This invention relates to control systems for internal combustion engines, and more particularly to a method for using a side branch absorber at the exhaust manifold of a two-stroke internal combustion engine to dampen resonant pulsations.
The gas transmission industry operates over 4,000 integral engine compressors, the majority being two-stroke, with a median age of 45 years and a median size of 2000 horsepower. These engines pump a large portion of the natural gas presently consumed in the United States. These engines are no longer produced, and with the projections for future increased demand of natural gas and the expense of replacement, it would be advantageous to modernize the existing fleet to allow for continued operation with increased efficiency and emissions compliance.
Integral gas compression engines have historically exhibited poor performance and high emissions, due in part to poor engine control. The end results are misfires and partial burns that lead to increased fuel usage and exhaust emissions. Many of the slow-speed integral engines in the gas compression industry use control systems that are outdated and slow.
A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
The following description is directed to a side branch absorber attached to the exhaust manifold of a two-stroke internal combustion engine. The effect of the absorber is to dampen resonant pulsations that adversely affect scavenging during engine operation.
As explained below, the absorber is similar in principle to a Helmholtz resonator. In general terms, a Helmholtz absorber is an enclosure with a port to couple a volume of airspace in the enclosure to another airspace. The resonant frequency of the absorber is controlled by the depth of the enclosed airspace in the box behind the port and the width and depth of the port.
For purposes of the present invention, the absorber is designed to dampen the frequency response exhibited within an exhaust system of an engine. It is a “side branch” absorber in the sense that it is oriented perpendicular to the air flow within “exhaust runners” that carry exhaust gas from the engine cylinders to the exhaust manifold.
The absorber is especially designed for stationary two-stroke internal combustion engines. Stationary engines are typically loaded by equipment such as compressors, pumps, or generators. However, without undue experimentation, significant inventive concepts of designing and using an absorber to damp pulsations within an exhaust system may be shown to be applicable to other engines.
Engine 100 has an exhaust manifold 102 and exhaust runners 104, which carry exhaust from the cylinders 101 to the manifold 102. Engine 100 operates in accordance with the two-stroke principle of using intake air to clean or “scavenge” the cylinders 101 of exhaust gases.
As shown in
The engine speed during the measurements was 330 revolutions per minutes. Thus, the frequency of the cycles may be calculated as:
2 cycles/66 degrees×360 degrees/rev×330 rev/min×1 min/60 sec=60 Hz
This frequency is referred to herein as the “pulsation frequency” during scavenging.
As illustrated, the cylinder pressure and the exhaust back pressure both exhibit the pulsation frequency. This indicates that the pulsations have a systematic effect; that is, they are indicated in both the exhaust system and in the cylinder-piston system.
Using acoustic modeling techniques and appropriate processing hardware and software, the exhaust manifold 102 may be modeled and dynamically simulated. The acoustic model is then used to design an absorber to mitigate the pulsating exhaust pressure.
Thus, a feature of the invention is the recognition that the pressure changes in runners 104, exhibited as a pulsation frequency, adversely affects the scavenging operation of the cylinders 101. It is further recognized that acoustic modeling may be used to design an appropriate absorber.
In effect, absorber 41 is a volume 41a separated from exhaust manifold 102 by means of choke tube 41b. In the example of this description, the design of engine 100 provides a convenient attachment location for absorber 41 at the end of exhaust manifold 102. In other embodiments, absorber 41 could be connected at other locations on the exhaust manifold 102 or elsewhere in the exhaust system. A particular engine design may facilitate placement of an in-line absorber.
Because of the nature of the exhaust gas environment in which absorber 41 is placed, it is made from a material capable of withstanding high temperatures, such as steel. The attachment of absorber 41 may be by various means, such as by means of bolts.
For the example of this description, the acoustic dimensions of the chamber 41a are 6″ of Schedule 40 steel pipe having an inner diameter of 28″. This 28″ inner diameter is substantially the same as the diameter of the end of exhaust manifold 102, permitting it to be easily bolted to the manifold. The acoustic dimensions of choke tube 41b are 4.7″ of Schedule 40 steel pipe having an inner diameter of 3″. The Schedule 40 characteristic of the pipe reflects its thickness and pressure capabilities, and the pipe is but one example of a geometry and material suitable for use with engine 100.
The physical dimensions of choke tube 41b are not necessarily the same as the acoustic dimensions. In this example, the physical length of choke tube 41b is 2.7″. The acoustic dimensions and the resulting physical dimensions are determined by the acoustic model for the particular engine and its exhaust pressure characteristics. The length and diameter of the choke tube 41b are critical to the damping effect, and vary depending on the frequency desired to be dampened, with the volume of chamber 41a being another factor.
In other embodiments, multiple side branch absorbers having different acoustic dimensions could be attached to the exhaust manifold to dampen pulsations at different engine speeds. Also, one or more side branch absorbers could be attached to the exhaust system at locations other than directly to the exhaust manifold.
This application claims the benefit of U.S. Provisional Application No. 60/722,479, filed Sep. 30, 2005 and entitled “Side Branch Absorber For Exhaust Manifold of Two-Stroke Internal Combustion Engine.”
The U.S. Government has a paid-up license in this invention and the right in certain circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of Contract No. DE-FC26-02NT41646 for the United States Department of Energy.
Number | Name | Date | Kind |
---|---|---|---|
5119427 | Hersh et al. | Jun 1992 | A |
5471400 | Smalley et al. | Nov 1995 | A |
6453695 | Marks et al. | Sep 2002 | B1 |
6533064 | Kim et al. | Mar 2003 | B1 |
6546729 | Hellat et al. | Apr 2003 | B2 |
6634457 | Paschereit et al. | Oct 2003 | B2 |
6799657 | Daniels | Oct 2004 | B2 |
6814041 | Cheng et al. | Nov 2004 | B1 |
6935848 | Marshall et al. | Aug 2005 | B2 |
7055484 | Marks et al. | Jun 2006 | B2 |
7246680 | Osterkamp et al. | Jul 2007 | B2 |
20040065303 | Russell et al. | Apr 2004 | A1 |
20050008512 | McGill et al. | Jan 2005 | A1 |
20070130926 | Jett | Jun 2007 | A1 |
20070289653 | Harris et al. | Dec 2007 | A1 |
20080253900 | Harris et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
2004037313 | Feb 2004 | JP |
0144681 | Jun 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20070101706 A1 | May 2007 | US |
Number | Date | Country | |
---|---|---|---|
60722479 | Sep 2005 | US |