peristaltic pump. The linear shuttle peristaltic pump includes at least one stationary section, the at least one stationary section including a base, a symmetric channel, at least one ridge on a first side of the channel and at least one recess on a second side of the channel, wherein the channel is formed with symmetrical angles on each side of a center of the channel. The pump also includes a plurality of moveable sections, each moveable section including a base, a symmetric channel, a ridge on a first side of the channel and a recess on a second side of the channel, wherein the channel is formed with symmetrical angles on each side of a center of the channel, and wherein the at least one ridge and at least one recess in the at least one stationary section fit into the recesses and ridges of the moveable sections, and wherein when the at least one stationary section and the plurality of movable sections are assembled, the channels form an opening suitable for a length of tubing, whereby substantially all of an outer circumference of the tubing is in contact with portions of the at least one stationary section and portions of the moving sections when the moving sections operate to squeeze the length of tubing, and a plurality of linear actuators connected to the plurality of moveable sections, each of the plurality of linear actuators further including a sensor for reporting a position of the actuator. In another embodiment, the linear actuators are replaced with a single motor and a cam in contact with each of the plurality of moveable sections.


Another embodiment is a method of pumping a liquid. The method includes the steps of providing a linear shuttle peristaltic pump, the pump including a plurality of shuttle stationary sections and a plurality of shuttle moving sections, each of the sections having a symmetric groove with at least one transverse ridge and at least one transverse recess, wherein the ridges and the recesses of the stationary sections fit into matching recesses and ridges of the moving sections, and wherein substantially all of an outer circumference of tubing in the pump is in contact with surfaces of the stationary sections and the moving sections when the tubing is squeezed. The method also includes controlling operation of the linear shuttle peristaltic pump by entering commands through at least one input to a controller of the pump, pumping liquid by sequentially moving the shuttle moveable sections with respect to the shuttle stationary sections, and sequentially opening and closing at least one valve of the infusion pump to admit the infusate and to allow the infusion pump to pump the infusate.


Another embodiment is a geometry-controlled valve. The valve includes a stationary section, the stationary section including a base, a symmetric channel, at least one ridge on a first side of the channel and at least one recess on a second side of the channel, wherein the channel is formed with symmetrical angles on each side of a center of the channel, and a moveable section, the moveable section including a base, a symmetric channel, a ridge on a first side of the channel and a recess on a second side of the channel, wherein the channel is formed with symmetrical angles on each side of a center of the channel, and wherein the at least one ridge and at least one recess in the stationary section fit into the recesses and ridges of the moveable section, and wherein when the stationary section and the movable section are assembled, the channels form an opening suitable for a length of tubing, whereby substantially all of an outer circumference of the tubing is in contact with the portions of the stationary section and the moving section when the moving section operates to squeeze the length of tubing.


Additional features and advantages are described herein, and will be apparent from, the following Detailed Description and the Figures.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a schematic view of an infusion pump controller with two infusion modules;



FIG. 2 is a partial cross-section of a prior-art infusion pump geometry;



FIG. 3 is a partial cross-section of a profile view of a new infusion pump shuttle geometry;



FIGS. 4A and 4B are perspective views of an improved shuttle pump geometry;



FIGS. 5A and 5B are partial cross-sectional views depicting filling and pumping phases of a shuttle pump with the improved geometry;



FIG. 6 is a perspective view of another shuttle design;



FIG. 7 is a perspective view of another shuttle geometry design;



FIG. 8 is a perspective view of yet another shuttle geometry design;



FIG. 9 is a perspective view of another application of the improved shuttle design;



FIG. 10 is a perspective view of an embodiment of a moving shuttle section;



FIG. 11 depicts another embodiment of a shuttle-type infusion pump;



FIG. 12 depicts yet another embodiment of a shuttle-type infusion pump;



FIGS. 13A and 13B depict infusion pumping by the embodiment of FIG. 6; and



FIG. 14 depicts an application wherein a single controller is used to control and monitor a plurality of infusion pumps for a patient.





DETAILED DESCRIPTION

One embodiment is depicted in FIG. 1. Infusion pump system 10 includes a housing 12 for the infusion pump microcontroller 28, and also includes first infusion pump 14 and second infusion pump 16, a video output 18 and an audio output or speaker 20. The video output 18 is a screen, which may be a touch-screen, allowing for inputs to the microcontroller 28. The infusion pump system 10 also includes inputs 26, which may be conveniently located near screen 18. The infusion pump system 10 includes additional inputs/outputs (I/O), including a landline 22 suitable for cable or other I/O, such as an intranet or cable for a home, a hospital or other care center. There is also an antenna 24 for wireless communication to and from a central monitoring station or other controller (not shown). The infusion pump system 10 includes a battery 25 and may also receive power from an external source via a power cord 27.


The first infusion pump 14 receives liquid from a first container 34 and the second infusion pump 16 receives liquid from a second container 36. The flow of liquid is then conveyed to the respective infusion pump via tubing 348, 366. The tubing 348, 366 in this embodiment is continuous before and after the infusion pumps 14, 16 and extends to an access device connector 368 for each line. The access device connector 368 may be a vascular access device and may be used for administering a drug or other medicament to the patient.


The system controller is a microcontroller 28, which includes a central processing unit (CPU), input/output capability (I/O), digital to analog converter (D/A), and random access memory (RAM) and read-only memory (ROM), and may include additional memory (MEM). A computer program for operating one or more infusion pumps 14, 16 is stored in MEM or ROM. Microcontroller 28 receives inputs from the drip counters 342, to monitor the input to the infusion pumps. The microcontroller 28 also receives inputs from a number of sensors or devices associated with the infusion pumps 14, 16, such as encoder data from rotary encoders on a motor driving the infusion pump, linear voltage displacement transducer (LVDT) data or other position or displacement data from linear actuators, voltage or current readings from temperature or pressure sensors in the infusion pumps 14, 16, and the like. The data may be sent via wire harnesses 322, 324, 326, or may be wireless, such as wireless signals conforming to the ZigBee/IEEE 805.15.4 wireless standard. The data may be received by the microcontroller 28 or the microcontroller 28 may include a separate interface for sensor circuits 32, as shown. The infusion pumps 14, 16 in this embodiment have a separate section for driver circuits 30, for driving or controlling linear actuators, rotary actuators, motors, and the like.


