Embodiments disclosed herein relate generally to a side mounted distributor inside a heat exchanger and to a side mounted inlet piping to access the distributor inside the heat exchanger. In particular, methods, systems and apparatuses are disclosed that employ a side mounted distributor and a side mounted inlet piping to access the distributor, and which may be used for example in a shell and tube heat exchanger, such as for example in a flooded evaporator of a fluid chiller.
A refrigeration or HVAC system would typically include a compressor, a condenser, an expansion device, and an evaporator that form a refrigerant circuit. Such a circuit can be embodied in what is known as a chiller.
Chillers for example can be used to cool a process fluid, such as water, where such process fluid can be directly used or may be used for various other cooling purposes, such as for example cooling a space. In a cooling cycle, refrigerant vapor is generally compressed by the compressor, and then condensed to liquid refrigerant in the condenser. The liquid refrigerant can then be directed through the expansion device to reduce a temperature and can become, at least in part, a liquid/vapor refrigerant mixture (two-phase refrigerant mixture). The refrigerant, e.g. including two-phase mixture, is directed into the evaporator to exchange heat with a fluid moving through the evaporator. The refrigerant mixture can be vaporized to refrigerant vapor in the evaporator, and the refrigerant vapor can then be returned to the compressor to repeat the refrigerant cycle.
The refrigerant can enter the evaporator by way of inlet piping into a distributor. When the evaporator is a shell and tube evaporator, the distributor can often reside inside the shell of the evaporator on the shell side, where the shell has an inlet or nozzle to access the distributor using the inlet piping. The distributor has openings so that the refrigerant can be distributed on the shell side of the evaporator and so that the refrigerant can exchange heat with a fluid passing through the inside of the tubes, which is known as the tube side, and where tubes are often constructed as a tube bundle. The fluid, which may be the process fluid such as for example water, can then be cooled in a cooling cycle of the evaporator.
One type of shell and tube evaporator is known as a flooded evaporator, where refrigerant is to enter at a bottom portion of the shell and where, depending on the operating condition of the chiller, tubes of the tube bundle may be wetted by the refrigerant flowing through the evaporator.
As described above, one type of heat exchanger in a refrigeration or HVAC system is a shell and tube heat exchanger, which may operate as an evaporator and/or a condenser, depending on the operation mode. One or more of such shell and tube heat exchangers may be embodied in a chiller. One type of shell and tube evaporator is called a flooded evaporator. A flooded evaporator can be used for example, in large tonnage chillers, such as for example a centrifugal chiller to regulate refrigerant flow. It will be appreciated that the features, designs, and advantages of the side mounted refrigerant distributor and the side mounted inlet piping and inlet described herein can be applicable to shell and tube evaporators in general, and which may have refrigerant enter the bottom of the shell, e.g. a flooded evaporator. Centrifugal chillers can sometimes have compressors with relatively large diameters that are supported on top of the evaporator shell, which can cause the height constraint of, e.g. a chiller unit as a whole, such as for example impacting shipment of the unit in “one piece”. There may also be height limitations/constraints for example when installing the chiller inside a building with ceiling clearance.
In a flooded evaporator, a tube bundle is immersed inside a shell and is at least in part “flooded” in liquid refrigerant, for example depending on the operating condition and/or load of for example the chiller in which the evaporator is employed or the overall refrigeration system. The tube bundles allow for heat transfer from the process or transfer fluid to the refrigerant surrounding the tubes. Refrigerant distributors are often located at the bottom of flooded evaporators to ensure sufficient tube flooding. At such a distributor location, the liquid inlet pipe to enter the shell is often at a bottom portion evaporator. Connecting the inlet pipe directly to the bottom of the evaporator increases the unit height which can exceed shipping height constraints. Also, locating the refrigerant distributor at the bottom can increase the refrigerant charge in the evaporator, rather than be displaced for example by other components such as additional heat exchange tubes.
In one embodiment, a heat exchanger, which may be a flooded evaporator, includes a shell and tube structure. The shell in general is a cylindrically shaped container with the bundle of tubes running longitudinally along the length of the shell.
In some embodiments, the heat exchanger is one component of the circuit of a refrigeration and/or HVAC system, and embodied in a chiller. In some embodiments, the chiller is a centrifugal chiller which may be a large tonnage centrifugal chiller.
Generally, a refrigerant distributor is positioned inside the shell on the shell side, and at a rotated position that is at an angle away from the bottom of the shell.
