The present disclosure relates generally to the field of containers for storing and dispensing materials. The present disclosure more specifically relates to containers for storing and dispensing particular matter, such as a loose powder material (e.g., a cosmetic loose powder, etc.) or any other particulate matter.
It is generally known to provide a container for storing loose powder. Such known containers typically include a receptacle for supporting the loose powder and a cover coupled to an open end of the receptacle for sealing the receptacle. Such known containers often include a sifter mechanism having a pattern of openings through which the loose powder can be dispensed. It is also known to provide a sifter mechanism comprising two or more parts, each having a pattern of openings. The parts are intended to be selectively moved relative to each other by a user in a manner that moves the patterns of opening into and out of alignment so as to move the container between an open and closed position. Such known containers are typically large and clumsy thereby making them difficult or burdensome to store in relatively limited spaces (e.g., bags, purses, pockets, etc.). Further, in known containers, the movement of the sifter mechanism is independent from the movement of the other portions of the container (e.g., the cover and/or the receptacle, etc.). As such, a user must separately actuate the sifter mechanism between the open and closed positions.
Thus there is a need for a conveniently sized container (such as a cosmetic compact) having a sifter mechanism that can substantially seal off a particulate matter, such as a loose powder, contained therein. There is also a need for a container having a sifter mechanism wherein actuation of a cover and/or base of the container actuates the sifter mechanism between an open and closed position. There is further a need for a container having a sifter mechanism to be capable of supporting an applicator used for applying a particulate matter stored within the container. The is further a need for a container for storing a particulate matter that can be moved to a latched or locked position. Accordingly, it would be desirable to provide a container capable of accomplishing any one or more of these or other needs.
An exemplary embodiment relates a container for supporting particulate matter. The container includes a base providing a chamber configured to receive particulate matter and a cover coupled to the base and movable relative to the base between a closed position and an open position. The container also includes a sifter supported at the base. The sifter includes a first member having at least one dispensing aperture extending therethrough and a second member having at least one dispensing aperture extending therethrough. The second member is movable between a first position in which the at one dispensing aperture of the first member is at least partially out of alignment with the at least one dispensing aperture of the second member and a second position in which the at one dispensing aperture of the first member is in greater alignment with the at least one dispensing aperture of the second member. The sifter also includes a biasing element coupled to the second member for moving the second member relative to the first member from the first position to the second position when the cover is moved to the open position.
Another exemplary embodiment relates to a cosmetic compact. The cosmetic compact includes a base at least partially defining a cavity, a cosmetic material stowed within the cavity and a cover coupled to the base and movable relative to the base between a closed position and an open position. The container also includes a sifter supported at the base. The sifter includes a first sifter plate having at least one dispensing aperture extending therethrough and a second sifter plate having at least one dispensing aperture extending therethrough. The second sifter plate is movable between a first position in which the at one dispensing aperture of the first sifter plate is at least partially out of alignment with the at least one dispensing aperture of the second sifter plate and a second position in which the at one dispensing aperture of the first sifter plate is in greater alignment with the at least one dispensing aperture of the second sifter plate. The sifter also includes a integrally formed with the second sifter plate as a one-piece member, the spring being configured to move the second sifter plate relative to the first sifter plate from the first position to the second position when a user moves the cover to the open position.
Another exemplary embodiment relates to a method of manufacturing a container for storing and dispensing a particulate matter. The method includes providing a cover that is coupled to a base and coupling a sifter mechanism into the base. The sifter mechanism includes a first member having at least one dispensing aperture extending therethrough and a second member having at least one dispensing aperture extending therethrough. The second member is movable between a first position in which the at one dispensing aperture of the first member is at least partially out of alignment with the at least one dispensing aperture of the second member and a second position in which the at one dispensing aperture of the first member is in greater alignment with the at least one dispensing aperture of the second member. The sifter also includes a biasing element coupled to the second member for moving the second member relative to the first member from the first position to the second position when the cover is moved to the open position.
