The present disclosure relates to the drilling of wells, and specifically to a drilling rig system for use in a wellsite.
When drilling a wellbore, a drilling rig is positioned at the site of the wellbore to be formed, defining a wellsite. A drilling rig may be used to drill the wellbore. Additional wellsite equipment may be utilized with the drilling rig. The wellbore may be drilled using a drill string, made up of a number of tubular members joined end to end and inserted into the wellbore.
The present disclosure provides for a method. The method may include positioning a drilling rig above a wellbore, the wellbore defining a wellbore centerline. The drilling rig may include a mast, the mast aligned with the wellbore centerline. The drilling rig may include a top drive system, the top drive system including a top drive. The top drive may be movable vertically relative to the mast. The top drive may be movable horizontally between a position aligned with the wellbore centerline and a position out of alignment with the wellbore centerline. The method may include coupling a drill string to the top drive, lowering the drill string into the wellbore by lowering the top drive system, decoupling the drill string from the top drive, retracting the top drive from the wellbore centerline, positioning a new tubular member into the space above the drill string aligned with the wellbore centerline, coupling the new tubular member to the drill string, moving the top drive to a raised position while the new tubular member is aligned with the wellbore centerline, extending the top drive into alignment with the wellbore centerline, and coupling the new tubular member to the top drive.
The present disclosure also provides for a method. The method may include positioning a drilling rig above a wellbore, the wellbore defining a wellbore centerline. The drilling rig may include a mast, the mast aligned with the wellbore centerline. The drilling rig may include a top drive system. The top drive system may include a top drive. The top drive may be movable vertically relative to the mast. The top drive may be movable horizontally between a position aligned with the wellbore centerline and a position out of alignment with the wellbore centerline. The method may include coupling a drill string to the top drive, raising the drill string by raising the top drive system, decoupling the drill string from the top drive, retracting the top drive from the wellbore centerline, decoupling a tubular member from the upper end of the drill string, removing the tubular member from the space above the drill string aligned with the wellbore centerline, moving the top drive to a lowered position while the tubular member is decoupled from the drill string and is aligned with the wellbore centerline, extending the top drive into alignment with the wellbore centerline, and coupling the drill string to the top drive.
The present disclosure also provides for a drilling rig. The drilling rig may include a mast, the mast aligned with a wellbore, the wellbore defining a wellbore centerline. The drilling rig may include a top drive system. The top drive system may include a top drive. The top drive may be movable vertically relative to the mast. The top drive may be movable horizontally between a position aligned with the wellbore centerline and a position out of alignment with the wellbore centerline.
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
In some embodiments, drilling rig 10 may include provisions for storage of pipe tubulars to be used during a drilling operation including, for example and without limitation, racking board 70. Racking board 70, as understood in the art, may allow tubulars or tubular stands to be racked on drill rig floor 20 and accessed during operation of drilling rig 10. In some embodiments, drilling rig 10 may include pipe handling apparatus 80. Pipe handling apparatus 80 may be used to transfer tubulars between wellbore centerline we and racking board 70 or other storage locations during operations of drilling rig 10. For example, pipe handling apparatus 80 may provide tubular members to wellbore centerline we during a tripping in operation as further discussed below.
In some embodiments, drilling rig 10 may include a rotary system, referred to herein as top drive system 100. Top drive system 100 may, in some embodiments, include a hook and swivel and top drive 109 as discussed below. Top drive system 100 may be positioned within mast 50 and may be movable upward and downward. In some embodiments, top drive system 100 may be movable vertically using one or more cables 101 coupled between top drive system 100 and crown block 103, with cables 101 moved by drawworks 105. In some embodiments, top drive system 100 may be coupled to cables 101 by traveling block 107. In other embodiments, top drive system 100 may be moved vertically using any other hoisting system including, for example and without limitation, a rack and pinion drive system.