The refrigerant distributor in some embodiments is mounted to the shell wall. The position of the refrigerant distributor in some embodiments may be at an angle taken at a position away from the bottom of the shell. The angle can be defined as being between a radius taken from a point on the shell away from the bottom and a radius taken from the bottom.
In one exemplary embodiment only, the angle between the bottom of the shell and the side of the shell is roughly 45 degrees from the bottom, but it will be appreciated that the angle could be a different acute angle, e.g. less than 90 degrees, relative to the bottom of the shell.
In some embodiments, the angle could be slightly higher or slightly less than 45 degrees, or in other examples defined so that the distributor is positioned away from the bottom of the shell, but relatively closer to the bottom of the shell as compared to the horizontal diameter through the sides of the shell.
The shell of the heat exchanger also includes an inlet to allow refrigerant to enter the shell, where an inlet piping is mounted to the shell and in fluid communication with the shell inlet. In some embodiments, the shell inlet and the inlet piping are also positioned on a side of the shell at an angle away from the bottom of the shell. The shell inlet and the inlet piping can be disposed generally in a corresponding radial position on the shell as the refrigerant distributor to allow refrigerant to flow directly into the refrigerant distributor.
For example, as with the refrigerant distributor above, the angle between the bottom of the shell and the side of the shell can be roughly 45 degrees from the bottom, but it will be appreciated that the angle could be at a different acute angle, e.g. less than 90 degrees, relative to the bottom of the shell. In other embodiments, the angle could be slightly higher or slightly less than 45 degrees, or in other examples defined so that the shell inlet and inlet piping are positioned away from the bottom of the shell, but relatively closer to the bottom of the shell as compared to the horizontal diameter through the sides of the shell.
In some embodiments, the inlet piping includes an inlet axis that generally passes through a center area of the shell. In some embodiments, the inlet piping has a diameter, where a cross sectional area of the inlet piping across its diameter is generally tangent relative to an arc of the shell's circumference. The inlet piping can be welded to the shell in such an arrangement so as to obtain a full penetration weld.
In some embodiments, refrigerant can flow through the inlet of the shell into an opening or open space of the refrigerant distributor, which is arranged between a panel of the refrigerant distributor and the evaporator shell. Refrigerant can flow axially down the length of the refrigerant distributor in the longitudinal direction of the shell and enter the shell side for distribution near the bottom of the tube bundle.
In some embodiments, as a result of the location of the refrigerant distributor, the tube bundle may include tubes that can be located directly or at least proximately toward the bottom of the evaporator to obtain increased wettability and to provide displacement of refrigerant to obtain some relatively reduced refrigerant charge in the shell of the evaporator.
The orientation of the shell inlet and inlet piping can improve the ease of attachment of the inlet piping by allowing the pipe to be welded to the evaporator shell, for example as a full penetration weld joint according to standards set out, for example by the American Society of Mechanical Engineers (ASME), for its boiler and pressure vessels code (BPVC). The side connection for the inlet piping also limits the height of the entire unit, as there is no need to feed or pipe the refrigerant into the bottom of the shell.
At least in some operating conditions, the orientation of the distributor and the shell inlet and inlet piping can allow for suitable and/or improved flow velocity, flow turning, and entrance pressure drop, for example by limiting such velocities, flow turning, and pressure drop due to the arrangement and relatively smooth inlet into the shell.
These and other features, aspects, and advantages of the side mounted distributor will become better understood when the following detailed description is read with reference to the accompanying drawing, wherein:
While the above-identified figures set forth particular embodiments of the side mounted distributor and side mounted inlet piping, other embodiments are also contemplated, as noted in the discussion. In all cases, this disclosure presents illustrated embodiments of the side mounted distributor and side mounted inlet piping by way of representation but not limitation. Numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of the side mounted distributor and side mounted inlet piping described herein.
Referring back to
The evaporator 10 includes an inlet 20 to receive refrigerant, of which at least a portion may be as a two phase mixture. The inlet 20 is disposed on the side of the shell 12 at an angle relative to the bottom of the shell 12. The inlet 20 can be accessed by the inlet piping 24 that has an outlet 26 to be in fluid communication with the inlet 20.
A suction outlet 22 is disposed toward the top of the shell 12. The suction outlet allows refrigerant vapor resulting from the heat exchange of the entering refrigerant with the fluid running through the tubes of the tube bundle 32. The fluid running through the tubes may be a process fluid, such as for example water, which is cooled and piped to another area for use.
