This invention relates to side emitting optical apparatuses and methods.
Side emitting fiber optics used for illumination can be ineffective in controlling the light emitted in a desired direction. In general, side emitting fibers produce light circumferentially around the fiber periphery and along the length of the fiber. However, the homogeneity of the light intensity along the length of the fiber is not consistent. As such, side emitting fiber optics are typically only used for accent lighting and decorative lighting systems.
The terms “invention,” “the invention,” “this invention” and “the present invention” used in this patent are intended to refer broadly to all of the subject matter of this patent and the patent claims below. Statements containing these terms should be understood not to limit the subject matter described herein or to limit the meaning or scope of the patent claims below. Embodiments of the invention covered by this patent are defined by the claims below, not this summary. This summary is a high-level overview of various aspects of the invention and introduces some of the concepts that are further described in the Detailed Description section below. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to appropriate portions of the entire specification of this patent, any or all drawings and each claim.
Described herein are side emitting optical apparatuses that better control the direction of emitted light and that are configured to increase the homogeneity of the light intensity across the length of the optical apparatus.
Illustrative embodiments of the present invention are described in detail below with reference to the following drawing figures:
The subject matter of embodiments of the present invention is described here with specificity to meet statutory requirements, but this description is not necessarily intended to limit the scope of the claims. The claimed subject matter may be embodied in other ways, may include different elements or steps, and may be used in conjunction with other existing or future technologies. This description should not be interpreted as implying any particular order or arrangement among or between various steps or elements except when the order of individual steps or arrangement of elements is explicitly described.
Disclosed herein are apparatuses and methods for distributing light from an optical element to a target surface to illuminate the target surface. As shown in
Light rays 16 emitted from a light source (such as, but not limited to, an incandescent bulb, an arc lamp, a light emitting diode (LED), etc.) enter proximate end 15 of the optical element 12. As shown in
As shown in
In some embodiments, diffusive side areas 14 are nontransparent, specular/diffused reflective surfaces. In some embodiments, the diffusive side areas 14 are areas of white or silver paint. In other embodiments, diffusive side areas 14 are indents, rough areas (which may be formed by sandblasting or otherwise), or any other suitable surface that interrupts the TIR of the light ray and causes it to change direction and be emitted out of the optical element 12 generally orthogonal to the longitudinal axis L of the optical element 12.
The width of the diffusive side areas 14 may be determined from the magnification factor of the optical element 12. In other words, the length of the diffusive side area 14 may be determined from angular extents of the area to be illuminated, taking into consideration the magnification produced by the curvature of the optical element 12. The width of the diffusive side areas 14 also may be determined based on the amount of light desired to be extracted. Optionally, a reflective material such as aluminum tape or other suitable reflective material may be applied to the diffusive side area 14 to enhance the light output in the desired direction.
The diffusive side areas 14 are arranged along the optical element 12 such that the re-directed light rays 22 are emitted more uniformly from the optical element 12 along the longitudinal axis L of the optical element 12. In other words, the diffusive side areas 14 are patterned to control uniformity. As shown in FIGS. 2 and 4-5, the diffusive side areas 14 are spaced closer together toward the distal end 17 of the optical element 12 than they are at the proximate end 15. In this way, the space S between adjacent diffusive side areas 14 decreases along the length of optical element 12 from the proximate end 15 to the distal end 17 of the optical element 12. Such spacing may be referred to as a dither pattern. The decrease in separation between adjacent diffusive side areas 14 may be linear, non-linear, exponential or otherwise so long as the spacing between diffusive side areas 14 at the distal end 17 is smaller than the spacing between diffusive side areas 14 at the proximate end 15. Decreasing the spacing between diffusive side areas 14 in this way increases the probability that a light ray 16 hits the diffusive side area 14 as the light ray moves along the longitudinal axis L toward distal end 17.
The described spacing pattern helps control how much light exits the element at any particular point along the length of the optical element 12 to increase the uniformity of the light output along the length of the optical element 12. In particular, because diffusive side areas 14 are spaced closer together toward distal end 17, it is more likely that a light ray will contact the diffusive side area 14 and be re-directed out of the optical element 12 if such light ray reaches the distal end 17 than it would be if the diffusive side areas 14 were spaced further apart at the distal end 17.
In some embodiments, the diffusive side areas 14 are strips as shown in
Instead of strips as shown in
As with the striped pattern, the spacing between wedged shaped areas 14 may gradually decrease along the length of the element toward distal end 17. If lopped wedges (or any other suitable shape) are used as shown in
If the diffusive side areas 14 are created by sandblasting, the degree of sandblasting can vary along the length of the optical element 12 to increase the uniformity of the light output across the length of the optical element. Specifically, there can be less sandblasting near the proximate end 15 and increasingly more sandblasting (to create a rougher surface) along the length of the optical element 12 toward distal end 17. In some cases, the increase is linear, although the rate of increase need not be constant.
In one non-limiting embodiment, a reflective material (such as but not limited to aluminum tape) is applied to portions of the optical element 12 that do not have diffusive side areas, for example, but not limited to, top side surface 26.
As shown in
In some embodiments, the optical elements are used in aircraft and can be used for ceiling lighting, doorway lighting, entryway lighting, galley lighting, side wall lighting, recessed lighting, exit lighting, lavatory lighting, etc., although the optical elements described herein may be used to illuminate any desired area or surface and are not limited to use in an aircraft.
Different arrangements of the components depicted in the drawings or described above, as well as components and steps not shown or described are possible. Similarly, some features and subcombinations are useful and may be employed without reference to other features and subcombinations. Embodiments of the invention have been described for illustrative and not restrictive purposes, and alternative embodiments will become apparent to readers of this patent. Accordingly, the present invention is not limited to the embodiments described above or depicted in the drawings, and various embodiments and modifications can be made without departing from the scope of the claims below.
This application claims the benefit of U.S. Provisional Application No. 61/695,445 filed Aug. 31, 2012, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61695445 | Aug 2012 | US |