The present invention is directed towards window locks, and more particularly toward manual handles for actuating window locks. Specifically, the present invention is directed to a flush mounted or low profile actuating window lock for casement windows. More specifically, the present invention is directed to a flush mounted lock actuator designed to drive a lock bar that locks and unlocks a casement window, which protrudes from the window frame significantly less than prior art designs, while employing an action which operates at 90 degrees to the pivoting handle.
Generally, a casement window is a window unit in which the single vent cranks outward, to the right or left. Casement windows are hinged at the side. (Windows hinged at the top are referred to as awning windows.) They are used singly or in pairs within a common frame. Casement windows are often held open using a casement stay. Casement windows open like doors. Like doors, either the left or right side is hinged (or, more accurately, pivoted), and the non-hinged side locks securely into place by a lock bar driven by a lock handle. Unlike a door, the casement window opens not by a knob or handle but by means of some variation of a gear driven operator or lever, which is placed around hand height or at the bottom. A gear driven operator, stay, or friction hinge controlling the position of the sash is necessary when the window opens outward, to hold the window in position during inclement weather, such as high winds.
The locking system for a casement window is typically on the side of the window. Lock handles for casement windows are known in the art. Generally, a lock handle is mounted on the frame of the casement window and moves an internally mounted fork component left or right. The fork component drives a lock or tie bar that is also mounted to the frame. One type of locking mechanism for a casement window uses a flat tie bar slidably mounted to the window frame along the open side of the window. The tie bar is provided with multiple pins for locking and driving that extend perpendicularly outward from the tie bar. A locking handle is provided on the interior of the window frame that can be thrown by the user between locked and unlocked positions. The locking handle slides the tie bar, which moves each locking pin between a corresponding locked and unlocked position. A typical lock bar and lock handle to drive the lock bar is shown in U.S. Pat. No. 7,946,633, entitled “Low Friction Adjustable Roller Pin,” issued to Minter on May 24, 2011.
Lock handles of the prior art are known to protrude from the casement window frame at a distance of approximately 20-25 mm. This protrusion is due to the internal driving mechanism within the handle. Casement window lock handles of the prior art drive a fork component, which engages and slides the lock bar. In order to drive the fork component from one side to the other, the handle casing must have sufficient depth to allow for the handle to pivot about the casing and to allow the fork internally to shift from side to side.
The most relevant prior art does not teach or disclose a locking mechanism capable of low profile (on the order of 8 mm) flush mounting that can be adapted to work with existing tie bar locking designs. For example, in U.S. Pat. No. 5,087,087 issued to Vetter, et al., on Feb. 11, 1992, entitled “Sash Lock,” a basic multipoint window lock mechanism is taught using an actuating lever/handle that drives a sliding lock bar. The actuating lever handle has a pin located at the opposite end from the handle end. The pin is engaged in and drives a fork component on the lock bar. This prior art does not disclose, describe, or suggest any type of lifter mechanism in combination with the fork component to achieve a significantly reduced profile lock actuation. Nor does this prior art design introduce additional linkage to prevent back driving the lock.
In U.S. Pat. No. 5,813,710 issued to Anderson on Sep. 29, 1998, entitled “Flush Lock Actuator,” a lock actuator is disclosed to provide a “flush” lock appearance. However, for reasons discussed further herein, the low profile feature of this invention is provided with a design distinctly different from the present design. The Anderson design teaches a handle that is symmetrical and flush with the body of the actuator. The handle is pivoted with respect to the casing about its center on a pin. One end of the handle pivots towards (and into) the window frame, while the other end pivots out of the body and away from the frame. The end that pivots into the window has an actuating link attached to it that drives the lock bar. There is no restrictor arm for redirecting the pivot points of the handle to work in combination with a fork component to reduce the casing profile as taught by the present invention, nor is there a rotatable connector to prevent “over-opening” the lock.