The evaporator 10 can also include an oil return outlet 28 disposed on the side of the shell 12.
With reference back to the refrigerant distributor 30, the refrigerant distributor is generally positioned inside the shell on the shell side, and at a rotated position that is at an angle away from the bottom of the shell.
With reference back to the arrangement and orientation of the shell inlet 20 and the inlet piping 24, generally the shell inlet 20 and the inlet piping 24 are also positioned on a side of the shell 12 at an angle away from the bottom of the shell 12. The shell inlet 20 and the inlet piping 24 can be disposed generally in a corresponding radial position on the shell 12 as the refrigerant distributor 30 to allow refrigerant to flow directly into the refrigerant distributor 30.
With reference back to
In one exemplary embodiment only, the angle A between the bottom of the shell 212 and the side of the shell 212 is roughly 45 degrees from the bottom, but it will be appreciated that the angle A could be a different acute angle, e.g. less than 90 degrees, relative to the bottom of the shell 212.
In some embodiments, the angle A could be slightly higher or slightly less than 45 degrees, or in other examples defined so that the refrigerant distributor 230 is positioned away from the bottom of the shell 212, but relatively closer to the bottom of the shell 212 as compared to the horizontal diameter (see line H) through the sides of the shell 212. As shown, the refrigerant distributor 230 is positioned on a side and at angle away from the bottom of the shell 212 but still closer to the bottom, as compared to line H.
The shell 212 also includes an inlet 220 to allow refrigerant to enter the shell 212, where an inlet piping 224 is mounted to the shell 212 and has an outlet 226 in fluid communication with the shell inlet 220. In some embodiments, the shell inlet 220 and the inlet piping 224 are also positioned on a side of the shell 212 at an angle IA away from the bottom of the shell 212 (see line PA). The shell inlet 220 and the inlet piping 224 can be disposed generally in a corresponding radial position on the shell 212 as the refrigerant distributor 230 to allow refrigerant to flow directly into the refrigerant distributor 230.
For example, as with the refrigerant distributor above, the angle IA between the bottom of the shell and the side of the shell can be roughly 45 degrees from the bottom, but it will be appreciated that the angle IA could be at a different acute angle, e.g. less than 90 degrees, relative to the bottom of the shell. In other embodiments, the angle IA could be slightly higher or slightly less than 45 degrees, or in other examples defined so that the shell inlet and inlet piping are positioned away from the bottom of the shell, but relatively closer to the bottom of the shell as compared to the horizontal diameter through the sides of the shell.
It will also be appreciated that while the inlet 220 and inlet piping 224 may arranged and oriented to be at the same angle A as the refrigerant distributor, due to the different sizing and dimension of these components, the inlet 220 and inlet piping 224 can be arranged and oriented at a slightly different angle (e.g IA) than that of the refrigerant distributor 230. For example, as shown in
In some embodiments, the inlet piping 224 includes an inlet axis (see line PA) that generally passes through a center area of the shell 212. In some embodiments, the inlet piping 224 has a diameter “d”, where a cross sectional area of the inlet piping 224 across its diameter “d” is generally tangent relative to an arc of the shell's circumference. The inlet piping 224 can be welded to the shell 212, and aligned with the inlet 220, in such an arrangement so as to obtain a full penetration weld.
In some embodiments, refrigerant can flow through the inlet 220 of the shell 212 into an opening or open space of the refrigerant distributor 230, which is arranged between a panel of the refrigerant distributor 230 and the evaporator shell 212. Refrigerant can flow axially down the length of the refrigerant distributor 230 in the longitudinal direction of the shell and enter the shell side for distribution near the bottom of the tube bundle 240. See also
In some embodiments, such as shown in
The orientation of the shell inlet 220 and inlet piping 224 can improve the ease of attachment of the inlet piping 224 by allowing the inlet piping 224 to be welded to the evaporator shell 212, for example as a full penetration weld joint according to standards set out, for example by the American Society of Mechanical Engineers (ASME), for its boiler and pressure vessels code (BPVC). The side connection for the inlet piping 224 also limits or saves on the height of the entire unit 210, as there is no need to feed or pipe the refrigerant into the bottom of the shell 212.
At least in some operating conditions, the orientation of the distributor 230 and the shell inlet 220 and inlet piping 224 can allow for suitable and/or improved flow velocity, flow turning, and entrance pressure drop, for example by limiting such velocities, flow turning, and pressure drop due to the arrangement and relatively smooth inlet into the shell 212.