Infusion pump 14 is driven by a motor 148 driving an infusion pump moveable shuttle section 144 by a camming drive train 146. The moveable shuttle section 144 squeezes tubing 348 against the shuttle stationary section 142 to pump the liquid from container 34. Upper valve 140 opens to admit liquid into the tubing 348 and closes when the tubing 348 is full. Lower valve 141 then opens just before the controller 28 commands infusion pump 14 to actuate and cycle the moveable shuttle section 144. With upper valve 140 closed and lower valve 141 open, the liquid is forced through the lower valve and downstream through connector 368. An encoder or other feedback device on motor 148 informs controller 28 of the position of the motor 148, and thus the position of the moveable shuttle section 144, and also allows calculation of volume pumped by the infusion pump 14 by the computer program.


The second infusion pump 16 operates with linear actuators. A linear actuator is a device that develops force and motion, from an available energy source, in a linear manner, as opposed to a device that operates in a rotary manner, as one that receives torque directly from a rotary electric motor. Examples of linear actuators include electric linear solenoids, linear pneumatic actuators, and hydraulic cylinders. Other examples include ball screws and jack screws, and also cylinders actuated by a linear motor. Infusion pumps as described herein place a premium on space and on reliability. While many types of linear actuators may be used, lead screws and stepper motors from and Haydon Switch & Instrument (HSI) of Waterbury, Conn., U.S.A. and from Portescap, West Chester, Pa., U.S.A., have been found useful for the present infusion pump application.


Infusion pump 16 includes a stationary portion 162 and two moveable shuttles 164, 166, as well as three valves 160, 165, and 170, and five linear actuators 168. The commands to the linear actuators 168 and their positions are reported via harness 326 to the driver circuit portion 30 and are also reported to the microcontroller 28. Infusion pump 16 receives liquid from container 36 and drip chamber 346 and pumps via tubing 366. In this embodiment, tubing 366 is a continuous piece of tubing 366 from the drip chamber 346 to connector 368. Valve 165 closes and valve 160 opens to admit liquid into the tubing 366 downstream from valve 160. When this portion of the tubing 366 is full, valve 160 closes, valve 165 opens, and shuttle 164 advances, pumping liquid downstream through valve 165. Shuttle 166 is open to receive the liquid and valve 170 is closed. Then valve 165 closes, valve 170 is opened, and shuttle 166 closes, pumping the liquid downstream to connector 368 and to the patient. While shuttle 166 is closing, shuttle 164 retracts and valve 160 opens, admitting liquid upstream from valve 165. The process is then repeated, with sequential advance and retraction of the shuttles and appropriate opening and closing of the valves.


The use of two shuttles smoothes the pumping process, so that part of the tubing is being pumped (emptied) while the remainder is being filled. When the first shuttle 164 pumps, the contents of the upper portion of the tubing 366 are discharged into the lower portion of the tubing 366 adjacent the second shuttle 166. When the second shuttle 166 is pumping liquid to the patient, the tubing adjacent the first shuttle 164 is being re-filled. The tubing is quickly filled because the liquid has only to traverse the tubing immediately adjacent the first shuttle 164. Using this technique, a smooth, virtually continuous flow is achieved. In this embodiment, intermediate valve 165 acts as both the outlet valve for upper shuttle 164 and as input valve for lower shuttle 166.


Prior art infusion pumps, such as the one shown in cross-section in FIG. 2, do not uniformly squeeze the tubing 4. Instead, an upper shuttle 6 and a lower stationary portion 7 may tend to compress the tubing so that a small amount of liquid may be left in the tubing, as seen in FIG. 2, thus contributing to inaccuracy in the operation of the infusion pump. In one embodiment of the infusion pump disclosed herein, shown in FIG. 3, the infusion pump has a central groove 8 that is symmetrical with respect to a center line L of the groove, with equal angles A on both sides 9 of the groove 8. In one embodiment, the corner so formed has a gentle radius from about 0.020 inches to about 0.060 inches (about 0.50 mm to about 1.5 mm). A first embodiment of an improved shuttle pump made of a stationary block 40 and a moving shuttle 42 is depicted in FIGS. 4A and 4B.


The block 40 and the shuttle 42 are each made of a base with a plurality of alternating ridges 46 and recesses 48, with a central channel 44. The ridges 46 of one portion fit into the recesses 48 of the other, allowing sliding movement of the moving shuttle 42 with respect to the stationary block 40. The central channel 44 is configured for receiving a length of tubing, and should have a generous radius and be free from nicks and burrs. The ridges 46 rise perpendicularly from the base at the top and bottom edges of block 40 and shuttle 42, but form an angle B to the central channel of about 45 degrees. In this embodiment, the angles B and the channel are symmetrical with respect to a horizontal plane H bisecting the central channel, i.e., angles B are equal. The sum of the two angles B is from about 60 degrees to about 120 degrees. The tubing will be held or contained in a symmetrical manner, helping to insure that the tubing is not distorted when pumping takes place.



FIGS. 5A and 5B depict a cross-section of the joined stationary and moving portions. In FIG. 5A, the stationary block 40 and moving shuttle 42 are aligned, exerting slight pressure on tubing 38, which is contained within the area as shown between the block 40 and the shuttle 42, with only sufficient pressure to deform normally round tubing 38 into the slightly compressed state shown. FIG. 5A depicts ridges 424 from shuttle 42, which fit into recesses (not shown) of the block 40. Tubing 38 rests in the open area and is symmetrical with respect to the horizontal plane H. Vertical plane V is perpendicular to the horizontal plane and is taken at the locus of the corner or central channel 44. As seen in FIG. 5A, about three-fourths of the diameter of tubing 38 is contained within the block 40, while about one-fourth extends about the top (right) surface of shuttle 42.


