The present invention is related to modulated laser sources for optical networks and, more specifically, to directly modulated lasers (DMLs) in optical networks.
In an optical network the light signal sources are typically semiconductor lasers which are externally modulated, such as shown in
But directly modulated lasers (DMLs) face the well-documented problem of chirp, which is the reason that externally modulated lasers are typically preferred in optical networks. Direct modulation (DM) of a semiconductor laser diode changes the refractive index of the laser's semiconductor substrate as the density of the current carriers changes due to modulation. The resonant wavelength of the laser cavity formed on the substrate shifts during a pulse, i.e., chirp, to effectively spread the range of output wavelengths. In contrast to a laser operating in continuous wave (CW) mode which has a bandwidth determined by the resonant frequency of the lasing cavity, a laser operating in DM mode has a much larger bandwidth due to chirp. This is undesirable, especially for WDM networks in which multiple optical signals having different wavelengths share an optical fiber, each wavelength defining a particular communication channel. Hence WDM (Wavelength Division Multiplexing) is used herein to include any system using optical wavelengths to define channels, such as DWDM (Dense Wave Division Multiplexing). Additionally, increasing optical data rates, with signals at 10 Gb/s in commercial use expected in the near future, impose tighter restrictions on signal dispersion and render DMLs unsuitable as long distance signal sources. Starting with a broadened wavelength bandwidth due to chirp, signals from DMLs suffer greater dispersion as they travel down an optical fiber than signals from CW laser sources which are externally modulated.
Various efforts have been made to overcome chirp in DMLs. Early attempts tried to narrow the laser output spectrum by increasing the laser cavity length which is determined by the length of the semiconductor die. Rather than coating both ends of the die with reflecting materials, the reflective coating on one end of the laser die was left off and replaced by a reflector, a mirror or grating, external to the die to effectively lengthen the laser cavity. Nonetheless, these modified lasers called ECL's (External Cavity Lasers) are expensive since the external reflectors must be precisely aligned and athermalized, and have not gained market acceptance. A variation of the ECL approach of lowering chirp in DMLs with a fiber Bragg grating in place of a discrete grating also has met with little market acceptance. Besides high cost, this approach leaves no room in the laser package for an onboard optical isolator and forces the isolator to be spliced onto the output fiber.
Another effort was to condition the electrical input signal which modulates the semiconductor laser. The electrical signal is “pre-emphasized” and the resulting output electrical signal at the receiver is “de-emphasized.” However, this approach can only compensate for a small amount of chirp and requires a specially matched receiver, which reduces interoperability of network components.
A recent effort to extend the useful range of DMLs is the use of electronic adaptive digital equalization (EDE) at the receiver. This requires an ASIC (Application Specific Integrated Circuit) be added between the receiver's pre-amplifier and clock data recovery (CDR) circuitry, which adds significant costs and power consumption. There are limits to how much signal processing can be used to recover a chirped signal that is heavily dispersed. While EDE can be used to potentially increase distance up to 50%, it would be better to solve the problem at the transmitter, rather than trying to compensate at the receiver.
The present invention solves, or substantially mitigates, the problem of chirp in DML-sourced signals in optical networks efficiently and at relatively low cost so that the advantages of DML sources can be realized.
In a WDM optical network having at least one transmitter sending signals to at least one receiver over a network optical fiber, the present invention provides for a DML generating signals for the transmitter; a sideband filter between the transmitter and the receiver, the filtering characteristics of the sideband filter offset from a peak output of the DML compensating for chirp; a monitoring unit between the sideband filter and the receiver, the monitoring unit responsive to the sharpness of DML-generated signals filtered by the sideband filter; and a feedback loop from the monitoring unit for maintaining the offset between the DML and the sideband filter. Network components with filtering characteristics, such as AWGs (Arrayed WaveGuides), can be used as sideband filters. The sideband filter can also be located within the transmitter. Signals on the feedback loop from the monitoring unit, which can monitor the quality (the Q-factor or the BER) of the monitored signals, maintains the offset to minimize chirp of the DML-generated signals.
