Side view mirror for automobile

Information

  • Patent Grant
  • 10967795
  • Patent Number
    10,967,795
  • Date Filed
    Thursday, May 7, 2015
    9 years ago
  • Date Issued
    Tuesday, April 6, 2021
    3 years ago
  • Inventors
    • Calderon; Abel (Los Angeles, CA, US)
  • Examiners
    • Pinkney; Dawayne
    Agents
    • Law Office of Michael O'Brien
    • O'Brien; Michael
  • CPC
  • Field of Search
    • US
    • 359 864000
    • 359 265-275
    • 359 277000
    • 359 245-247
    • 359 254000
    • 359 242000
    • 345 049000
    • 345 105000
    • 345 107000
    • 248 817000
    • 438 929000
    • CPC
    • B60R1/081
    • B60R1/088
    • G02B27/0025
    • G02F1/155
    • G02F1/1523
    • G02F1/1525
    • G02F1/1521
    • G02F1/163
    • G02F1/1533
    • G02F1/03
    • G02F1/0316
    • G02F3/16
    • C09K9/02
    • H04N9/3137
    • H04N9/22
  • International Classifications
    • G02B5/10
    • G02B5/08
    • B60R1/08
    • G02B27/00
    • Term Extension
      138
Abstract
A side view mirror for an automobile is configured to maximize viewing area and minimize image distortion. The side view mirror has a flat portion, having a flat portion major axis, a flat portion minor axis and a convex portion height. A convex portion is smoothly joined to the flat portion and having a convex portion major axis, a convex portion minor axis, a convex portion height; wherein the convex portion is configured to be defined around an origin point.
Description
BACKGROUND

The embodiments herein relate generally to mirrors on automobiles. The challenge in mirrors on automobiles is to maximize viewing area while minimizing distortion. There is no shortage of endeavors in this regard, including: U.S. Pat. No. 3,408,136 issued to Travis; U.S. Pat. No. 6,069,755 issued to Li; U.S. Pat. No. 3,338,655 issued to Young; Published U.S. Application 2003/0081334 filed by Skinner; U.S. Pat. No. 6,199,993 issued to Mou; U.S. Pat. No. 8,128,244 issued to Lynam; U.S. Pat. No. 8,267,535 issued to Zhao; and U.S. Pat. No. 8,736,940 issued to Rawlings.


Travis and Skinner teach a rear view mirror with flat and convex elements. The convex portion is a rectangular convex shape (that is, a bent rectangle). Young uses a circular convex shape instead of a rectangle. Lynam and Rawlings add reflective portions to this mirror arrangement.


Mou and Zhao teach the familiar arrangement of having a small convex portion within an otherwise flat mirror. The present invention teaches away from this by having the round portion extend past the mirror in a number of places.


Li teaches a convex shape comprising numerous distinctive curved surfaces having a widely varying average curvature. In that regard, Li chooses average over Gaussian curvature as a design constraint.


Embodiments of the disclosed invention use a larger convex portion, defined by a different function, and measured by a different standard of consistency. In this regard, embodiments of the present invention offer an entirely unique way of solving this classical problem.


SUMMARY

A side view mirror for an automobile is configured to maximize viewing area and minimize image distortion. The side view mirror has a flat portion, having a flat portion major axis, a flat portion minor axis and a convex portion height. A convex portion is smoothly joined to the flat portion and having a convex portion major axis, a convex portion minor axis, a convex portion height; wherein the convex portion is configured to be defined around an origin point.


In some embodiments, every point on the convex portion has a Gaussian curvature that is greater than zero. In some embodiments, the convex portion has some points with a Gaussian curvature that is greater than zero and some points with the Gaussian curvature that is less than zero causing a saddling effect on the convex portion.


In some embodiments, the convex portion height can be greater than zero. The convex portion major axis can be greater than twice the convex portion minor axis plus the convex portion height. The flat portion minor axis can be greater than three quarters the flat portion major axis. The flat portion major axis can be greater than the convex portion minor axis.


The convex portion can be defined by an ellipsoid equation:









z
2


c
2


+



(

x
-
F

)

2


a
2


+


y
2


b
2



=
1





where a is half the convex portion minor axis; b is half the convex portion major axis and c is the convex portion height.


In some embodiments, F can be equal to zero. In some embodiments, F can be equal to the convex portion height.





BRIEF DESCRIPTION OF THE FIGURES

The detailed description of some embodiments of the invention is made below with reference to the accompanying figures, wherein like numerals represent corresponding parts of the figures.



FIG. 1 shows a perspective view of one embodiment of the present invention.



FIG. 2 shows a perspective view of one embodiment of the present invention.



FIG. 3 shows a front view of one embodiment of the present invention.



FIG. 4 shows a front view of one embodiment of the present invention.



FIG. 5 shows a front view of one embodiment of the present invention.



FIG. 6 shows a top view of one embodiment of the present invention.



FIG. 7 shows a side view of one embodiment of the present invention.



FIG. 8 shows a perspective view of one embodiment of the present invention.



FIG. 9 shows a perspective view of one embodiment of the present invention.



FIG. 10 shows a front view of one embodiment of the present invention.



FIG. 11 shows a front view of one embodiment of the present invention.



FIG. 12 shows a front view of one embodiment of the present invention.



FIG. 13 shows a top view of one embodiment of the present invention.



FIG. 14 shows a side view of one embodiment of the present invention.





DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

By way of example, and referring to FIG. 5 and FIG. 6, one embodiment of the side view mirror comprises flat portion 10 joined to convex portion 20. The flat portion 10 has a flat portion minor axis 12 and a flat portion major axis 14. The area could simply be described as:

0xEdy  eqn.1


In equation 1, E is the flat portion major axis 14 which extends along the y-axis. In some embodiments, there is flat portion 10 extends in a manner not described by equation 1 but shown in FIG. 1, FIG. 2 and FIG. 5 with transition portion 16 that provides structural support for convex portion 20. In either case, convex portion 20 extends beyond the y-axis dimension of flat portion 10. The x-axis, the y-axis and the z-axis are labeled for clarity and consistency throughout the specification. However, those of ordinary skill would recognize this labeling as arbitrary and any axis could have any label. In some embodiments, as discussed in more detail below, it may be useful to have saddling transition 18 that transitions from convex portion 20 to flat portion 10.


There is also the convex portion 20 which has a convex portion major axis 22, a convex portion minor axis 24, a convex portion height 26 and an origin point 28, which is provided for reference. Convex portion 20 has its geometric underpinnings in an ellipsoid equation which can be defined by equation 2.












z
2


c
2


+


x
2


b
2


+


y
2


a
2



=
1




eqn
.




2







Here, 2*a is convex portion major axis 22, 2*b is convex portion minor axis 24 and c is convex portion height 26. In some embodiments, this may serve as an adequate model to design convex surface 20. However, in other models, as shown in FIG. 6, convex portion 20 tapers into flat portion 10. This is accomplished with equation 3.












z
2


c
2


+



(

x


c

1

0



)

2


b
2


+


y
2


a
2



=
1




eqn
.




3







The present disclosure explains that Gaussian curvature is what ultimately maximize viewing area while minimizing distortion. Gaussian curvature of equation 2 is defined as:









K
=



(



z
2


c
4


+


x
2


a
4


+


y
2


b
4



)


-
2


*


(


a
2

*

b
2

*

c
2


)


-
1







eqn
.




4







The Gaussian curvature for Equation 3 is a little more elaborate:









K
=



(



8


z
2




a
2



c
4



+


8



z


(

x


c

1

0



)


2




c
2



a
4




)

*

(



8


z
2




b
2



c
4



+


8

z


y
2




c
2



b
4




)




6

4




y
2



(

x


c

1

0



)


2




a
4



b
4



c
4







4



(

x


c

1

0



)

2



a
4


*


(



4



(

x
-

c

1

0



)

2



a
4


+


4


y
2



b
4


+


4


z
2



c
4



)

2







eqn
.




5







The current invention proposes that one can maximize viewing area while minimizing distortion when a, b, and c are within certain ranges. Two more variables are needed here: the flat portion minor axis 12 is d and the flat portion major axis 14 is e. The following conditions are presented:

c>0  cond. 1
a>b+c  cond. 2
d>1.5*a  cond. 3
2*b>e  cond. 4


There are some preferred ranges:

2.125*b<e<2.375*b  range 1
1.75*a<d<2.25*a  range 2
1.5*a<b<2.0*a  range 3


With those conditions we can now proceed to some examples:


Example 1

Here, the flat portion minor axis 12 is 3.75 inches, the flat portion major axis 14 is 4.00 inches, the convex portion major axis 22 is 4.50 inches, the convex portion minor axis 24 is 2.75 inches, and the convex portion height 26 is 0.500 inches.


In this example a=1.375 inches, b=2.25 inches and c=0.5 inches d=3.75 inches and e=4.0 inches. In this model, equation 1 is utilized to define the convex portion 20. To show how the convex portion 20 changes with respect to height even measurements are made at regular intervals in the table below as shown:
