In U.S. Pat. No. 5,829,802 issued to Anderson, et al., on Nov. 3, 1998, entitled “Multi-Point Lock Operator For Casement Window,” a lock actuator is disclosed that drives a multipoint lock bar. Although the actuator handle is not flush, the handle swings a full 180° so that it lies flat at both the locked and unlocked limits of motion. The far end of the actuator handle drives a “universal” link that is connected to the lock bar. In this design, the handle is pivoted directly on the casing or body of the device, which is distinctly different than the present design. Consequently, there is no need for a restrictor arm or any additional linkage for over center security to prevent the lock handle from being back driven.
In general, the prior art is silent with respect to salient features of the present invention that achieve flush mounting and prevent back driving the lock.
Bearing in mind the problems and deficiencies of the prior art, it is therefore an object of the present invention to provide a casement window lock that is flush mounted with a significantly lower profile than the current state of the art.
It is a further object of the present invention to provide a casement window lock that allows for complete reversal of the handle from the locking position to the unlocking position, and vice versa.
In yet another object of the present invention, it is desirable to provide a casement window lock that prevents back driving the locking mechanism.
The above and other objects, which will be apparent to those skilled in the art, are achieved in the present invention which is directed to a method of unlocking a casement window having an elongated casing with a substantially horizontal sidewall section including a longitudinal slot for receiving a fork component, and a restrictor arm pivotally attached at one end to the casing and pivotally attached at the other end to a handle at a first pivot point. A fork component is adapted to engage a lock bar external to the lock, and the fork component is in slidable communication with the casing within the longitudinal slot. A handle is pivotally attached at one end to the fork component at a second pivot point and pivotally attached at an intermediate point on the handle to the restrictor arm, and the handle is rotatable along a plane perpendicular to the fork component. The method comprises rotating the handle about the first pivot point to move the fork component and the second pivot point horizontally along the casing horizontal sidewall section within the longitudinal slot in a direction perpendicular to an axis of rotation of the handle, while simultaneously shifting the first pivot point relative to the second pivot point to allow said handle to rotate from an initial position.
The elongated casing may comprise a spring action push mechanism including a permanent magnet embedded at an end opposite the handle second pivot point and the handle may include a second end having a permanent magnet of opposite polarity to the first permanent magnet embedded therein, wherein magnetic attraction between the permanent magnets maintains the handle in a flush position within the casing when the handle is in a locked position. The method may further include the step of pulsing the handle second end in the direction of the casing to compress a spring within the push mechanism such that upon release of the spring, energy stored in the compressed spring is sufficient to overcome the magnetic attraction between the first and second permanent magnets to release the handle for rotation.
In an embodiment, the method may include causing an over-center condition by rotating the handle from a fully unlocked position wherein a first hinge point, rotatably joining the handle to the fork component, is placed between a second hinge point, rotatably joining the handle to the restrictor arm, and a third hinge point, rotatably joining the restrictor arm to the casing, and the second hinge point is above an action line connecting the first and third hinge points, and thereafter causing said over-center condition by rotating the handle fully to a locked position such that the second hinge point is placed between the first and third hinge points, and the second hinge point is below an action line connecting the first and third hinge points.
In another aspect, the present invention is directed to a method of securing a window sash to a casement window frame, comprising actuating a flush lock for the casement window, wherein the casement window includes an elongated casing having a substantially horizontal sidewall section including a longitudinal slot for receiving a fork component adapted to engage a lock bar external to the lock, the fork component in slidable communication with the casing within the longitudinal slot. The flush lock further includes a restrictor arm pivotally attached to the casing, and a plurality of hinges or pivot points forming an over center linkage to prevent back driving the lock, wherein the over center linkage includes, a first hinge point rotatably joining the handle to the fork component, a second hinge point rotatably joining the handle to the restrictor arm, and a third hinge point rotatably joining the restrictor arm to the casing. A handle is pivotally attached at one end to the fork component, and pivotally attached at an intermediate point on the handle to the restrictor arm, and the handle is rotatable along a plane perpendicular to the fork component. The method comprises rotating the handle to an unlocked position, such that the first hinge point is between the second and third hinge points and the second hinge point is above an action line connecting the first and third hinge points, or rotating the handle to a locked position, such that the second hinge point is between the first and third hinge points and the second hinge point is below an action line connecting the first and third hinge points, and moving the fork component horizontally along the casing horizontal sidewall section within the longitudinal slot in a direction perpendicular to an axis of rotation of the handle.