As seen in FIG. 5B, the left and right portions, block 40 and shuttle 42, match and overlap, and about three-fourths of the diameter of tubing 38 is also contained within the open area of shuttle 42. The radius of the corner or central channel 44 in one embodiment is about 0.030 inches (about 0.75 mm). Base 402 of block 40 is the portion to the left of the vertical plane V. The base 404 of the shuttle 42 is similarly defined, but is to the right to of a vertical plane taken from the locus of its central channel. Block 40 has ridges 414 extending from its base 402, while shuttle 42 has ridges 424 extending from its base 404. In FIG. 5B, shuttle 42 has moved downward to squeeze the tubing 38 and pump the liquid infusate within the tubing 38 to the patient. Tubing 38 is deformed within the space, but with this geometry, the entire outer circumference or periphery of the tubing 38, adjacent to ridges 414, 424 is constrained between the matching ridges 414 of the block 40 and ridges 424 of the shuttle 42.


Another embodiment of a block 410 and a shuttle 420 are shown in FIG. 6. The block 410 and shuttle 420 are configured to accommodate and squeeze tubing 38 between them. In this embodiment, fingers 406, 408 are added on both the block 410 and the shuttle 420 to help secure and squeeze the tubing 38. In block 410, rear fingers 406 and front fingers 408 are positioned adjacent the tubing 38 to fit into matching slots 48 in shuttle 420. The fingers 406, 408 push against the tubing 38 and help to contain and squeeze the tubing 38 when the shuttle 420 contacts the tubing 38 by squeezing it against block 410. In this depiction, shuttle 420 has rotated downward and away from contact with the tubing 38 and fingers 406, 408 in the block 410 are shown in contact with tubing 38. Shuttle 420 also has rear fingers 406 (not shown), and front fingers 408 for performing the same function, containing and squeezing the tubing 38, on the other side of the tubing. The fingers 406, 408 on shuttle 420 fit into matching slots or recesses 48 on block 410.


The block 410 and shuttle 420 described above may also be made and used in smaller portions for occluding the tubing 38. For example, instead of squeezing a longer portion of the tubing 38 for pumping, a much shorter version may be used as a valve. FIGS. 7 and 8 depict an example. In FIG. 7, occluder 70 may be used as the stationary portion or block, or alternatively may be used as the moving portion or shuttle, of a valve to occlude tubing. Occluder 70 is similar to the stationary and moving portions described above. Occluder 70 includes a base portion 72, a central channel 74, a single ridge 76 and a single recess 78. The occluder 70 shown is used with a matching occluder 70 atop occluder 70, with the ridge 76 of one occluder 70 placed into the recess 78 of the other, and vice versa. By sliding or maneuvering one occluder 70 back and forth, a length of tubing may be opened and closed, thus allowing and ceasing flow of liquid in an infusion pump. This configuration has the same advantages as the shuttle pumps discussed above, in that the entire circumference or periphery of the tubing is occluded and is less likely to be subjected to excessive pressures, leading to premature failure.


Another embodiment of an occluder that is capable of acting as a valve is depicted in FIG. 8. In this embodiment, occluder 80 with base portion 82 includes two ridges 86 and two recesses 88, a ridge 86 and a recess 88 on each side, the positions of the two reversed across the transverse central channel 84. The embodiment is intended for use with two occluders 80, one stationary and one moving, as with occluders 70, block 40 and shuttle 42. In addition, since both occluder embodiments 70, 80 may also be used to push liquid from the tubing, they may be used to pump the liquid.



FIG. 9 depicts an embodiment in which a plurality of occluder sections 70 are used for both the stationary and moving portions of a linear peristaltic pump 60. In the figure, several stationary sections 70a are placed adjacent each other, their recesses 78 visible and accommodating ridges 76 from a matching number of identical moving portions 70b placed atop the stationary sections 70a. The moving portions 70b are portrayed as staggered, as would be the sections of a linear peristaltic pump 60. The moving sections 70b move in sequence, with a fixed small volume of liquid passing from one to another as each section 70b closes to pass the volume to the next and then opens to receive another small volume. The sections 70b are movable by linear actuators, e.g., solenoid actuators or other actuators (not shown). The volume pumped per unit time is variable if the displacement of the actuator is variable. For example, a three-position solenoid may be used to pump volumes in accordance with either of the two possible positions besides the closed position. Linear actuators that can be programmed to move a particular distance may also be used to control pumping volume. Of course, an inlet valve and an outlet valve may also be used with such a linear peristaltic pump 60. It will be understood by those with skill in the art that the linear peristaltic pump 60 of FIG. 9 could also operate with a single stationary portion (not shown), with appropriate ridges 76 and recesses 78, and a plurality of moving portions 70b mounted to the stationary portion. This would make such a pump less expensive and easier to repair.


Other linear actuation embodiments are depicted in FIGS. 10 and 11. In FIG. 10, a infusion pump 120 includes an inlet valve 122, an outlet valve 124, a stationary or block section 125 and a shuttle or moving section 126. The infusion pump 120 manipulates tubing 38 to pump infusion liquid. The valves 122, 124 are opened and closed by linear actuators 128, which may be standard, 2-position electric solenoids. The shuttle 126 is moved linearly back and forth by linear actuator 130. The block and shuttle 125, 126 may be similar to those depicted in FIGS. 4A, 4B, 5A and 5B, or may be different. The timing of the valve 122, 124 openings and closings, and the actuation of linear actuators 128, 130, i.e., the pumping, are determined by a controller (not shown), to which the linear actuators 128, 130 are connected, and, in this embodiment, by a computer program in the controller. An infusion pump 120 with a shuttle 126 whose motion is controlled by a linear actuator 130 is known as a linear shuttle infusion pump or, in context, a linear shuttle pump.



FIG. 11 depicts actuation for another infusion pump design with virtually continuous pumping motion. One problem with some designs is that periodically, no fluid is pumped in order to allow the tubing set to fill with more fluid. To eliminate this period of no flow, a second shuttle may be added so that the pump can continue to deliver liquid while the primary shuttle refills. Infusion pump 150 also manipulates tubing 38 to infuse liquid to a patient. In this embodiment, liquid is admitted through inlet valve 152 and is pumped first by primary shuttle 164. Primary shuttle 164 pumps liquid to secondary shuttle 166, which is only about half as long as primary shuttle 164. In this embodiment, there is an intermediate valve 154 between the primary and secondary shuttles 164, 166, but there is no outlet valve.


When the primary shuttle has finished pumping and is being replenished, inlet valve 152 is opened and intermediate valve 154 is closed. The secondary shuttle 166 continues the delivery of the fluid. Later, when the intermediate valve is open and the inlet valve is closed, the primary shuttle pumps fluid and fills the secondary shuttle 166. Since the primary shuttle is twice as long and encounters twice the length of tubing, it pumps about twice as much volume as the secondary shuttle. Other embodiments may be used.