Chord (as shown






in FIG. 2)
x
y
z
Gaussian curvature



















40-40′
0
−2.25
0
3.55803


40-40′
0
−1.8
0.3
0.05658


40-40′
0
−1.35
0.4
0.02005


40-40′
0
−0.9
0.45826
0.01207


40-40′
0
−0.45
0.4899
0.00938


40-40′
0
0
0.5
0.00868


40-40′
0
0.45
0.4899
0.00938


40-40′
0
0.9
0.45826
0.01207


40-40′
0
1.35
0.4
0.02005


40-40′
0
1.8
0.3
0.05658


40-40′
0
2.25
0
3.55803


30-30′
−1.1
−1.35
0
0.82739


30-30′
−1.1
−0.9
0.22361
0.1014


30-30′
−1.1
−0.45
0.28284
0.05248


30-30′
−1.1
0
0.3
0.04389


30-30′
−1.1
0.45
0.28284
0.05248


30-30′
−1.1
0.9
0.22361
0.1014


30-30′
−1.1
1.35
0
0.82739


32-32′
−0.825
−1.35
0.26458
0.07274


32-32′
−0.825
−0.9
0.34641
0.03026


32-32′
−0.825
−0.45
0.3873
0.02056


32-32′
−0.825
0
0.4
0.01835


32-32′
−0.825
0.45
0.3873
0.02056


32-32′
−0.825
0.9
0.34641
0.03026


32-32′
−0.825
1.35
0.26458
0.07274


34-34′
−0.55
−1.8
0.22361
0.13581


34-34′
−0.55
−1.35
0.34641
0.03222


34-34′
−0.55
−0.9
0.41231
0.01726


34-34′
−0.55
−0.45
0.44721
0.01281


34-34′
−0.55
0
0.45826
0.0117


34-34′
−0.55
0.45
0.44721
0.01281


34-34′
−0.55
0.9
0.41231
0.01726


34-34′
−0.55
1.35
0.34641
0.03222


34-34′
−0.55
1.8
0.22361
0.13581


36-36′
−0.275
−1.8
0.28284
0.06812


36-36′
−0.275
−1.35
0.3873
0.02235


36-36′
−0.275
−0.9
0.44721
0.01312


36-36′
−0.275
−0.45
0.47958
0.01009


36-36′
−0.275
0
0.4899
0.00931


36-36′
−0.275
0.45
0.47958
0.01009


36-36′
−0.275
0.9
0.44721
0.01312


36-36′
−0.275
1.35
0.3873
0.02235


36-36′
−0.275
1.8
0.28284
0.06812


42-42′
0.275
−1.8
0.28284
0.06812


42-42′
0.275
−1.35
0.3873
0.02235


42-42′
0.275
−0.9
0.44721
0.01312


42-42′
0.275
−0.45
0.47958
0.01009


42-42′
0.275
0
0.4899
0.00931


42-42′
0.275
0.45
0.47958
0.01009


42-42′
0.275
0.9
0.44721
0.01312


42-42′
0.275
1.35
0.3873
0.02235


42-42′
0.275
1.8
0.28284
0.06812


44-44′
0.55
−1.8
0.22361
0.13581


44-44′
0.55
−1.35
0.34641
0.03222


44-44′
0.55
−0.9
0.41231
0.01726


44-44′
0.55
−0.45
0.44721
0.01281


44-44′
0.55
0
0.45826
0.0117


44-44′
0.55
0.45
0.44721
0.01281


44-44′
0.55
0.9
0.41231
0.01726


44-44′
0.55
1.35
0.34641
0.03222


44-44′
0.55
1.8
0.22361
0.13581


46-46′
1.1
−1.35
0
0.82739


46-46′
1.1
−0.9
0.22361
0.1014


46-46′
1.1
−0.45
0.28284
0.05248


46-46′
1.1
0
0.3
0.04389


46-46′
1.1
0.45
0.28284
0.05248


46-46′
1.1
0.9
0.22361
0.1014


46-46′
1.1
1.35
0
0.82739









Likewise, measurements can be taken in regular intervals in the x-direction with chords as shown in FIG. 1:
