In yet another aspect, the present invention is directed to a casement window lock for securing a window sash to a casement window frame, the lock comprising a casing having a substantially horizontal sidewall section including a longitudinal slot, a restrictor arm pivotally attached at one end to the casing and pivotally attached at the other end to a handle at a first pivot point, a fork component including an attachment portion for engaging a lock bar and a protrusion for slidably engaging the longitudinal slot, and a handle in pivotal communication with the fork component at one end of the handle at a second pivot point and in pivotal communication with the restrictor arm at an intermediate point on the handle, the handle rotatable along a plane perpendicular to the fork component. When the handle is rotated to an unlocked position, the handle pivots about the first pivot point, causing the fork component and the second pivot point to traverse horizontally within the longitudinal slot in a first direction perpendicular to an axis of rotation of the handle, and when the handle is rotated to a locked position, the handle pivots about the first pivot point in an opposite direction, causing the fork component and the second pivot point to traverse horizontally within the longitudinal slot in a second direction opposite the first direction.
The casement window lock may include a plurality of hinges or pivot points forming an over center linkage to prevent back driving the lock. The over center linkage may include a first hinge point rotatably joining the handle to the lifter, a second hinge point rotatably joining the handle to the restrictor arm, and a third hinge point rotatably joining the restrictor arm to the casing, such that when the handle is in an unlocked position, the first hinge point is between the second and third hinge points and the second hinge point is above an action line connecting the first and third hinge points, and when the handle is in the locked position, the second hinge point is between the first and third hinge points and the second hinge point is below an action line connecting the first and third hinge points.
In an embodiment, the casement window lock may further include a retainer for securing the lock to a window frame, wherein the retainer is placed on a window frame opposite the casement window lock and providing a surface for mounting screws through the window frame to the lock. The retainer may comprise a slot extending along a length thereof for receiving at least a portion of the fork component extending therethrough as the fork component traverses in the first and second directions. The retainer may further comprise at least one detent formed therein to engage a detent spring coupled to the fork component and located between the fork component and the retainer, the detent spring providing tactile and audible indication that the fork component has reached an end of travel.
A spring washer may be attached between the restrictor arm and the casing, the spring washer capable of providing force at minimal deflection.
The casement window lock may further comprise a spring action push mechanism including a permanent magnet embedded in the casing at an end opposite the handle second pivot point and the handle may include a second end having a permanent magnet of opposite polarity to the first permanent magnet embedded therein, wherein magnetic attraction between the permanent magnets maintains the handle in a flush position within the casing when the handle is in a locked position. The handle is releasable for rotation by pulsing an end of the handle in the direction of the casing to compress a spring within the push mechanism such that upon release of the spring, energy stored in the compressed spring is sufficient to overcome the magnetic attraction between the first and second permanent magnets.
A snap-on escutcheon may be attached to the casing and the handle, and the casement window lock may further include a rotatable connector for preventing the handle from over-rotating and contacting the casing and/or escutcheon and ensuring clearance therebetween as the handle is rotated to an unlocked position.
The features of the invention believed to be novel and the elements characteristic of the invention are set forth with particularity in the appended claims. The figures are for illustration purposes only and are not drawn to scale. The invention itself, however, both as to organization and method of operation, may best be understood by reference to the detailed description which follows taken in conjunction with the accompanying drawings in which:
In describing the embodiments of the present invention, reference will be made herein to
Certain terminology is used herein for convenience only and is not to be taken as a limitation of the invention. For example, words such as “upper,” “lower,” “left,” “right,” “horizontal,” “vertical,” “upward,” and “downward” merely describe the configuration shown in the drawings. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements.