The linear movement of the shuttles and valves described in the above embodiments is easy to understand. However, there are also embodiments in which the tubing for an infusion pump is squeezed or actuated by rotary motion, using a shuttle 420 as depicted in FIG. 6. Thus, while linear-actuated embodiments depicted in FIGS. 7 to 11 have advantages, other embodiments may achieve more uniform pumping using a single motor and one or more cam surfaces in engagement with the moveable shuttles or moveable sections.


Such an embodiment is further depicted in FIGS. 12, 13A and 13B. Shuttle 420 includes a plurality of ridges 46 and recesses 48, arrayed along a central transverse channel 460. As mentioned above, shuttle 420 may also include fingers 422 for restoring the tubing 38 to an open configuration after an individual pumping sequence has been completed. Shuttle 420 includes a pivot 450 with a bore 452 for a pivot pin 454. The shuttle 420 moves when a motor moves a cam 432 on camming surface 430. The camming surface 430, its movement amplified by lever arm 428, causes shuttle 420 to pivot about pivot 450 and the pivot pin 454, and forcing the ridges 46 against a length of tubing 38, thus pumping liquid and infusing liquid into a patient.


Side views of closed and open positions of this embodiment are further shown in FIGS. 13A-13B. In FIG. 13A, stationary block 410 is fixed in place, as is tubing 38. Shuttle 420 is squeezing tubing 38 in central space 460. Motor rotates cam 432 clockwise against camming surface 430, pressing down on camming surface 430, and through lever arm 428, urging moving shuttle 420 in a clockwise rotation, upwards against the tubing 38. When the liquid in the tube 38 has been pumped, the moving shuttle 420 allows the tubing 38 to open and re-fill with the infusing liquid. In FIG. 13B, cam 438 has rotated counter-clockwise, to allow clockwise pivoting about pivot 450 and pivot pin 454. Tubing 38 can now refill until the next cycle occurs.



FIG. 14 depicts an application with an infusion pump system 100. In this system 100, infusion pump controller 112 controls a plurality of infusion pumps 114, as described above. Each infusion pump 114 receives one liquid for infusing into a patient P, in this instance from containers 102, 104, through drips 106, 108, and W tubing 38 leading to the respective infusion pumps 114. The tubing 38 optionally has a connector 110, for addition of medicaments to the infusion liquid. The pumped liquid in this embodiment is output from each of the infusion pumps 114 through a check valve 116 and then though another length of IV tubing 38 to the patient P. The IV tubing 38 includes a clamp 118.


It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.

