The present invention relates to a clamp assembly for deadending a conductor. More particularly, the present invention relates to a clamp assembly having a biasing member disposed between a keeper and body member of the clamp assembly. Still more particularly, the present invention relates to a clamp assembly in which a conductor is secured between a keeper and body member, and a biasing member is disposed on a fastener securing the keeper to the body member.
Deadend clamps are commonly used to secure a cable under tension, for example, an overhead electrical conductor. The deadend clamp anchors the received cable to a supporting structure, such as a tower or utility pole. The deadend clamp transmits the tension on the cable to the supporting structure.
Conventional deadend clamps typically include one or more U-bolts to clamp a keeper, which in turn applies a clamping pressure to the conductor, such as the deadend clamp disclosed in U.S. Pat. No. 5,752,680. One disadvantage associated with such deadend clamps is that the lineman must remove several nuts and washers to insert the conductor, and then the nuts and washers must be reconnected to the U-bolts. That procedure becomes even more difficult when the lineman is working with an energized conductor in the field. Accordingly, a need exists for a clamp assembly that is easily assembled.
Another disadvantage associated with conventional deadend clamps is the use of non-captive fasteners to secure the keeper to the main body. Non-captive fasteners are prone to loosening, thereby providing a less secure connection between the keeper and the main body. Accordingly, a need exists for a clamp assembly in which the keeper is securely connected to the main body to maintain clamping pressure on the conductor.
Still another disadvantage associated with conventional deadend clamps the use of external springs between the keeper and the main body. These springs can become dislodged when tightening the keeper to the main body. Additionally, these springs require the fasteners to be tightened in a specific sequence to prevent damaging the springs, thereby providing an inefficient and time consuming task for the lineman. Accordingly, a need exists for a clamp assembly having an improved biasing member between the keeper and main body.
According to an exemplary embodiment, a clamp assembly includes a body member, a cable grove, fastener opening, and recess formed in the body member, and a keeper. The keeper has a lower surface adapted to engage a cable received in the cable groove. The recess at least partially surrounds the fastener opening. The recess is at least partially bordered by a first end wall, a second end wall, and a center wall. The center wall extends across the fastener opening.
According to another exemplary embodiment, a clamp assembly includes a body member, a cable grove, fastener opening, and recess formed in the body member, and a keeper. The keeper has a lower surface adapted to engage a cable received in the cable groove. The fastener opening has a substantially U-shaped slot. The recess at least partially surrounds the fastener opening. The recess is at least partially bordered by a first end wall, a second end wall, and a center wall.
According to another exemplary embodiment, a clamp assembly includes a body member, a cable grove, fastener opening, and recess formed in the body member, and a keeper. The keeper has a lower surface adapted to engage a cable received in the cable groove. The fastener opening has a substantially U-shaped slot. A fastener extends through the fastener opening connecting the keeper to the body. A biasing member is disposed on the fastener between said keeper and said body member. The recess at least partially surrounds the fastener opening. The recess is at least partially bordered by a first end wall, a second end wall, and a center wall.
The above aspects and features of the present invention will be more apparent from the description for exemplary embodiments of the present invention taken with reference to the accompanying drawings, in which:
Throughout the drawings, like reference numerals will be understood to refer to like parts, components and structures.
As shown in
The body member 21 includes a clevis bracket 51 having first and second mounting ears 52 and 53, as shown in
A cable groove 71 extends from a first end 22 to proximal a second end 23 of the body member 21, as shown in
As shown in
A recessed area 78 is formed on an outer surface 79 of the bottom wall 76 of the pocket 73, as shown in
The keeper 31 is secured to a side of the body member 21 below the clevis bracket 51, as shown in
The fastening portion 32 of the keeper 31 has a fastener bore 35 passing from an inner surface 36 to an outer surface 37 thereof, as shown in
An eye 65 in the body member 21 facilitates manipulation of the clamp assembly 11 by a lineman. Preferably, the eye 65 has a substantially oval shape. The cable groove preferably runs between the eye 65 and the mounting ears 52 and 53. Accordingly, the clevis pin 56 does not need to be removed to insert the conductor 9 in the cable groove 71.
The fastener 13 is inserted through a fastener opening 77 in the bottom wall 76 of the pocket 73 of the body member 21 and is received by a fastener bore 35 in the keeper 31. The fastener 13 has a head 14 and a threaded shaft 15 extending therefrom, as shown in
The biasing member 41 is disposed on the shaft 15 of the fastener 13, as shown in
The body member 21 is preferably unitarily formed as a single-piece. The body member 21 is preferably made of an aluminum alloy. The keeper 31 is preferably unitarily formed as a single-piece. The keeper 31 is preferably made of an aluminum alloy.