The present invention also provides for a method of operating a WDM optical network having at least one DML transmitter sending signals to at least one receiver over a network optical fiber. The method has the steps of: sideband filtering the DML transmitter signals with an offset from a peak output of the DML transmitter to compensate for chirp; monitoring the filtered DML transmitter signals; generating feedback signals responsive to sharpness of the monitored signals; and maintaining the offset responsive to the feedback signals.
The comparative outputs of externally modified lasers and DMLs are shown in
However, recent research has pointed to a technique of narrowing DML output bandwidth by sideband filtering. The side lobes of the output spectrum are removed by a narrow optical passband filter offset from the fundamental frequency, i.e., peak output wavelength, of the DML output, or stated more precisely, the slope of the edge of the sideband filter chirps the signal oppositely from the chirp induced by the DML so that the two chirps cancel each other. As shown in
The advantages of sideband filtering of a DML is also described in U.S. Patent Application Publication No. 2004/0114844, entitled, “DIRECTLY MODULATED DISTRIBUTED FEEDBACK LASER DIODE OPTICAL TRANSMITTER APPLYING VESTIGAL SIDE BAND MODULATION,” and published Jun. 17, 2004. In this case the output of a distributed feedback laser diode which is directly modulated is sideband filtered for an improved output.
However, the arrangements described above simply add a sideband filter to a laser diode. No measures are taken to ensure that the offset for filtering the sideband is maintained as the ambient conditions of the laser sources change. On the other hand, the present invention controls and maintains the filter offset with a feedback loop and employs elements which already exist in an optical network. Costs are minimized even though performance is enhanced.
In one aspect of the present invention, the filtering characteristics of AWGs (Arrayed WaveGuides) are used. AWGs are often employed as optical splitters and optical combiners in optical networks The center wavelength of AWGs, typically in the form of planar circuits, are often protected against changes in temperature by heating/cooling units with feedback control loops maintaining the network optical signals on the WDM grid of specified wavelength channels. In the present invention the heating/cooling units and the feedback control loops also control the offset between the network signals generated from DML sources and the AWG filtering grid.
This is illustrated in
Alternatively, instead of the heating (or cooling) of both AWGs 13 and 14 under the feedback control of the OCM 15, only one AWG might be used. Furthermore, the feedback control signal may arise from signal monitoring units in the receiver unit, as described below with respect to
Furthermore, AWGs are often constituent elements of other components in optical networks and may also be used for sideband filtering of DML signal sources.
The wavelength-selective switch 22 has the AWGs of interest. The switch 22, which has its output terminal 26 connected to the network optical fiber 20, receives the passed signals from the coupler 21 and signals to be added from add terminals 24. As shown in
Optical power is monitored throughout the switch 22 at monitoring nodes 40-44, which are each connected to photodiodes (shown symbolically). The photodiodes generate electrical signals indicative of the optical power of the optical signals at the monitoring nodes so that power on the paths of the wavelength-selective switch 22 and through the constituent switches 37 is monitored through the monitoring nodes and independently controlled by the VOAs 38. Further details of the described add/drop multiplexer may be found in the above-mentioned patent application.
Of particular interest to the present invention are the monitoring nodes 41 at the output terminals of the switches 37. Q-factor units 44 are connected to the photodiodes for the nodes 41. The units 44 provide control signals through a feedback line 46 to a heating/cooling unit 45 for the AWG multiplexer 31. Only one feedback loop is shown, but it is understood that the other units 44 also provide control signals for the heating/cooling unit 45 so that the AWG multiplexer 31 maintains the proper frequency offset for the sideband filtering of the DML-sourced optical signals on the network.