chord (as






shown






in FIG. 1)
x
y
z
Gaussian curvature



















52-52′
−0.825
1.8
0
1.382987627


52-52′
−0.55
1.8
0.223606798
0.135811213


52-52′
−0.275
1.8
0.282842712
0.068120856


52-52′
0
1.8
0.3
0.056579974


52-52′
0.275
1.8
0.282842712
0.068120856


52-52′
0.55
1.8
0.223606798
0.135811213


52-52′
0.825
1.8
0
1.382987627


54-54′
−1.1
1.35
0
0.827388164


54-54′
−0.825
1.35
0.264575131
0.072738103


54-54′
−0.55
1.35
0.346410162
0.032220589


54-54′
−0.275
1.35
0.387298335
0.022350617


54-54′
0
1.35
0.4
0.020053984


54-54′
0.275
1.35
0.387298335
0.022350617


54-54′
0.55
1.35
0.346410162
0.032220589


54-54′
0.825
1.35
0.264575131
0.072738103


54-54′
1.1
1.35
0
0.827388164


56-56′
−1.1
0.9
0.223606798
0.10139586


56-56′
−0.825
0.9
0.346410162
0.03025748


56-56′
−0.55
0.9
0.412310563
0.017258189


56-56′
−0.275
0.9
0.447213595
0.013121228


56-56′
0
0.9
0.458257569
0.012068923


56-56′
0.275
0.9
0.447213595
0.013121228


56-56′
0.55
0.9
0.412310563
0.017258189


56-56′
0.825
0.9
0.346410162
0.03025748


56-56′
1.1
0.9
0.223606798
0.10139586


58-58′
−1.1
0.45
0.282842712
0.052482805


58-58′
−0.825
0.45
0.387298335
0.020563433


58-58′
−0.55
0.45
0.447213595
0.012806184


58-58′
−0.275
0.45
0.479583152
0.010091407


58-58′
0
0.45
0.489897949
0.009376294


58-58′
0.275
0.45
0.479583152
0.010091407


58-58′
0.55
0.45
0.447213595
0.012806184


58-58′
0.825
0.45
0.387298335
0.020563433


58-58′
1.1
0.45
0.282842712
0.052482805


60-60′
−1.375
0
0
0.496237798


60-60′
−1.1
0
0.3
0.043889967


60-60′
−0.825
0
0.4
0.01835199


60-60′
−0.55
0
0.458257569
0.011700229


60-60′
−0.275
0
0.489897949
0.009312025


60-60′
0
0
0.5
0.00867679


60-60′
0.275
0
0.489897949
0.009312025


60-60′
0.55
0
0.458257569
0.011700229


60-60′
0.825
0
0.4
0.01835199


60-60′
1.1
0
0.3
0.043889967


60-60′
1.375
0
0
0.496237798


62-62′
−1.1
−0.45
0.282842712
0.052482805


62-62′
−0.825
−0.45
0.387298335
0.020563433


62-62′
−0.55
−0.45
0.447213595
0.012806184


62-62′
−0.275
−0.45
0.479583152
0.010091407


62-62′
0
−0.45
0.489897949
0.009376294


62-62′
0.275
−0.45
0.479583152
0.010091407


62-62′
0.55
−0.45
0.447213595
0.012806184


62-62′
0.825
−0.45
0.387298335
0.020563433


62-62′
1.1
−0.45
0.282842712
0.052482805


64-64′
−1.1
−0.9
0.223606798
0.10139586


64-64′
−0.825
−0.9
0.346410162
0.03025748


64-64′
−0.55
−0.9
0.412310563
0.017258189


64-64′
−0.275
−0.9
0.447213595
0.013121228


64-64′
0
−0.9
0.458257569
0.012068923


64-64′
0.275
−0.9
0.447213595
0.013121228


64-64′
0.55
−0.9
0.412310563
0.017258189


64-64′
0.825
−0.9
0.346410162
0.03025748


64-64′
1.1
−0.9
0.223606798
0.10139586


66-66′
−1.1
−1.35
0
0.827388164


66-66′
−0.825
−1.35
0.264575131
0.072738103


66-66′
−0.55
−1.35
0.346410162
0.032220589


66-66′
−0.275
−1.35
0.387298335
0.022350617


66-66′
0
−1.35
0.4
0.020053984


66-66′
0.275
−1.35
0.387298335
0.022350617


66-66′
0.55
−1.35
0.346410162
0.032220589


66-66′
0.825
−1.35
0.264575131
0.072738103


66-66′
1.1
−1.35
0
0.827388164


68-68′
−0.825
−1.8
0
1.382987627


68-68′
−0.55
−1.8
0.223606798
0.135811213


68-68′
−0.275
−1.8
0.282842712
0.068120856


68-68′
0
−1.8
0.3
0.056579974


68-68′
0.275
−1.8
0.282842712
0.068120856


68-68′
0.55
−1.8
0.223606798
0.135811213


68-68′
0.825
−1.8
0
1.382987627









Example 2

Here, the flat portion minor axis 12 is 3.75 inches, the flat portion major axis 14 is 4.00 inches, the convex portion major axis 22 is 4.50 inches, the convex portion minor axis 24 is 2.75 inches, and the convex portion height 26 is 0.500 inches.


In this example a=1.375 inches, b=2.25 inches and c=0.5 inches d=3.75 inches and e=4.0 inches. In this model, equation 2 is utilized to define the convex portion 20. Equation 1 and Equation 2 are almost identical except that Equation 2 uses a major axis offset to cause a saddling effect around the edges. This saddling accomplishes the same effect as the blocking portions between the round and flat mirrors in some of the previous endeavors in this field. However, the saddling provides improved viewing portions when used sparingly. While the saddling may not appear to the naked eye, it can be proven to exist mathematically by showing points of negative Gaussian curvature,


To show how the convex portion 20 changes with respect to height even measurements are made at regular intervals in the table below as shown:
