Assembly and Operation
The deadend clamp assembly 11 is shown assembled in
The cable 9 is inserted in the cable groove 71 from a side of the body member (i.e., in a radial direction of the cable). The lip 70, as shown in
The washer 16 is disposed on the shaft 15 of fastener 13 such that the washer is received by the recessed area 78 in the body member 21, as shown in
The biasing member 41 is disposed on the shaft 15 of the fastener 13 such that the biasing member is prevented from being dislodged during tightening. The fastener 13 is tightened, thereby drawing the fastener portion 32 of the keeper 31 into the pocket 73 of the body member 21. The biasing member 41 is compressed as the fastener portion 32 of the keeper 31 is drawn into the pocket 73. Simultaneously, the cable portion 33 of the keeper 31 is drawn toward the retained cable 9 in the cable groove 71. Tightening of the fastener 13 is stopped when the keeper cable groove 34 engages the cable 9, thereby clamping the cable 9 between the keeper 31 and the body member 21. The chamber 38 and the peened nut 17 substantially prevent rotation and movement of the captive nut 17 on the fastener shaft 15, thereby securely retaining the keeper 31 to the body member 21. As shown in
Second Exemplary Embodiment
A clamp assembly 111 in accordance with a second exemplary embodiment of the present invention is shown in
A recessed area 178 is formed on an outer surface 179 of the bottom wall 176 of the pocket 173, as shown in
The biasing member 141 is preferably a tapered spring, as shown in
The smaller diameter second end 143 of the biasing member 141 facilitates passing the biasing member through the fastener bore 135 in the keeper 131 to engage the nut 117, as shown in
The first end 142 of the biasing member 141 preferably has two coils 143 and 144 that are substantially planar, i.e, having zero pitch. The two coils 143 and 144 increases the stiffness of the biasing member. The two coils 143 and 144 also substantially eliminate the likelihood of the biasing member 141 becoming stuck in the pitch of the threads of the fastener 113 and caught between the fastener 113 and a fastener bore 135 in the keeper 131 when torque is applied to the fastener 113. The coils 145 of the biasing member 141 are substantially prevented from unraveling when torque is applied to the fastener 113 by the two coils 143 and 144 at the first end 142 of the biasing member 141.
Third Exemplary Embodiment
In the exemplary embodiment, a recessed area 202 is formed on an outer surface of the bottom wall of the pocket. The recessed area 202 has a substantially bulge or nose shape and at least partially-surrounds three sides of a fastener opening 204 that extends inwardly through the recessed area and laterally outwardly from the recessed area. The fastener opening 204 includes a substantially U-shaped portion that extends to a region having angled sides 205A, 205B that widen from the U-shaped portion to more easily receive a fastener 228. The recessed area 202 has an open back end and is at least partially bordered by a center wall 206, a first end wall 208, and a second end wall 210. The center wall 206 is positioned substantially in front of the fastener opening 204. The center wall 206 includes a curvilinear inner side surface 212. The first end wall 208 includes an inner side surface 214 that extends from the center wall 206 at an oblique angle. The second end wall 210 includes a curvilinear inner side surface 216 that extends from the center wall 206 at a first portion and a linear inner side surface that is obliquely angled to the center wall 206 at a second portion. As best shown in
The foregoing detailed description of the certain exemplary embodiments has been provided for the purpose of explaining the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use contemplated. This description is not necessarily intended to be exhaustive or to limit the invention to the exemplary embodiments disclosed. Any of the embodiments and/or elements disclosed herein may be combined with one another to form various additional embodiments not specifically disclosed. Accordingly, additional embodiments are possible and are intended to be encompassed within this specification and the scope of the appended claims. The specification describes specific examples to accomplish a more general goal that may be accomplished in another way.
As used in this application, the terms “front,” “rear,” “upper,” “lower,” “upwardly,” “downwardly,” and other orientational descriptors are intended to facilitate the description of the exemplary embodiments of the present invention, and are not intended to limit the structure of the exemplary embodiments of the present invention to any particular position or orientation. Terms of degree, such as “substantially” or “approximately” are understood by those of ordinary skill to refer to reasonable ranges outside of the given value, for example, general tolerances associated with manufacturing, assembly, and use of the described embodiments.
This application claims priority to provisional application 61/978,716, filed on Apr. 11, 2014, the disclosure of which is hereby incorporated in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1793932 | Hite | Feb 1931 | A |
2077222 | Creager | Apr 1937 | A |
2471306 | Card | May 1949 | A |
3274654 | Becker | Sep 1966 | A |
3561708 | Dubey | Feb 1971 | A |
3623687 | Nordstrom | Nov 1971 | A |
3706436 | Lindsey | Dec 1972 | A |
4428100 | Apperson | Jan 1984 | A |
4707051 | Hall | Nov 1987 | A |
4719672 | Apperson | Jan 1988 | A |
4969616 | Apperson | Nov 1990 | A |
5752680 | Mann | May 1998 | A |
6874207 | Goch | Apr 2005 | B2 |
7562848 | Tamm et al. | Jul 2009 | B2 |
7588224 | Bernstorf et al. | Sep 2009 | B2 |
20070069092 | Tamm | Mar 2007 | A1 |
20130082152 | Bundren et al. | Apr 2013 | A1 |
20130227823 | Diop | Sep 2013 | A1 |
20130240685 | Bundren | Sep 2013 | A1 |
Entry |
---|
PCT/US2015/025276 International Search Report and Written Opinion dated Jul. 7, 2015. |
SLQ—Deadends Bolted Quadrant Strain Clamp Aluminum, Hubbell Power Systems, Apr. 2012, 1 page. |
SLQ48N—A Truly Unique Quadrant Clamp, New Side Load Quadrant Deadend, Hubbell Power Systems, Inc. Jun. 2012, 1 page, www.hubbellpowersystems.com. |
Number | Date | Country | |
---|---|---|---|
20150295393 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61978716 | Apr 2014 | US |