In some embodiments, top drive system 100 may include top drive 109. Top drive 109 may include quill 111. Quill 111 may be adapted to couple to a tubular member of a drill string used to drill wellbore 12. Top drive 109 may provide rotation to the drill string, provide for vertical movement of the drill string or casing string using drawworks 105 or other hoisting system, and provide drill fluid delivery to the drill string and to the wellbore annulus therethrough.
In some embodiments, mast 50 may include guide rails 113. Top drive system 100 may be mechanically coupled to guide rails 113 such that top drive system 100 is guided in the vertical direction by guide rails 113. In some embodiments, top drive system 100 may mechanically couple to guide rails 113 through trolley 115 as shown in
In some embodiments, top drive system 100 may be adapted to be movable in a horizontal or substantially horizontal direction. In some such embodiments, top drive system 100 may be movable from a position in which top drive 109 is aligned with wellbore centerline wc, referred to herein as an extended position, to a position in which top drive 109 is out of alignment with wellbore centerline wc, referred to herein as a retracted position. When top drive system 100 is in the retracted position, because top drive 109 and other equipment of top drive system 100 are out of alignment with wellbore centerline wc, wellbore centerline wc and thus the vertical space above the drill string or casing string may be accessible regardless of the vertical position of top drive system 100 as further discussed below.
In some embodiments, top drive system 100 may include top drive extension mechanism 119. Top drive extension mechanism 119 may, in certain embodiments, extend between trolley 115 and top drive 109. Top drive extension mechanism 119 may include one or more systems configured to selectively move top drive 109 between the extended and retracted positions. For example, and without limitation, as shown in
In some embodiments, traveling block 107 may be moved out of alignment with wellbore centerline we by virtue of the mechanical coupling to top drive 109. In other embodiments, traveling block 107 may be mechanically coupled to top drive extension mechanism 119 such that operation of top drive extension mechanism 119 actively repositions traveling block 107 as shown in
Instead, top drive system 100 may be moved to the retracted position using top drive extension mechanism 119 while top drive system 100 remains in the lower position as shown in
Once top drive system 100 is fully raised, top drive 109 may be extended into alignment with wellbore centerline wc using top drive extension mechanism 119 and can be recoupled to the drill string at next tubular 133 as shown in
Although presented herein as a tripping-in or drilling operation, one of ordinary skill in the art with the benefit of this disclosure will understand the applicability of the example operation discussed above to other operations of drilling rig 10. For example, during a tripping-out operation, top drive 109 may be retracted at the upper position once disengaged from the drill string and lowered while the uppermost stand is broken-out from the rest of drill string and removed from above wellbore centerline wc.
In other embodiments, as depicted in
Instead, top drive 109′ may be moved to the retracted position by moving guide rails 113′ using guide rail extension mechanisms 114′ while top drive system 100′ remains in the lower position as shown in
Once top drive system 100′ is fully raised and next tubular 133 is made-up to upper tubular 131, top drive 109′ may be extended into alignment with wellbore centerline wc by moving guide rails 113′ using guide rail extension mechanisms 114′ and may be recoupled to the drill string at next tubular 133 as shown in
Although presented herein as a tripping-in or drilling operation, one of ordinary skill in the art with the benefit of this disclosure will understand the applicability of the example operation discussed above to other operations of drilling rig 10′. For example, during a tripping-out operation, top drive 109′ may be retracted at the upper position once disengaged from the drill string and lowered while the uppermost stand is broken-out from the rest of drill string and removed from above wellbore centerline wc.
The foregoing outlines features of several embodiments so that a person of ordinary skill in the art may better understand the aspects of the present disclosure. Such features may be replaced by any one of numerous equivalent alternatives, only some of which are disclosed herein. One of ordinary skill in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. One of ordinary skill in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
This application is a nonprovisional application which claims priority from U.S. provisional application No. 63/161,759, filed Mar. 16, 2021, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
63161759 | Mar 2021 | US |