chord (as shown



Gaussian


in FIG. 2)
x
y
z
curvature



















40-40′
0
−1.8
0.28458
0.52620751


40-40′
0
−1.35
0.39142
0.480120367


40-40′
0
−0.9
0.45325
0.444339799


40-40′
0
−0.45
0.4875
0.424306522


40-40′
0
0
0.49988
0.417900438


40-40′
0
0.45
0.49204
0.42427035


40-40′
0
0.9
0.46295
0.444014984


40-40′
0
1.35
0.4081
0.479012729


40-40′
0
1.8
0.31427
0.527410045


40-40′
0
2.25
0.10482
0.265349622


30-30′
−1.1
−0.9
0.21315
−1.653567582


30-30′
−1.1
−0.45
0.27867
−0.129549707


30-30′
−1.1
0
0.29979
0.288454206


30-30′
−1.1
0.45
0.28653
−0.111272336


30-30′
−1.1
0.9
0.23307
−1.549058982


30-30′
−1.1
1.35
0.08089
−2.775863278


32-32′
−0.825
−1.35
0.25142
−2.206749161


32-32′
−0.825
−0.9
0.33975
−0.437186309


32-32′
−0.825
−0.45
0.38426
0.211374679


32-32′
−0.825
0
0.39985
0.384254756


32-32′
−0.825
0.45
0.39
0.217648257


32-32′
−0.825
0.9
0.35259
−0.387426547


32-32′
−0.825
1.35
0.27666
−1.939398707


34-34′
−0.55
−1.8
0.20245
−2.475759875


34-34′
−0.55
−1.35
0.33647
−0.466618021


34-34′
−0.55
−0.9
0.40673
0.125827295


34-34′
−0.55
−0.45
0.44458
0.349791844


34-34′
−0.55
0
0.45812
0.410604902


34-34′
−0.55
0.45
0.44955
0.351734319


34-34′
−0.55
0.9
0.41752
0.141278052


34-34′
−0.55
1.35
0.35573
−0.382493622


34-34′
−0.55
1.8
0.24242
−1.955687764


36-36′
−0.275
−1.8
0.26644
−0.172494312


36-36′
−0.275
−1.35
0.37843
0.249697768


36-36′
−0.275
−0.9
0.44208
0.365195604


36-36′
−0.275
−0.45
0.47713
0.406216834


36-36′
−0.275
0
0.48977
0.416896363


36-36′
−0.275
0.45
0.48177
0.406633112


36-36′
−0.275
0.9
0.45202
0.368468992


36-36′
−0.275
1.35
0.39566
0.267351038


36-36′
−0.275
1.8
0.29794
−0.057297425


42-42′
0.275
−1.8
0.26644
0.19213789


42-42′
0.275
−1.35
0.37843
0.372305835


42-42′
0.275
−0.9
0.44208
0.407507387


42-42′
0.275
−0.45
0.47713
0.415910916


42-42′
0.275
0
0.48977
0.417444134


42-42′
0.275
0.45
0.48177
0.416087067


42-42′
0.275
0.9
0.45202
0.408877629


42-42′
0.275
1.35
0.39566
0.380141046


42-42′
0.275
1.8
0.29794
0.25021181


44-44′
0.55
−1.8
0.20245
−1.70812945


44-44′
0.55
−1.35
0.33647
−0.188433507


44-44′
0.55
−0.9
0.40673
0.222078134


44-44′
0.55
−0.45
0.44458
0.372612003


44-44′
0.55
0
0.45812
0.412952823


44-44′
0.55
0.45
0.44955
0.373978671


44-44′
0.55
0.9
0.41752
0.233057174


44-44′
0.55
1.35
0.35573
−0.126909397


44-44′
0.55
1.8
0.24242
−1.278681108


46-46′
0.825
−1.35
0.25142
−1.760534085


46-46′
0.825
−0.9
0.33975
−0.26736236


46-46′
0.825
−0.45
0.38426
0.254324499


46-46′
0.825
0
0.39985
0.391345625


46-46′
0.825
0.45
0.39
0.259539263


46-46′
0.825
0.9
0.35259
−0.224906013


46-46′
0.825
1.35
0.27666
−1.513868226


46-46′
0.825
1.8
0.09362
−3.991501489


48-48′
1.1
−0.9
0.21315
−1.474768458


48-48′
1.1
−0.45
0.27867
−0.066270018


48-48′
1.1
0
0.29979
0.304188248


48-48′
1.1
0.45
0.28653
−0.048449857


48-48′
1.1
0.9
0.23307
−1.35829632


48-48′
1.1
1.35
0.08089
−2.730133507









Likewise, measurements can be taken in regular intervals in the x-direction with chords as shown in FIG. 1:
