Alternatively, only one feedback loop from one monitoring node 41 could be used, or a second heating/cooling unit for the AWG demultiplexer 30 could be used to maintain the sideband filtering offset, similar to the arrangement in
Note that the AWG is used for multiple purposes—one as a constituent component of the wavelength-selective switch 22 and the other as a sideband filter for DML signals. Still another example of the efficient usage of AWGs is illustrated in
In this embodiment a transmitter unit 53 with DML laser sources 55 for each WDM channel sends optical signals over a network optical fiber 50 to a receiver unit 54 with individual receivers 56 for each WDM channel. An AWG 51 acts as the multiplexer for the transmitter unit 53 to combine the signals from laser sources 55 for transmission onto the optical fiber 50 and an AWG 52 acts as the demultiplexer for the receiver unit 54 to separate the signals for the receivers 56. EDFAs 65 and 66 represent the various optical amplifiers for the signals on the optical fiber 50.
Filtering of the DML source signals is performed by the AWGs 51 and 52. In the same manner as described earlier, a feedback loop 60 formed by a OCM unit 59 and control line 63 to heating/cooling units 57 and 58 attached to the AWGs 51 and 52 respectively provides for effective sideband filtering the DML-sourced signals on the optical fiber 50. Alternatively, the Q-factor monitoring of the signals can be monitored by a quality monitor unit 61 or the BER (Bit Error Rate) of the received signals can be calculated by a FEC (Forward Error Correction) unit 62 in the receiver unit 54. BER calculation provides for digital indication of the sharpness of the DML-sourced signals. The units 61 or 62 checks the signals entering the receiver unit 54 for the receivers 56. The dotted line 63A in
The quality monitor unit 61 or FEC unit 62 can be implemented by a standalone integrated circuit or by a dedicated circuit block inside an ASIC (Application Specific Integrated Circuit). With Forward Error Correction, an FEC unit (not shown) at the transmitter 53 encodes the transmitted data stream, and then the FEC unit 62 decodes the data stream at the receiver, correcting any errors discovered in the codes. While correcting errors, it keeps a count of the errors, the “bit-error rate,” or BER, which is a direct indication of the Q-factor of the link and which may be used as feedback for the sideband filter heater control loop 60.
The feedback signal, whether from the quality monitor 61, FEC unit 62 or OCM unit 59, is a digital signal that may be transmitted over the network OSC (Optical Supervisory Channel) which carries all information between nodes on a WDM network, or simply routed over a separate data link which need not be a high-speed link. By their very nature, operations with temperature control loops work very slowly.
However, instead of controlling the heating and cooling of the AWGs in the optical network, a feedback loop 80 controls the heating (or cooling) of the DML laser sources 75 themselves. In the previous arrangements, it had been assumed that the output of the DML laser sources were stabilized in some manner. Indeed, semiconductor lasers typically have some heating/cooling feedback control to prevent the peak output wavelength of the laser from wandering over time. In the present invention the control of the heating/cooling of the laser sources 75 is performed by the described feedback loop 80 and a TEC (Thermo-Electric Coupler) controller 83 to maintain the proper sideband offset between a sideband filter and the laser diode in the laser sources 75. The TEC controller 83 controls heating or cooling of the TEC units 77 for each laser source 75.
Operationally, the TEC unit 78 maintains the filter 96 at a constant temperature and the TEC unit 77 varies the temperature of the laser die 98 in response to the feedback signals on the loop 80 from the receiver unit 74 to keep the proper sideband offset. Alternatively, the temperature of the TEC unit 77 can be kept constant and the temperature of the filter 96 can be varied under control of the feedback loop 80.
Hence the present invention provides for a efficient way of using DMLs as optical network laser sources. Components which are commonly found in optical networks are used as part of a feedback loop to control the offset of sideband filtering of the output of the DML sources. Chirp in DML-sourced signals are minimized at minimal cost so that DML sources are now practical in optical networks.
Therefore, while the description above provides a full and complete disclosure of the preferred embodiments of the present invention, various modifications, alternate constructions, and equivalents will be obvious to those with skill in the art. Thus, the scope of the present invention is limited solely by the metes and bounds of the appended claims.