The lock of the present invention is a low profile, flush design, that protrudes from the window frame significantly less than the prior art, at about 8 mm compared to 25 mm in the current prior art designs. When locking a casement window, the window is closed generally by a crank. The strikes on the moving sash are brought close to the pins on a tie bar mounted to the non-moving window frame. The lock handle is then thrown. This drives a fork component within the lock, which engages the tie bar and drives it, moving the tie bar pins into engagement with corresponding hooks or strikes. The fork component is preferably a flat structure adapted to slide within the lock casing, preferably having two extensions, such as leg portions, for engaging a tie bar. The strikes generally have a ramp surface at their mouth and the pins slide up this ramp into engagement. This motion pulls the sash tightly against the window frame generating compression for sealing the sash to the window frame.
To achieve this “flush,” low profile appearance, the locking mechanism of the present invention introduces a longitudinal slot in a sidewall of the casing for the lock, wherein a fork component translates within the slot in a direction perpendicular to an axis of rotation of the handle, and the handle is rotatable along a plane perpendicular to the fork component. There is a restrictor arm for redirecting the pivot points of the handle to work in combination with a fork component to reduce the casing profile. As the fork component transitions horizontally along the elongated sidewall of the casement window lock, the pivot point of the handle and the restrictor arm shifts relative to the fork component to allow the handle to rotate approximately 150° from an initial position. In prior art designs, the handle directly drives a fork component or the tie bar—structural limitations that result in a higher profile appearance. In the present design, the handle is allowed to move more deeply into the lock mechanism to reduce the height of the lock casing.
Preferably, restrictor arm 2A, 2B is riveted to handle 7; however, other attachment schemes may be employed provided handle 7 is rotatably attached to restrictor arm 2A, 2B at the desired pivot location. Pivot pin 11 is preferably located at an intermediate point on handle 7 between the handle endpoints at a distance closer to the main casing 1 and escutcheon than the handle's grip portion end 16. This allows for greater mechanical leverage by a user when pulling handle 7 upwards or pushing handle 7 downwards. In an embodiment, as shown in
A fork component 5 is employed that is similar to some prior art designs, insomuch as a fork component is used to engage a tie bar during locking and unlocking actuation. As shown in
The relationship between the hinged points of the present invention interplays with the translation of the motion of handle 7 and fork component 5.
As shown in
When handle 7 is at either end of its travel, the three bar linkage design moves one pivot or hinge on the handle to an over center position relative to the two other pivot or hinge points. This over center position prevents the tie bar or lock bar from being back driven to the unlocked position when an “opening” force is applied to rotate handle 7. As shown in
At the other extreme, as shown in
As further shown in
In order to assemble the lock mechanism to the frame of a window, a retainer 60 is used. Retainer 60 provides a surface for mounting screws to bear down on.
Referring again to
In an embodiment of the present invention, there is a detent at both ends of travel (open and locked). A detent spring 9 (refer to
To further assist with handle stability during operation, a spring washer 3 is preferably employed between restrictor arm 2 and main casing 1 (
The present invention achieves a low profile casement window lock that far exceeds the profile depth of casement window locks of the prior art by introducing a longitudinal slot in a sidewall of the casing for the lock, wherein the fork component translates within the slot in a direction perpendicular to an axis of rotation of the handle as the handle rotates along a plane perpendicular to the fork component. The present invention establishes a locking structure with multiple pivoting points that allows the handle to rotate completely with minimally required clearance in the casing housing. The pivoting action of the handle and restrictor arm allows the handle to move the fork component horizontally while raising or lowering the restrictor arm pivot pin in relation to the fork component, with the fork component in slidable communication with a longitudinal slot in a sidewall of the casing. The multiple pivoting action provides for a three bar linkage that secures the casement window lock in either the open, unlocked position, or closed, locked position, and prevents back driving the lock mechanism in the reverse direction.
While the present invention has been particularly described, in conjunction with specific embodiment(s), it is evident that many alternatives, modifications, and variations will be apparent to those skilled in the art, in light of the foregoing description. It is therefore contemplated that the appended claims will embrace any such alternatives, modifications, and variations as falling within the true scope and spirit of the present invention.