Claims
  • 1. An infusion pump, comprising: an inlet valve;an outlet valve; anda shuttle comprising a shuttle stationary portion and a shuttle moveable portion configured for squeezing a length of tubing between the shuttle stationary portion and the shuttle movable portion, wherein the shuttle moveable portion moves toward and away from the shuttle stationary portion to operate the infusion pump,wherein the shuttle stationary portion and the shuttle moveable portion each comprise a symmetrical shuttle groove for holding and squeezing the length of tubing, the shuttle groove symmetrical about a central axis of the shuttle groove and wherein at least one of the inlet valve and the outlet valve comprises a stationary portion and a moveable valve portion, the valve portions each having a valve groove and at least one transverse ridge and at least one transverse recess wherein a height of the at least one ridge above the valve groove is less than an outer diameter of the tubing and wherein the valve portions are configured so that the movable valve portion moves transversely to the length of tubing to occlude the tubing.
  • 2. The infusion pump according to claim 1, wherein the shuttle stationary portion and the shuttle moveable portion each comprise a base and a radiused channel, and where the shuttle stationary portion and shuttle moveable portion each comprise a plurality of transverse alternating ridges and recesses, the ridges of one of the portions fitting into the recesses of the other for interengaged movement to squeeze the tubing.
  • 3. The infusion pump according to claim 1, wherein at least one of the shuttle stationary portion and the shuttle moveable portion further comprises a plurality of extending fingers, wherein the fingers press against the tubing when the shuttle moveable portion moves toward the shuttle stationary portion.
  • 4. The infusion pump according to claim 1, wherein the shuttle stationary portion and the shuttle moveable portion each comprise a base and a radiused channel, and where the shuttle stationary portion and shuttle moveable portion each comprise a plurality of transverse alternating ridges and recesses, the ridges formed at an angle to the base.
  • 5. The infusion pump according to claim 1, wherein the infusion pump includes a plurality of shuttles, the plurality of shuttles configured within the infusion pump to move in sequence to squeeze the length of tubing and pump an infusate.
  • 6. The infusion pump according to claim 5, wherein the plurality of shuttles comprises first and second shuttles, the second shuttle positioned upstream or downstream of the outlet valve.
  • 7. The infusion pump according to claim 1, wherein at least one of the valves or the shuttle is driven by a linear actuator.
  • 8. The infusion pump according to claim 1, further comprising a plurality of fixed fingers in at least one of the shuttle moveable portion and the shuttle stationary portion, each finger protruding from a ridge and extending beyond the ridge, each finger configured for contacting a portion of the circumference of the tubing.
  • 9. The infusion pump according to claim 1, further comprising a linear actuator, wherein the shuttle is actuated by the linear actuator and wherein a volume of infusate pumped by the infusion pump is adjusted by adjusting a stroke of the linear actuator.
US Referenced Citations (493)
Number Name Date Kind
3606596 Edwards Sep 1971 A
3756752 Stenner Sep 1973 A
3771694 Kaminski Nov 1973 A
3809871 Howard et al. May 1974 A
3951571 Jung Apr 1976 A
3998103 Bjorklund et al. Dec 1976 A
4038983 Mittleman et al. Aug 1977 A
D246258 Ekert Nov 1977 S
4065230 Gezari Dec 1977 A
4078562 Friedman Mar 1978 A
4151407 McBride et al. Apr 1979 A
4187057 Xanthopoulos Feb 1980 A
4199307 Jassawalla Apr 1980 A
4237409 Sugalski Dec 1980 A
4256437 Brown Mar 1981 A
4273121 Jassawalla Jun 1981 A
4276004 Hahn Jun 1981 A
4277226 Archibald Jul 1981 A
4308866 Jelliffe et al. Jan 1982 A
4320757 Whitney et al. Mar 1982 A
D263997 Preussner Apr 1982 S
4332246 Thomson Jun 1982 A
4369780 Sakai Jan 1983 A
4373525 Kobayashi Feb 1983 A
D268206 Kosako Mar 1983 S
4392849 Petre et al. Jul 1983 A
4398908 Siposs Aug 1983 A
4416595 Cromie Nov 1983 A
4428381 Hepp Jan 1984 A
4430078 Sprague Feb 1984 A
4443216 Chappell Apr 1984 A
4445535 Mayfield May 1984 A
4447233 Mayfield May 1984 A
4447234 Mayfield May 1984 A
4451255 Bujan et al. May 1984 A
4457751 Rodler Jul 1984 A
4460358 Somerville et al. Jul 1984 A
4468221 Mayfield Aug 1984 A
4472116 Wenstrup Sep 1984 A
4487604 Iwatschenko et al. Dec 1984 A
4493710 King et al. Jan 1985 A
4496351 Hillell et al. Jan 1985 A
4498843 Schneider et al. Feb 1985 A
D278181 Archibald et al. Mar 1985 S
4504200 Olson Mar 1985 A
4511352 Theeuwes et al. Apr 1985 A
D278743 Manno et al. May 1985 S
4519792 Dawe May 1985 A
4529401 Leslie et al. Jul 1985 A
4537561 Xanthopoulos Aug 1985 A
4544369 Skakoon et al. Oct 1985 A
4551133 Zegers de Beyl et al. Nov 1985 A
4559038 Berg et al. Dec 1985 A
4561830 Bradley Dec 1985 A
4561856 Cochran Dec 1985 A
4562751 Nason et al. Jan 1986 A
4565542 Berg Jan 1986 A
4585009 Barker et al. Apr 1986 A