chord (as shown






in FIG. 1)
x
y
z
Gaussian curvature



















52-52′
−0.825
1.8
0.09362
−4.334908083


52-52′
−0.55
1.8
0.24242
−1.955687764


52-52′
−0.275
1.8
0.29794
−0.057297425


52-52′
0
1.8
0.31427
0.527410045


52-52′
0.275
1.8
0.29794
0.25021181


52-52′
0.55
1.8
0.24242
−1.278681108


52-52′
0.825
1.8
0.09362
−3.991501489


54-54′
−1.1
1.35
0.08089
−2.775863278


54-54′
−0.825
1.35
0.27666
−1.939398707


54-54′
−0.55
1.35
0.35573
−0.382493622


54-54′
−0.275
1.35
0.39566
0.267351038


54-54′
0
1.35
0.4081
0.479012729


54-54′
0.275
1.35
0.39566
0.380141046


54-54′
0.55
1.35
0.35573
−0.126909397


54-54′
0.825
1.35
0.27666
−1.513868226


54-54′
1.1
1.35
0.08089
−2.730133507


56-56′
−1.1
0.9
0.23307
−1.549058982


56-56′
−0.825
0.9
0.35259
−0.387426547


56-56′
−0.55
0.9
0.41752
0.141278052


56-56′
−0.275
0.9
0.45202
0.368468992


56-56′
0
0.9
0.46295
0.444014984


56-56′
0.275
0.9
0.45202
0.408877629


56-56′
0.55
0.9
0.41752
0.233057174


56-56′
0.825
0.9
0.35259
−0.224906013


56-56′
1.1
0.9
0.23307
−1.35829632


58-58′
−1.1
0.45
0.28653
−0.111272336


58-58′
−0.825
0.45
0.39
0.217648257


58-58′
−0.55
0.45
0.44955
0.351734319


58-58′
−0.275
0.45
0.48177
0.406633112


58-58′
0
0.45
0.49204
0.42427035


58-58′
0.275
0.45
0.48177
0.416087067


58-58′
0.55
0.45
0.44955
0.373978671


58-58′
0.825
0.45
0.39
0.259539263


58-58′
1.1
0.45
0.28653
−0.048449857


60-60′
−1.35
0
0.09426
0.020634236


60-60′
−1.1
0
0.29979
0.288454206


60-60′
−0.825
0
0.39985
0.384254756


60-60′
−0.55
0
0.45812
0.410604902


60-60′
−0.275
0
0.48977
0.416896363


60-60′
0
0
0.49988
0.417900438


60-60′
0.275
0
0.48977
0.417444134


60-60′
0.55
0
0.45812
0.412952823


60-60′
0.825
0
0.39985
0.391345625


60-60′
1.1
0
0.29979
0.304188248


60-60′
1.35
0
0.09426
0.0240602


62-62′
−1.1
−0.45
0.27867
−0.129549707


62-62′
−0.825
−0.45
0.38426
0.211374679


62-62′
−0.55
−0.45
0.44458
0.349791844


62-62′
−0.275
−0.45
0.47713
0.406216834


62-62′
0
−0.45
0.4875
0.424306522


62-62′
0.275
−0.45
0.47713
0.415910916


62-62′
0.55
−0.45
0.44458
0.372612003


62-62′
0.825
−0.45
0.38426
0.254324499


62-62′
1.1
−0.45
0.27867
−0.066270018


64-64′
−1.1
−0.9
0.21315
−1.653567582


64-64′
−0.825
−0.9
0.33975
−0.437186309


64-64′
−0.55
−0.9
0.40673
0.125827295


64-64′
−0.275
−0.9
0.44208
0.365195604


64-64′
0
−0.9
0.45325
0.444339799


64-64′
0.275
−0.9
0.44208
0.407507387


64-64′
0.55
−0.9
0.40673
0.222078134


64-64′
0.825
−0.9
0.33975
−0.26736236


64-64′
1.1
−0.9
0.21315
−1.474768458


66-66′
−0.825
−1.35
0.25142
−2.206749161


66-66′
−0.55
−1.35
0.33647
−0.466618021


66-66′
−0.275
−1.35
0.37843
0.249697768


66-66′
0
−1.35
0.39142
0.480120367


66-66′
0.275
−1.35
0.37843
0.372305835


66-66′
0.55
−1.35
0.33647
−0.188433507


66-66′
0.825
−1.35
0.25142
−1.760534085


68-68′
−0.55
−1.8
0.20245
−2.475759875


68-68′
−0.275
−1.8
0.26644
−0.172494312


68-68′
0
−1.8
0.28458
0.52620751


68-68′
0.275
−1.8
0.26644
0.19213789


68-68′
0.55
−1.8
0.20245
−1.70812945










FIGS. 8-14 show an embodiment of the invention where the ellipsoid is truncated. One embodiment of the side view mirror comprises flat portion 110 joined to convex portion 120. The flat portion 110 has a flat portion minor axis 112 and a flat portion major axis 114. The area could simply be described by equation 1 above.


In equation 6, E is the flat portion major axis 114 which extends along the y-axis. In some embodiments, flat portion 110 extends in a manner not described by equation 1 but shown in FIG. 8, FIG. 9 and FIG. 12 with transition portion 116 that provides structural support for convex portion 120. In either case, convex portion 120 extends beyond the y-axis dimension of flat portion 110. The x-axis, the y-axis and the z-axis are labeled for clarity and consistency throughout the specification. However, those of ordinary skill would recognize this labeling as arbitrary and any axis could have any label. In some embodiments, as discussed in more detail below, it may be useful to have saddling transition 118 that transitions from convex portion 120 to flat portion 110.


There is also the convex portion 120 which has a convex portion major axis 122, a convex portion minor axis 124, a convex portion truncated height 126 and an origin point 128, which is provided for reference. Convex portion 120 has its geometric underpinnings in an ellipsoid equation which can be defined by equation 2 above. However, the equation is now subject to the condition that 0<z<0.3


Here, 2*a is convex portion major axis 122, 2*b is convex portion minor axis 124 and c is a hypothetical convex portion height 126. Hypothetical convex portion height 126 is not realized because the ellipsoid is truncated. In some embodiments, this may serve as an adequate model to design convex surface 120. However, in other models, as shown in FIG. 14, convex portion 120 tapers into flat portion 110. This is accomplished with equation 3 above. The present disclosure explains that Gaussian curvature is what ultimately maximize viewing area while minimizing distortion. Gaussian curvature of these equations is discussed above.


The current invention proposes that one can maximize viewing area while minimizing distortion when a, b, and c are within certain ranges. Two more variables are needed here: the flat portion minor axis 12 is d and the flat portion major axis 14 is e. The following conditions are presented:

c>0  cond. 1
a>b+c  cond. 2
d>1.5*a  cond. 3
2*b>e  cond. 4


There are some preferred ranges:

2.125*b<e<2.375*b  range 1
1.75*a<d<2.25*a  range 2
1.5*a<b<2.0*a  range 3


With those conditions we can now proceed to some examples:


Example 3

Here, the flat portion minor axis 112 is 3.75 inches, the flat portion major axis 114 is 4.00 inches, the convex portion major axis 122 is 4.50 inches, the convex portion minor axis 124 is 2.75 inches, and the convex portion height 126 is 0.500 inches.


In this example a=1.375 inches, b=2.25 inches and c=0.5 inches d=3.75 inches and e=4.0 inches. In this model, equation 1 is utilized to define the convex portion 120. To show how the convex portion 20 changes with respect to height even measurements are made at regular intervals in the table below as shown:
