This application is a continuation-in-part of U.S. patent application Ser. No. 14/793,820 filed Jul. 8, 2015, which is a divisional application of U.S. patent application Ser. No. 13/610,789 filed Sep. 11, 2012.
Number | Name | Date | Kind |
---|---|---|---|
3302434 | Dauenbaugh et al. | Feb 1967 | A |
3492037 | Hutchinson | Jan 1970 | A |
3949525 | Bates et al. | Apr 1976 | A |
4674777 | Guelck | Jun 1987 | A |
4803808 | Greisner | Feb 1989 | A |
4823508 | Allen | Apr 1989 | A |
4937976 | Tucker et al. | Jul 1990 | A |
4976066 | Plummer et al. | Dec 1990 | A |
4991886 | Nolte et al. | Feb 1991 | A |
5050345 | Nakanishi | Sep 1991 | A |
5054239 | Tucker et al. | Oct 1991 | A |
5118145 | Tucker | Jun 1992 | A |
5152103 | Tucker | Oct 1992 | A |
5087087 | Vetter et al. | Nov 1992 | A |
5219195 | Lawrence | Jun 1993 | A |
5318333 | Dreifert | Jun 1994 | A |
5323568 | Blomqvist | Jun 1994 | A |
5370428 | Dreifert et al. | Dec 1994 | A |
5531045 | Piltingsrud | Jul 1996 | A |
5570915 | Asadurian | Nov 1996 | A |
5618068 | Mitsui et al. | Apr 1997 | A |
D388689 | Bauman et al. | Jan 1998 | S |
D390445 | Johnson et al. | Feb 1998 | S |
5730477 | Nagy | Mar 1998 | A |
5741031 | Bauman et al. | Apr 1998 | A |
5778602 | Johnson et al. | Jul 1998 | A |
5813710 | Anderson | Sep 1998 | A |
5829802 | Anderson et al. | Nov 1998 | A |
5927768 | Dallmann et al. | Jul 1999 | A |
6109668 | Demarco | Aug 2000 | A |
6230457 | Brautigam | May 2001 | B1 |
6354639 | Minter et al. | Mar 2002 | B1 |
6367853 | Briggs | Apr 2002 | B1 |
6425611 | Minter et al. | Jul 2002 | B1 |
6431620 | Tremblay et al. | Aug 2002 | B2 |
6434887 | Nakanishi | Aug 2002 | B2 |
6450554 | Rotondi et al. | Sep 2002 | B1 |
6651389 | Minter et al. | Nov 2003 | B2 |
6672010 | Gledhill et al. | Jan 2004 | B1 |
6767038 | Humi | Jul 2004 | B1 |
6837004 | Annes | Jan 2005 | B2 |
7617707 | Chiang | Nov 2009 | B2 |
7708322 | Timothy et al. | May 2010 | B2 |
7823935 | Norris et al. | Nov 2010 | B2 |
7900322 | Doring et al. | Mar 2011 | B2 |
7946633 | Minter | May 2011 | B2 |
8353541 | Minter | Jan 2013 | B2 |
8448996 | Lake et al. | May 2013 | B2 |
8683746 | Lambertini | Apr 2014 | B2 |
8726572 | Derham | May 2014 | B2 |
9109384 | Minter | Aug 2015 | B2 |
9777509 | Minter | Oct 2017 | B2 |
20010013202 | Nakanishi et al. | Aug 2001 | A1 |
20020066162 | Klompenburg et al. | Jun 2002 | A1 |
20030079414 | Rangabasyam et al. | May 2003 | A1 |
20050223524 | Muir | Oct 2005 | A1 |
20080256874 | Curtis et al. | Oct 2008 | A1 |
20120036781 | Runk et al. | Feb 2012 | A1 |
20120180392 | Lambertini | Jul 2012 | A1 |
20130104458 | Leung et al. | May 2013 | A1 |
20140070547 | Minter | Mar 2014 | A1 |
20160060919 | Vetter | Mar 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20170298650 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13610789 | Sep 2012 | US |
Child | 14793820 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14793820 | Jul 2015 | US |
Child | 15625596 | US |