4585941 Bergner Apr 1986 A
4596550 Troutner Jun 1986 A
4601702 Hudson Jul 1986 A
4602249 Abbott Jul 1986 A
4624661 Arimond Nov 1986 A
D287053 Bucchianeri et al. Dec 1986 S
D287277 Kosako et al. Dec 1986 S
4637817 Archibald et al. Jan 1987 A
4639245 Pastrone et al. Jan 1987 A
4646781 McIntyre et al. Mar 1987 A
4648812 Kobayashi et al. Mar 1987 A
4650469 Berg et al. Mar 1987 A
4652262 Veracchi Mar 1987 A
4653987 Tsuji et al. Mar 1987 A
4657490 Abbott Apr 1987 A
4666430 Brown et al. May 1987 A
4668220 Hawrylenko May 1987 A
4676776 Howson Jun 1987 A
4678408 Nason et al. Jul 1987 A
4681563 Deckert et al. Jul 1987 A
4685903 Cable et al. Aug 1987 A
4690673 Bloomquist Sep 1987 A
4696671 Epstein et al. Sep 1987 A
D293468 Hill et al. Dec 1987 S
4714462 DiDomenico Dec 1987 A
4718576 Tamura et al. Jan 1988 A
4718893 Dorman et al. Jan 1988 A
4722149 Weaver et al. Feb 1988 A
4722224 Scheller et al. Feb 1988 A
4722734 Kolln Feb 1988 A
4725205 Cannon et al. Feb 1988 A
4731058 Doan Mar 1988 A
D295320 Vaughan Apr 1988 S
4741732 Crankshaw et al. May 1988 A
4741736 Brown May 1988 A
4744786 Hooven May 1988 A
4754401 Kaczynski et al. Jun 1988 A
4756706 Kerns et al. Jul 1988 A
4758228 Williams Jul 1988 A
4759527 Brown Jul 1988 A
4772263 Dorman et al. Sep 1988 A
4781548 Alderson et al. Nov 1988 A
4804368 Skakoon et al. Feb 1989 A
4810243 Howson Mar 1989 A
4834704 Reinicke May 1989 A
4836752 Burkett Jun 1989 A
4838857 Strowe et al. Jun 1989 A
4838860 Groshong et al. Jun 1989 A
4840542 Abbott Jun 1989 A
4846637 Alderson et al. Jul 1989 A
4854324 Hirschman et al. Aug 1989 A
4856339 Williams Aug 1989 A
4882575 Kawahara Nov 1989 A
D305060 Bisha' et al. Dec 1989 S
4886431 Soderquist et al. Dec 1989 A
4890984 Alderson et al. Jan 1990 A
4898579 Groshong et al. Feb 1990 A
4900305 Smith et al. Feb 1990 A
4908017 Howson et al. Mar 1990 A
4911168 Davis Mar 1990 A
4919650 Feingold et al. Apr 1990 A
4923375 Ejlersen May 1990 A
4931041 Faeser Jun 1990 A
4936760 Williams Jun 1990 A
D309662 Gorton Jul 1990 S
4941808 Qureshi et al. Jul 1990 A
4943279 Samiotes et al. Jul 1990 A
4954046 Irvin et al. Sep 1990 A
4960230 Marelli Oct 1990 A
4974464 Erikson et al. Dec 1990 A
4976151 Morishita Dec 1990 A
4978335 Arthur, III Dec 1990 A
5000739 Kulisz et al. Mar 1991 A
5006050 Cooke et al. Apr 1991 A
5011378 Brown et al. Apr 1991 A
5017192 Dodge et al. May 1991 A
5034004 Crankshaw Jul 1991 A
5041086 Koenig et al. Aug 1991 A
5044900 Cavallaro Sep 1991 A
5049047 Polaschegg et al. Sep 1991 A
5053031 Borsanyi Oct 1991 A
5055001 Natwick et al. Oct 1991 A
5057081 Sunderland Oct 1991 A
5061243 Winchell et al. Oct 1991 A
D321559 Kienholz Nov 1991 S
5078362 Lawless et al. Jan 1992 A
5078683 Sancoff et al. Jan 1992 A
5080653 Voss et al. Jan 1992 A
5088904 Okada Feb 1992 A
5098256 Smith Mar 1992 A
5098377 Borsanyi et al. Mar 1992 A
5100380 Epstein et al. Mar 1992 A
5100389 Vaillancourt Mar 1992 A
5102392 Sakai et al. Apr 1992 A
5104374 Bishko et al. Apr 1992 A
D326153 Eastman et al. May 1992 S
5116203 Natwick et al. May 1992 A
5120096 D'Silva Jun 1992 A
5123275 Daoud et al. Jun 1992 A
5131816 Brown et al. Jul 1992 A
D328952 Arioka Aug 1992 S
5135500 Zdeb Aug 1992 A
5151019 Danby et al. Sep 1992 A
5153827 Coutre et al. Oct 1992 A
5160320 Yum et al. Nov 1992 A
5165874 Sancoff et al. Nov 1992 A
5167633 Mann et al. Dec 1992 A
5176004 Gaudet Jan 1993 A
5176644 Srisathapat et al. Jan 1993 A
5181842 Sunderland et al. Jan 1993 A
5181910 Scanlon Jan 1993 A
5197322 Indravudh Mar 1993 A
5207645 Ross et al. May 1993 A
5213483 Flaherty et al. May 1993 A
5217442 Davis Jun 1993 A
5219327 Okada Jun 1993 A
5219330 Bollish et al. Jun 1993 A
5219331 Vanderveen Jun 1993 A
5219428 Stern Jun 1993 A
5232449 Stern et al. Aug 1993 A
5236416 McDaniel et al. Aug 1993 A
5238001 Gallant et al. Aug 1993 A
D339193 Thompson et al. Sep 1993 S
5242407 Struble et al. Sep 1993 A
5242408 Jhuboo et al. Sep 1993 A
5244461 Derlien Sep 1993 A
5244463 Cordner, Jr. et al. Sep 1993 A
5254096 Rondelet et al. Oct 1993 A
5256157 Samiotes et al. Oct 1993 A
5257971 Lord et al. Nov 1993 A
5261884 Stern et al. Nov 1993 A
5265431 Gaudet et al. Nov 1993 A
D342231 Walker et al. Dec 1993 S
5276610 Maeda et al. Jan 1994 A
5279556 Goi et al. Jan 1994 A
5281111 Plambeck et al. Jan 1994 A
5290239 Classey et al. Mar 1994 A
5295966 Stern et al. Mar 1994 A
5295967 Rondelet et al. Mar 1994 A
5298021 Sherer Mar 1994 A
D347472 Sunderland et al. May 1994 S
5308333 Skakoon May 1994 A
5308335 Ross et al. May 1994 A
5317506 Coutre et al. May 1994 A
D348101 Poli et al. Jun 1994 S
5321392 Skakoon et al. Jun 1994 A
D348730 Walker et al. Jul 1994 S
5326236 Kramer et al. Jul 1994 A
5328460 Lord et al. Jul 1994 A
5330431 Herskowitz Jul 1994 A
5336245 Adams et al. Aug 1994 A
5338157 Blomquist Aug 1994 A
5341291 Roizen et al. Aug 1994 A
5343734 Maeda et al. Sep 1994 A
5348539 Herskowitz Sep 1994 A
5356379 Vaillancourt Oct 1994 A
D352778 Irvin et al. Nov 1994 S
5366904 Qureshi et al. Nov 1994 A
D353667 Tsubota et al. Dec 1994 S
5370612 Maeda et al. Dec 1994 A
5370622 Livingston et al. Dec 1994 A
5374251 Smith Dec 1994 A
5374965 Kanno Dec 1994 A
5376070 Purvis et al. Dec 1994 A
5378231 Johnson et al. Jan 1995 A