It will be appreciated that the evaporator 10 of
The distributor 300 has a baffle distribution component 310 with a panel structure that forms a cavity 312. The baffle distribution component 310 has several baffles 314 between which are orifices or openings 316 through which refrigerant may flow into the evaporator, e.g. 10, 210.
The distributor 300 also includes a main distribution component 320 with a panel structure that forms a cavity 322. The main distribution component 320 has several orifices or openings 326 through one of the panels 324, such as shown in
It will be appreciated that the cavities 312, 322 may be formed by the panel structure of the baffle and main distribution components 310, 320, against a side of the shell, e.g. 12, 212, of the evaporator, e.g. 10, 210. However, it will be appreciated that the overall panel structure of the refrigerant distributor could be a closed structure at the bottom, so that the cavities 312, 322 are formed by a separately bound component.
In some embodiments, refrigerant flow through the refrigerant distributor 300 may be as follows. The main distribution component 320 receives refrigerant from the inlet, e.g. 20, 220, in its cavity 322 and allows the refrigerant to flow through the orifices 326 into the cavity 312 of the baffle distribution component 310. In the baffle distribution component 310, the refrigerant can flow through the orifices 316 through the baffles 314.
It will also be appreciated that the refrigerant distributor 300 may also have a trapped gas capability to help separate liquid refrigerant from vapor refrigerant. For example, in
Referring back to
In some embodiments, the radial position on the shell wall can be as close to the bottom of the shell 12 as the general assembly constraints allow, e.g. height constraints as it may pertain to unit shipping.
With respect to the refrigerant flow through the refrigerant distributor 30, the flow can enter a chamber, cavity of the refrigerant distributor 30, which is arranged in the longitudinal direction of the shell 12, and can split into two flows toward the end plates 14, 16.
In some embodiments regarding the cavity, e.g. 322, a minimum depth “h” from the back side of the panel of the refrigerant distributor 300 to the inlet, e.g. 20, can be approximately h=0.50×IDinlet. This dimension could be for example from the back of wall 324 of refrigerant distributor 300 to the inlet on the shell, e.g. 20 on 12 from
As described, the refrigerant distributors herein have a series of distribution orifices, slots, or openings along the top of the header, e.g. the main distribution component 310, that are sized to distribute the flow axially along the length of the shell. It will be appreciated that in some cases, there would be no orifices 326 placed directly in front of the inlet nozzle, e.g. 20. In some examples, the arrangement may be such that there is a dimension of about 1.5×IDinlet from each side of the inlet, e.g. 20 to the first distribution orifice 326. In some examples, there may be 2 or 3 orifices per internal tube support span.
The velocity of the flow leaving the distribution orifices, e.g. 326 may be relatively high. For example, velocities greater than 15 ft/sec could be high enough to be tube vibration concerns. Baffle distribution component, e.g. 310, can help address this issue. The baffle distribution component with its chamber or cavity, e.g. 312, can have a cross sectional area equal to about one main distribution orifice, e.g. 326.
The baffle distribution component has its orifices, e.g. 316, which may be arranged at sides of the main distribution orifices, e.g. 326 (see
With respect to how close tubes of the tube bundle may be placed relative to the shell, the clearance between the tubes and the distribution system components and shell could be small to minimize refrigerant charge, e.g. about ½ inch to tube tangent.
Clearance velocities in the pool section of the evaporator to allow for some self distribution of liquid to the high heat flux portion of the bundle may be targeted at about 4 to 6 ft/sec, such as for example for low pressure refrigerants. Velocities higher than this may carry more vapor than liquid in the pool region and not promote liquid self distribution. Lower velocities than this may impact the refrigerant charge.
It will also be appreciated that a water box configuration and position can accommodate the relatively lower positioned tubes, and also be mounted on the tube sheet low enough.
It will be appreciated that the components may be sized such that a main pressure drop, e.g. 50% to 55% of the system or unit is at the inlet of the shell. Two-phase velocities in such a system may be designed to increase through each component up to the main distribution orifices, e.g. 326. In this way large accelerations or decelerations of flow may be avoided, as well as bubble collapse/cavitations.
Aspects—any of aspects 1 to 28 may be combined with any of aspects 29 to 32, and any of aspects 29 to 31 may be combined with aspect 32.