chord (as shown



Gaussian


in FIG. 8)
x
y
z
curvature



















152-152′
−0.825
1.8
0
1.382987627


152-152′
−0.55
1.8
0.2236068
0.135811213


152-152′
−0.275
1.8
0.28284271
0.068120856


152-152′
0
1.8
0.3
0.056579974


152-152′
0.275
1.8
0.28284271
0.068120856


152-152′
0.55
1.8
0.2236068
0.135811213


152-152′
0.825
1.8
0
1.382987627


154-154′
−1.1
1.35
0
0.827388164


154-154′
−0.825
1.35
0.26457513
0.072738103


154-154′
−0.55
1.35
0.3
0.054519921


154-154′
−0.275
1.35
0.3
0.059130222


154-154′
0
1.35
0.3
0.060797574


154-154′
0.275
1.35
0.3
0.059130222


154-154′
0.55
1.35
0.3
0.054519921


154-154′
0.825
1.35
0.26457513
0.072738103


154-154′
1.1
1.35
0
0.827388164


156-156′
−1.1
0.9
0.2236068
0.10139586


156-156′
−0.825
0.9
0.3
0.050258268


156-156′
−0.55
0.9
0.3
0.057323116


156-156′
−0.275
0.9
0.3
0.062301417


156-156′
0
0.9
0.3
0.064105689


156-156′
0.275
0.9
0.3
0.062301417


156-156′
0.55
0.9
0.3
0.057323116


156-156′
0.825
0.9
0.3
0.050258268


156-156′
1.1
0.9
0.2236068
0.10139586


158-158′
−1.1
0.45
0.28284271
0.052482805


158-158′
−0.825
0.45
0.3
0.051723097


158-158′
−0.55
0.45
0.3
0.059110068


158-158′
−0.275
0.45
0.3
0.064328142


158-158′
0
0.45
0.3
0.066221829


158-158′
0.275
0.45
0.3
0.064328142


158-158′
0.55
0.45
0.3
0.059110068


158-158′
0.825
0.45
0.3
0.051723097


158-158′
1.1
0.45
0.28284271
0.052482805


160-160′
−1.375
0
0
0.496237798


160-160′
−1.1
0
0.3
0.043889967


160-160′
−0.825
0
0.3
0.052225628


160-160′
−0.55
0
0.3
0.059724319


160-160′
−0.275
0
0.3
0.065025735


160-160′
0
0
0.3
0.066950537


160-160′
0.275
0
0.3
0.065025735


160-160′
0.55
0
0.3
0.059724319


160-160′
0.825
0
0.3
0.052225628


160-160′
1.1
0
0.3
0.043889967


160-160′
1.375
0
0
0.496237798


162-162′
−1.1
−0.45
0.28284271
0.052482805


162-162′
−0.825
−0.45
0.3
0.051723097


162-162′
−0.55
−0.45
0.3
0.059110068


162-162′
−0.275
−0.45
0.3
0.064328142


162-162′
0
−0.45
0.3
0.066221829


162-162′
0.275
−0.45
0.3
0.064328142


162-162′
0.55
−0.45
0.3
0.059110068


162-162′
0.825
−0.45
0.3
0.051723097


162-162′
1.1
−0.45
0.28284271
0.052482805


164-164′
−1.1
−0.9
0.2236068
0.10139586


164-164′
−0.825
−0.9
0.3
0.050258268


164-164′
−0.55
−0.9
0.3
0.057323116


164-164′
−0.275
−0.9
0.3
0.062301417


164-164′
0
−0.9
0.3
0.064105689


164-164′
0.275
−0.9
0.3
0.062301417


164-164′
0.55
−0.9
0.3
0.057323116


164-164′
0.825
−0.9
0.3
0.050258268


164-164′
1.1
−0.9
0.2236068
0.10139586


166-166′
−1.1
−1.35
0
0.827388164


166-166′
−0.825
−1.35
0.26457513
0.072738103


166-166′
−0.55
−1.35
0.3
0.054519921


166-166′
−0.275
−1.35
0.3
0.059130222


166-166′
0
−1.35
0.3
0.060797574


166-166′
0.275
−1.35
0.3
0.059130222


166-166′
0.55
−1.35
0.3
0.054519921


166-166′
0.825
−1.35
0.26457513
0.072738103


166-166′
1.1
−1.35
0
0.827388164


168-168′
−0.825
−1.8
0
1.382987627


168-168′
−0.55
−1.8
0.2236068
0.135811213


168-168′
−0.275
−1.8
0.28284271
0.068120856


168-168′
0
−1.8
0.3
0.056579974


168-168′
0.275
−1.8
0.28284271
0.068120856


168-168′
0.55
−1.8
0.2236068
0.135811213


168-168′
0.825
−1.8
0
1.382987627









Likewise, measurements can be taken in regular intervals in the x-direction with chords as shown in FIG. 9:
