5382236 Otto et al. Jan 1995 A
D355716 Nash et al. Feb 1995 S
5387088 Knapp et al. Feb 1995 A
5389078 Zalesky et al. Feb 1995 A
5395320 Padda et al. Mar 1995 A
5395324 Hinrichs et al. Mar 1995 A
5395340 Lee Mar 1995 A
5397222 Moss et al. Mar 1995 A
5411482 Campbell May 1995 A
5415532 Loughnane et al. May 1995 A
5419684 Struble et al. May 1995 A
5423746 Burkett et al. Jun 1995 A
5423759 Campbell Jun 1995 A
5429602 Hauser Jul 1995 A
5431627 Pastrone et al. Jul 1995 A
5433704 Ross et al. Jul 1995 A
5433710 VanAntwerp et al. Jul 1995 A
D361379 Sancoff et al. Aug 1995 S
D361617 Sancoff et al. Aug 1995 S
5437635 Fields et al. Aug 1995 A
5437642 Thill et al. Aug 1995 A
5458469 Hauser Oct 1995 A
5458578 Sebesta et al. Oct 1995 A
5462051 Oka et al. Oct 1995 A
5462525 Srisathapat et al. Oct 1995 A
5466218 Srisathapat et al. Nov 1995 A
5472317 Field et al. Dec 1995 A
5472420 Campbell Dec 1995 A
5478211 Dominiak et al. Dec 1995 A
5482446 Williamson et al. Jan 1996 A
5485408 Blomquist Jan 1996 A
D367527 Marston et al. Feb 1996 S
D367528 Marston et al. Feb 1996 S
5489265 Montalvo et al. Feb 1996 A
5501665 Jhuboo et al. Mar 1996 A
5503538 Wiernicki et al. Apr 1996 A
5505709 Funderburk et al. Apr 1996 A
5507412 Ebert et al. Apr 1996 A
5511951 O'Leary Apr 1996 A
5513957 O'Leary May 1996 A
5514103 Srisathapat et al. May 1996 A
5520638 O'Quinn et al. May 1996 A
D371194 Marston et al. Jun 1996 S
5522798 Johnson et al. Jun 1996 A
5522799 Furukawa Jun 1996 A
5527307 Srisathapat et al. Jun 1996 A
5529214 Lasonde et al. Jun 1996 A
5531680 Dumas et al. Jul 1996 A
5531697 Olsen et al. Jul 1996 A
5533981 Mandro et al. Jul 1996 A
5545140 Conero et al. Aug 1996 A
5547470 Johnson et al. Aug 1996 A
5549460 O'Leary Aug 1996 A
5551850 Williamson et al. Sep 1996 A
5554115 Thomas et al. Sep 1996 A
5554123 Herskowitz Sep 1996 A
5562621 Claude et al. Oct 1996 A
5569186 Lord et al. Oct 1996 A
5573502 LeCocq et al. Nov 1996 A
5573506 Vasko Nov 1996 A
5578077 Kassatly Nov 1996 A
D376848 Zeilig et al. Dec 1996 S
5584811 Ross et al. Dec 1996 A
5586629 Shoberg et al. Dec 1996 A
5588815 Zaleski, II Dec 1996 A
5601420 Warner et al. Feb 1997 A
5609575 Larson et al. Mar 1997 A
5620312 Hyman et al. Apr 1997 A
RE35501 Ross et al. May 1997 E
5628619 Wilson May 1997 A
5630710 Tune et al. May 1997 A
D380260 Hyman Jun 1997 S
5637093 Hyman et al. Jun 1997 A
5637095 Nason et al. Jun 1997 A
5643212 Coutre et al. Jul 1997 A
5647853 Feldmann et al. Jul 1997 A
5647854 Olsen et al. Jul 1997 A
5665070 McPhee Sep 1997 A
5669877 Blomquist Sep 1997 A
5673588 Raymond Oct 1997 A
5681284 Herskowitz Oct 1997 A
5681285 Ford et al. Oct 1997 A
5683367 Jordan et al. Nov 1997 A
5685844 Marttila Nov 1997 A
5695464 Viallet Dec 1997 A
5695473 Olsen Dec 1997 A
D390654 Alsberg et al. Feb 1998 S
5713856 Eggers et al. Feb 1998 A
5722957 Steinbach Mar 1998 A
5741121 O'Leary Apr 1998 A
5743878 Ross et al. Apr 1998 A
5745378 Barker et al. Apr 1998 A
5752976 Duffin et al. May 1998 A
5764034 Bowman et al. Jun 1998 A
5766155 Hyman et al. Jun 1998 A
5769823 Otto Jun 1998 A
5776345 Truitt et al. Jul 1998 A
5782805 Meinzer et al. Jul 1998 A
5785681 Indravudh Jul 1998 A
D397432 Rake et al. Aug 1998 S
5788669 Peterson Aug 1998 A
5791880 Wilson Aug 1998 A
5795327 Wilson et al. Aug 1998 A
5807322 Lindsey et al. Sep 1998 A
5807336 Russo et al. Sep 1998 A
5813972 Nazarian et al. Sep 1998 A
5814015 Gargano et al. Sep 1998 A
5814019 Steinbach et al. Sep 1998 A
5836915 Steinbach et al. Nov 1998 A
5840058 Ammann et al. Nov 1998 A
5842841 Danby et al. Dec 1998 A
D404813 Hauser Jan 1999 S
5868710 Battiato et al. Feb 1999 A
5871465 Vasko Feb 1999 A
5885245 Lynch et al. Mar 1999 A
D408911 Moubayed et al. Apr 1999 S
5894273 Meador et al. Apr 1999 A
5895371 Levitas et al. Apr 1999 A
5897530 Jackson Apr 1999 A
5904668 Hyman et al. May 1999 A
5908414 Otto et al. Jun 1999 A
5935099 Peterson et al. Aug 1999 A
5935106 Olsen Aug 1999 A
5943633 Wilson et al. Aug 1999 A
5951510 Barak Sep 1999 A
5954696 Ryan Sep 1999 A
5954697 Srisathapat et al. Sep 1999 A
5957890 Mann et al. Sep 1999 A
5988983 Furusawa Nov 1999 A
5993420 Hyman et al. Nov 1999 A
6004020 Bartur Dec 1999 A
6013057 Danby et al. Jan 2000 A
D420737 Kivlehan Feb 2000 S
6024539 Blomquist Feb 2000 A
6078273 Hutchins et al. Jun 2000 A
6083201 Skinkle Jul 2000 A
D430288 Mason et al. Aug 2000 S
D430289 Mason et al. Aug 2000 S
6095757 Frezza Aug 2000 A
6106498 Friedli et al. Aug 2000 A
6110152 Kovelman Aug 2000 A
6123524 Danby et al. Sep 2000 A
6129517 Danby et al. Oct 2000 A
6135949 Russo et al. Oct 2000 A
6139748 Ericson et al. Oct 2000 A
D434142 Cheney, II et al. Nov 2000 S
6145695 Garrigues Nov 2000 A
6173198 Schulze et al. Jan 2001 B1
RE37074 Danby et al. Feb 2001 E
6195887 Danby et al. Mar 2001 B1
6203528 Deckert et al. Mar 2001 B1
6213723 Danby et al. Apr 2001 B1
6213738 Danby et al. Apr 2001 B1
6213739 Phallen et al. Apr 2001 B1
6231560 Bui et al. May 2001 B1
6269340 Ford et al. Jul 2001 B1
D446854 Cheney, II et al. Aug 2001 S
6270478 Mernøe Aug 2001 B1
6280416 Van Antwerp et al. Aug 2001 B1
D447558 Cartledge et al. Sep 2001 S
6297795 Kato et al. Oct 2001 B1
6305908 Hermann et al. Oct 2001 B1