1. A heat exchanger for a heating, ventilation, and air conditioning (HVAC) unit, comprising: a shell; a tube bundle inside the shell; a refrigerant distributor inside the shell; a refrigerant inlet through the shell and in fluid communication with the refrigerant distributor; and a refrigerant inlet piping mounted on the shell and in fluid communication with the refrigerant inlet; the refrigerant inlet is positioned on a side of the shell at an angle away from the bottom of the shell, and the refrigerant inlet piping is positioned on a side of the shell at an angle away from the bottom of the shell.
2. The heat exchanger of aspect 1, wherein the heat exchanger is configured as a flooded evaporator.
3. The heat exchanger of aspect 1 or 2, wherein the angle of the position of the refrigerant inlet and the refrigerant inlet piping being defined between a radius taken from a point on the shell away from the bottom of the shell and a radius taken from the bottom of the shell.
4. The heat exchanger of any of aspects 1 to 3, wherein the angle of the position of the refrigerant inlet and the refrigerant inlet piping is an acute angle relative to the bottom of the shell.
5. The heat exchanger of any of aspects 1 to 4, wherein the angle of the position of the refrigerant inlet and the refrigerant inlet piping between the bottom of the shell and the side of the shell is from about 45 degrees to less than 90 degrees.
6. The heat exchanger of any of aspects 1 to 5, wherein the angle of the position of the refrigerant inlet and the refrigerant inlet piping between the bottom of the shell and the side of the shell is positioned to be relatively closer to the bottom of the shell than an angle of a horizontal diameter of the shell to the bottom of the shell.
7. The heat exchanger of any of aspects 1 to 6, wherein the refrigerant inlet piping includes an inlet axis that generally passes through a center of the shell through a vertical axis and horizontal axis.
8. The heat exchanger of any of aspects 1 to 7, wherein the refrigerant inlet piping has a diameter, where a cross sectional area of the refrigerant inlet piping across its diameter is generally tangent relative to an arc of the circumference of the shell.
9. The heat exchanger of any of aspects 1 to 8, wherein the refrigerant inlet and the refrigerant inlet piping are each arranged and oriented to be at the same angle or are arranged and oriented at different angles.
10. The heat exchanger of any of aspects 1 to 9, wherein the angle of the refrigerant inlet piping is at an angle relative to the bottom of the shell that is relatively higher than the angle of the refrigerant inlet relative to the bottom of the shell.
11. The heat exchanger of any of aspects 1 to 10, wherein the inlet piping is welded to the shell as a full penetration weld suitable for boiler and pressure vessels.
12. The heat exchanger of any of aspects 1 to 11, wherein the refrigerant inlet and the refrigerant inlet piping have an axial position relative to a longitudinal direction of a length of the shell, the axial position defined as at about a middle position along the length of the shell.
13. The heat exchanger of any of aspects 1 to 12, wherein the tube bundle includes tubes disposed proximate the bottom of the shell, where the refrigerant distributor is not between a bottom row of tubes and the bottom of the shell.
14. The heat exchanger of any of aspects 1 to 13, wherein the tube bundle includes tubes disposed proximate the bottom of the shell, where a clearance from the shell and a tangent of the tubes is about half an inch.
15. The heat exchanger of any of aspects 1 to 14, wherein the refrigerant distributor is at a position on a side of the shell, and at an angle away from the bottom of the shell, the angle being defined between a radius taken from a point on the shell away from the bottom of the shell and a radius taken from the bottom of the shell.
16. The heat exchanger of aspect 15, wherein, as to the position of the refrigerant distributor, the angle between the bottom of the shell and the side of the shell is an acute angle.
17. The heat exchanger of aspect 15 or 16, wherein, as to the position of the refrigerant distributor, the angle between the bottom of the shell and the side of the shell is from about 45 degrees to less than 90 degrees.
18. The heat exchanger of any of aspects 15 to 17, wherein, as to the position of the refrigerant distributor, the angle between the bottom of the shell and the side of the shell is positioned to be relatively closer to the bottom of the shell than an angle of a horizontal diameter of the shell to the bottom of the shell.
19. The heat exchanger of any of aspects 15 to 18, wherein the refrigerant distributor comprises: a baffle distribution component with a panel structure that forms a cavity, the baffle distribution component has baffles between which are openings in fluid communication with the cavity; a main distribution component with a panel structure that forms a cavity, the main distribution component has openings through the panel structure and in fluid communication with the cavity of the main distribution component, the main distribution component is arranged inside the baffle distribution component, where the openings of the main distribution component are in fluid communication with the cavity of the baffle distribution component, and where the cavities and openings allow refrigerant to flow into the heat exchanger.