chord (as shown



Gaussian


in FIG. 9)
x
y
z
curvature



















140-140′
0
−1.8
0.3
0.056579974


140-140′
0
−1.35
0.3
0.060797574


140-140′
0
−0.9
0.3
0.064105689


140-140′
0
−0.45
0.3
0.066221829


140-140′
0
0
0.3
0.066950537


140-140′
0
0.45
0.3
0.066221829


140-140′
0
0.9
0.3
0.064105689


140-140′
0
1.35
0.3
0.060797574


140-140′
0
1.8
0.3
0.056579974


140-140′
0
2.25
0
3.55802603


130-130′
−1.1
−0.9
0.22361
0.10139586


130-130′
−1.1
−0.45
0.28284
0.052482805


130-130′
−1.1
0
0.3
0.043889967


130-130′
−1.1
0.45
0.28284
0.052482805


130-130′
−1.1
0.9
0.22361
0.10139586


130-130′
−1.1
1.35
0
0.827388164


132-132′
−0.825
−1.35
0.26458
0.072738103


132-132′
−0.825
−0.9
0.3
0.050258268


132-132′
−0.825
−0.45
0.3
0.051723097


132-132′
−0.825
0
0.3
0.052225628


132-132′
−0.825
0.45
0.3
0.051723097


132-132′
−0.825
0.9
0.3
0.050258268


132-132′
−0.825
1.35
0.26458
0.072738103


134-134′
−0.55
−1.8
0.22361
0.135811213


134-134′
−0.55
−1.35
0.3
0.054519921


134-134′
−0.55
−0.9
0.3
0.057323116


134-134′
−0.55
−0.45
0.3
0.059110068


134-134′
−0.55
0
0.3
0.059724319


134-134′
−0.55
0.45
0.3
0.059110068


134-134′
−0.55
0.9
0.3
0.057323116


134-134′
−0.55
1.35
0.3
0.054519921


134-134′
−0.55
1.8
0.22361
0.135811213


136-136′
−0.275
−1.8
0.28284
0.068120856


136-136′
−0.275
−1.35
0.3
0.059130222


136-136′
−0.275
−0.9
0.3
0.062301417


136-136′
−0.275
−0.45
0.3
0.064328142


136-136′
−0.275
0
0.3
0.065025735


136-136′
−0.275
0.45
0.3
0.064328142


136-136′
−0.275
0.9
0.3
0.062301417


136-136′
−0.275
1.35
0.3
0.059130222


136-136′
−0.275
1.8
0.28284
0.068120856


142-142′
0.275
−1.8
0.28284
0.068120856


142-142′
0.275
−1.35
0.3
0.059130222


142-142′
0.275
−0.9
0.3
0.062301417


142-142′
0.275
−0.45
0.3
0.064328142


142-142′
0.275
0
0.3
0.065025735


142-142′
0.275
0.45
0.3
0.064328142


142-142′
0.275
0.9
0.3
0.062301417


142-142′
0.275
1.35
0.3
0.059130222


142-142′
0.275
1.8
0.28284
0.068120856


144-144′
0.55
−1.8
0.22361
0.135811213


144-144′
0.55
−1.35
0.3
0.054519921


144-144′
0.55
−0.9
0.3
0.057323116


144-144′
0.55
−0.45
0.3
0.059110068


144-144′
0.55
0
0.3
0.059724319


144-144′
0.55
0.45
0.3
0.059110068


144-144′
0.55
0.9
0.3
0.057323116


144-144′
0.55
1.35
0.3
0.054519921


144-144′
0.55
1.8
0.22361
0.135811213


146-146′
0.825
−1.35
0.26458
0.072738103


146-146′
0.825
−0.9
0.3
0.050258268


146-146′
0.825
−0.45
0.3
0.051723097


146-146′
0.825
0
0.3
0.052225628


146-146′
0.825
0.45
0.3
0.051723097


146-146′
0.825
0.9
0.3
0.050258268


146-146′
0.825
1.35
0.26458
0.072738103


146-146′
0.825
1.8
0
1.382987627


148-148′
1.1
−0.9
0.22361
0.10139586


148-148′
1.1
−0.45
0.28284
0.052482805


148-148′
1.1
0
0.3
0.043889967


148-148′
1.1
0.45
0.28284
0.052482805


148-148′
1.1
0.9
0.22361
0.10139586


148-148′
1.1
1.35
0
0.827388164









In example 3, the convex portion height is truncated creating a second flat surface.


Any element in a claim that does not explicitly state “means for” performing a specified function, or “step for” performing a specified function, is not to be interpreted as a “means” or “step” clause as specified in 35 U.S.C. § 112, § 6. In particular, any use of “step of” in the claims is not intended to invoke the provision of 35 U.S.C. § 112, § 6.


Persons of ordinary skill in the art may appreciate that numerous design configurations may be possible to enjoy the functional benefits of the inventive systems. Thus, given the wide variety of configurations and arrangements of embodiments of the present invention the scope of the invention is reflected by the breadth of the claims below rather than narrowed by the embodiments described above.

Claims
  • 1. A side view mirror for an automobile, configured to maximize viewing area and minimize image distortion; the side view mirror comprising: a flat portion, having a flat portion major axis, a flat portion minor axis and a flat portion height, a flat portion upper boundary and a flat portion lower boundary spanning a flat portion y-axis dimension from a flat portion first edge; wherein the a flat portion upper boundary and the flat portion lower boundary are perpendicular to the flat portion first edge;a transition portion, extending distally from the flat portion opposite the flat portion first edge; wherein the transition portion extends outward from the flat portion y-axis dimension while extending continuously away from the flat portion first edge;a convex portion, smoothly joined to the flat portion with the transition portion, the convex portion having an ellipsoid shape; wherein the convex portion extends beyond the y-axis dimension both above the flat portion upper boundary and below the flat portion lower boundary, extending beyond distal points of the flat portion and having a convex portion major axis, a convex portion minor axis, a convex portion height; wherein the convex portion is configured to be defined around an origin point.
  • 2. The side view mirror of claim 1, wherein every point on the convex portion has a Gaussian curvature that is greater than zero.
  • 3. The side view mirror of claim 1, wherein the convex portion has some points with a Gaussian curvature that is greater than zero and some points with the Gaussian curvature that is less than zero causing a saddling effect on the convex portion.
  • 4. The side view mirror of claim 1, wherein the convex portion height is greater than zero.
  • 5. The side view mirror of claim 4, wherein the convex portion major axis is greater than twice the convex portion minor axis plus the convex portion height.
  • 6. The side view mirror of claim 5, wherein the flat portion minor axis is greater than three quarters the flat portion major axis.
  • 7. The side view mirror of claim 6, wherein the flat portion major axis is greater than the convex portion minor axis.
  • 8. The side view mirror of claim 4, wherein the convex portion height is truncated creating a second flat surface.
  • 9. The side view mirror of claim 1, wherein the convex portion is defined by an ellipsoid equation:
US Referenced Citations (13)
Number Name Date Kind
3338655 Young Aug 1967 A
3408136 Travis Oct 1968 A
3764201 Haile Oct 1973 A
6069755 Li May 2000 A
6199993 Mou Mar 2001 B1
8128244 Lynam Mar 2012 B2
8267535 Zhao Sep 2012 B2
8736940 Rawlings May 2014 B2
20030081334 Skinner May 2003 A1
20030169521 Hoegh Sep 2003 A1
20040212489 Chan Oct 2004 A1
20050180034 Schmidt Aug 2005 A1
20110317241 Cammenga Dec 2011 A1