D453830 McDowell et al. Feb 2002 S
6347553 Morris et al. Feb 2002 B1
6348043 Hagen et al. Feb 2002 B1
6348952 Jeong Feb 2002 B1
6358225 Butterfield Mar 2002 B1
D457949 Krug et al. May 2002 S
6398760 Danby Jun 2002 B1
6413239 Burns et al. Jul 2002 B1
6423035 Das et al. Jul 2002 B1
D461241 Moberg et al. Aug 2002 S
D461891 Moberg Aug 2002 S
D462121 Cartledge et al. Aug 2002 S
6458102 Mann et al. Oct 2002 B1
6471436 Gjata et al. Oct 2002 B1
6475180 Peterson et al. Nov 2002 B2
6485465 Moberg et al. Nov 2002 B2
6489896 Platt et al. Dec 2002 B1
6500151 Cobb et al. Dec 2002 B1
6519569 White et al. Feb 2003 B1
6544229 Danby et al. Apr 2003 B1
6554822 Holschneider et al. Apr 2003 B1
D474837 Gillespie, Jr. et al. May 2003 S
D475454 Gillespie, Jr. et al. Jun 2003 S
6572604 Platt et al. Jun 2003 B1
6585675 O'Mahony et al. Jul 2003 B1
6592551 Cobb Jul 2003 B1
D479323 Gillespie, Jr. et al. Sep 2003 S
6620151 Blischak et al. Sep 2003 B2
6648861 Platt et al. Nov 2003 B2
6652493 Das Nov 2003 B1
6656148 Das et al. Dec 2003 B2
6659980 Moberg et al. Dec 2003 B2
6666845 Hooper et al. Dec 2003 B2
6692241 Watanabe et al. Feb 2004 B2
6755814 Wieland et al. Jun 2004 B2
6776773 Kiyatake et al. Aug 2004 B2
6800069 Lampropoulos et al. Oct 2004 B2
6805687 Dextradeur et al. Oct 2004 B2
6827702 Lebel et al. Dec 2004 B2
6854620 Ramey Feb 2005 B2
6945954 Hochman et al. Sep 2005 B2
6999854 Roth Feb 2006 B2
7008403 Mallett Mar 2006 B1
7018361 Gillespie, Jr. et al. Mar 2006 B2
7022107 Christensen et al. Apr 2006 B1
7025226 Ramey Apr 2006 B2
7029455 Flaherty Apr 2006 B2
7092796 Vanderveen Aug 2006 B2
7182750 Lampropoulos et al. Feb 2007 B2
7193521 Moberg et al. Mar 2007 B2
7232423 Mernoe Jun 2007 B2
7236936 White et al. Jun 2007 B2
7255683 Vanderveen et al. Aug 2007 B2
7306578 Gray et al. Dec 2007 B2
7322961 Forrest Jan 2008 B2
7338464 Blischak et al. Mar 2008 B2
7341581 Mallett Mar 2008 B2
7347837 Azzolini Mar 2008 B2
7351226 Herskowitz Apr 2008 B1
7356382 Vanderveen Apr 2008 B2
7374556 Mallett May 2008 B2
D574016 Yodfat et al. Jul 2008 S
D577118 Yodfat et al. Sep 2008 S
7471994 Ford et al. Dec 2008 B2
7534226 Mernoe et al. May 2009 B2
7559926 Blischak Jul 2009 B1
7569030 Lebel et al. Aug 2009 B2
7601148 Keller Oct 2009 B2
7608060 Gillespie, Jr. et al. Oct 2009 B2
7611498 Hasler Nov 2009 B2
7621893 Moberg et al. Nov 2009 B2
7632249 Momeni et al. Dec 2009 B2
7637892 Steinbach et al. Dec 2009 B2
7647237 Malave et al. Jan 2010 B2
D612484 Yodfat et al. Mar 2010 S
D614587 Yodfat et al. Apr 2010 S
7708717 Estes et al. May 2010 B2
7717903 Estes et al. May 2010 B2
7725272 Ginggen et al. May 2010 B2
7743975 Miller Jun 2010 B2
7758552 Zoltan et al. Jul 2010 B2
7766863 Gillespie, Jr. et al. Aug 2010 B2
7766873 Moberg et al. Aug 2010 B2
7776029 Whitehurst et al. Aug 2010 B2
7776030 Estes et al. Aug 2010 B2
7789859 Estes et al. Sep 2010 B2
7794426 Briones et al. Sep 2010 B2
7794427 Estes et al. Sep 2010 B2
7794428 Estes et al. Sep 2010 B2
7803134 Sharifi et al. Sep 2010 B2
7833196 Estes et al. Nov 2010 B2
7837651 Bishop et al. Nov 2010 B2
7850641 Lebel et al. Dec 2010 B2
20010031944 Peterson et al. Oct 2001 A1
20010034502 Moberg et al. Oct 2001 A1
20020004015 Carlisle et al. Jan 2002 A1
20020004645 Carlisle et al. Jan 2002 A1
20020128606 Cowan et al. Sep 2002 A1
20020165491 Reilly Nov 2002 A1
20030009133 Ramey Jan 2003 A1
20030060754 Reilly et al. Mar 2003 A1
20030060768 Kiyatake et al. Mar 2003 A1
20030065287 Spohn et al. Apr 2003 A1
20030073954 Moberg et al. Apr 2003 A1
20030078534 Hochman et al. Apr 2003 A1
20030097092 Flaherty May 2003 A1
20030149402 Gerlach et al. Aug 2003 A1
20060173412 Susi Aug 2006 A1
Foreign Referenced Citations (19)
Number Date Country
0215249 Mar 1987 EP
0426273 May 1991 EP
0447985 Sep 1991 EP
0522527 Jan 1993 EP
0560270 Sep 1993 EP
0567944 Nov 1993 EP
0567945 Nov 1993 EP
0567946 Nov 1993 EP
0567962 Nov 1993 EP
2190145 Nov 1987 GB
2208897 Apr 1989 GB
2336510 Oct 1999 GB
WO8404685 Dec 1984 WO
WO9203656 Mar 1992 WO
WO9305829 Apr 1993 WO
WO9517913 Jul 1995 WO
WO0042911 Jul 2000 WO
WO0048112 Aug 2000 WO
WO0068766 Nov 2000 WO
Non-Patent Literature Citations (7)
Entry
International Search Report for International Application No. PCT/US 02/36963 of Applicant Baxter International Inc.
International Search Report for International Application No. PCT/US 02/36964 of Applicant Baxter International Inc.
International Search Report for International Application No. PCT/US2010/062150 of Applicant Baxter International Inc.
Written Opinion in PCT Application PCT/US2010/062150, mailed Jul. 21, 2011 (9 pages).
Haydon Switch & Instrument, Inc.—Ball Screw—Haydon Leadscrew Assemblies (website) written by http://www.motioncontrol.com/products/index.cfm/Ball=Screw--Haydon-Leadscrew-Asse . . . printed May 12, 2009, 1 pg.
Portescap, A Danaher Motion Company Linear Actuators Data Sheets on GlotbalSpec (website) written by http://motion-controls.globalspec.com/datasheets/729/Portescap printed May 12, 2009, 1 pg.
International Search Report for International Application No. PCT/US2010/062150 of Applicant Baxter International Inc. dated Dec. 22, 2011.
Related Publications (1)
Number Date Country
20110158823 A1 Jun 2011 US