20. The heat exchanger of aspect 19, wherein the panel structure of the refrigerant distributor is suitably configured to include a trapped gas capability at an upper portion of the cavity inside the main distribution component and bound by the panel structures of both the baffle distribution component and the main distribution component.
21. The heat exchanger of aspect 19 or 20, wherein the cavity of the main distribution component has a minimum depth h, defined to be approximately h=0.50(IDinlet), and where h is defined from a back of a panel of the main distribution component to the refrigerant inlet of the shell, and IDinlet is the inner diameter of the refrigerant inlet.
22. The heat exchanger of any of aspects 19 to 21, wherein the openings of the main distribution component are not directly in front of the refrigerant inlet.
23. The heat exchanger of any of aspects 19 to 22, wherein the openings of the main distribution component are arranged to be a dimension of about 1.5(IDinlet) from each side of the refrigerant inlet.
24. The heat exchanger of any of aspects 19 to 23, wherein the openings of the baffle distribution component are arranged relatively to the sides of the openings of the main distribution component.
25. The heat exchanger of any of aspects 19 to 24, wherein the openings of the baffle distribution component have about two times larger flow area relative to the openings of the main distribution component.
26. The heat exchanger of any of aspects 19 to 25, wherein the arrangement of the openings of the baffle distribution component and the openings of the main distribution component allow refrigerant flow to enter the shell at a velocity of less than 15 ft/sec.
27. The heat exchanger of any of aspects 1 to 26, wherein the heat exchanger is configured to allow for clearance velocities in a pool section of the heat exchanger to be about 4 to 6 ft/sec, so as to allow for self-distribution of liquid in the heat exchanger.
28. The heat exchanger of any of aspects 1 to 27, wherein the heat exchanger is configured to allow 50% to 55% pressure drop at the refrigerant inlet relative to an HVAC system in which the heat exchanger is installed.
29. An HVAC unit comprising the heat exchanger of any of aspects 1 to 28.
30. The HVAC unit of aspect 29, wherein the unit is a chiller.
31. The HVAC unit of aspect 29 or 30, wherein the chiller is a centrifugal chiller.
32. A method of refrigerant flow of a heat exchanger, comprising: directing refrigerant through a refrigerant inlet piping; directing the refrigerant from the refrigerant inlet piping to a refrigerant inlet of a shell of a heat exchanger; directing the refrigerant from the inlet into the shell; directing the refrigerant through a refrigerant distributor; and directing the refrigerant to contact tubes inside the shell to promote heat exchange of the refrigerant with a fluid passing through the tubes, wherein directing the refrigerant includes the refrigerant flowing through the refrigerant inlet piping that is positioned on a side of the shell at an angle away from the bottom of the shell, and the refrigerant flowing through the refrigerant inlet that is positioned on a side of the shell at an angle away from the bottom of the shell.
While the embodiments have been described in terms of various specific embodiments, those skilled in the art will recognize that the embodiments can be practiced with modification within the spirit and scope of the claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/028379 | 3/14/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/144105 | 9/18/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3125161 | Romanos | Mar 1964 | A |
3286482 | Clark | Nov 1966 | A |
3399544 | Osborne | Sep 1968 | A |
3405536 | Endress | Oct 1968 | A |
3499296 | Osborne | Mar 1970 | A |
3789617 | Rannow | Feb 1974 | A |
4016835 | Yarden | Apr 1977 | A |
5782293 | Sather | Jul 1998 | A |
5836382 | Dingle et al. | Nov 1998 | A |
7421855 | Ring et al. | Sep 2008 | B2 |
20080149311 | Liu et al. | Jun 2008 | A1 |
20080163637 | Ring et al. | Jul 2008 | A1 |
20100326108 | Schreiber et al. | Dec 2010 | A1 |
20110017432 | Kulankara et al. | Jan 2011 | A1 |
20110226005 | Lee | Sep 2011 | A1 |
20120118545 | Ayub et al. | May 2012 | A1 |
Number | Date | Country |
---|---|---|
101600918 | Dec 2009 | CN |
102472589 | May 2012 | CN |
102788451 | Nov 2012 | CN |
102959346 | Mar 2013 | CN |
200827651 | Jul 2008 | TW |
Entry |
---|
International Search Report and Written Opinion for International Application No. PCT/US2014/028379, dated Jun. 26, 2014, 13 pgs. |
Number | Date | Country | |
---|---|---|---|
20160025416 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
61794440 | Mar 2013 | US |