A container for storing and dispensing a particulate matter (e.g., a cosmetic loose powder, etc.) is disclosed. The container comprises a first portion (e.g., a bottom, receptacle, base, jar, etc.), a second portion (e.g., a lid, closure, top, cover, etc.) and third portion (e.g., a sifter mechanism, dispensing assembly, etc.). The first portion and the second portion cooperate to provide a conveniently sized storage system suitable for holding the particulate matter. The second portion is coupled to the first portion and is selectively movable by a user relative to the first portion between a first position in which the container is opened and a second position in which the container is closed. The third portion, which is configured to at least partially assist in controlling how and/or when the particulate matter can be dispensed from the container (e.g., the third portion may control the amount of particulate matter that is dispensed, may selectively seal off the particular matter within the container and/or may control the direction or pattern in which particulate matter is dispensed, etc.), is configured to be actuated when the second portion is moved between the first position and the second position.
According to an exemplary embodiment, the third portion comprises a first member (e.g., platform, sifter plate, etc.) and a second member (e.g., platform, sifter plate, etc.). The first member and the second member cooperate to define one or more dispensing apertures (e.g., an array or pattern of relatively small holes, etc.) through which the particulate matter is configured to be dispensed. According to an exemplary embodiment, the second member is disposed adjacent to the first member and is configured for movement relative to the first member between a first position (e.g., wherein one or more apertures in the first member are at least slightly out of alignment with one or more apertures in the second member) and a second position (e.g., wherein the one or more apertures in the first member are in greater alignment with the one or more apertures in the second member than when in the first position). According to an embodiment, the first member is coupled to the first portion in a manner that impedes the movement of the first member, at least relative to the second member.
To facilitate the movement of the second member from the first position to the second position, a biasing element is provided. The biasing element is provided for urging the second member towards the second position when a user selectively moves the second portion to the first position (e.g., when a user selectively opens the container, etc.). According to an exemplary embodiment, the biasing element is a spring that is coupled to the second member. For example, the spring may be integrally formed with the second member as a one-piece unitary body. The biasing element is moved to a loaded (e.g., compressed, etc.) state when the container is moved to the closed position. As the container is moved to the open position, the biasing element is at least partially released and acts against a portion of the container (e.g., a front portion of the second portion, etc.) for moving the second member relative to the first member to the second position. As such, inclusion of the biasing element may allow the movement of the third portion to be substantially synchronized to the opening of the container.
One advantageous feature of the third portion is that the container can provide a substantially sealed environment for particulate matter when the container is in the storage position (e.g., a closed and/or latched position, etc.). Providing a substantially sealed environment for particulate matter stored within the container may reduce the likelihood that such particulate matter will undesirably leak or otherwise spill from the container. Further, providing a substantially sealed environment for particulate matter stored within the container may assist in maintaining the freshness or effectiveness of such particulate matter. One advantageous feature of operatively coupling (e.g., linking, coordinating, synchronizing, etc.) the movement of the third portion to the movement of the second portion is that a user may simultaneously, or substantially simultaneously, move the third portion and the second portion to an opened position through a single actuation of the second portion. This may simplify opening and closing the container for a user since once the user moves the container from the closed position to the open position, the third portion is already in a dispensing position in which the particulate matter can be removed from the container. Likewise, to return the container to the closed position, a user only has to close the second portion relative to the first portion thereby causing the third portion to substantially seal the particulate matter without any additional effort on the part of the user.
It should be noted at the outset that while the container described herein will be described as a container configured to hold a cosmetic loose powder, the inventions disclosed herein have broad applicability to a variety of container. For example, the inventions disclosed herein may be suitable for with, but not limited to, containers used for holding foodstuff, cleaning products or any other container wherein it would be desirable to provide a sifter mechanism that can be controlled by the movement of the container between a closed position and an open position. Further, while the container described herein is preferably sized to fit conveniently into a user's bag, purse, pocket, etc., the present inventions are suitable for containers of any size.
Referring now to
Container 100 may be sized to conveniently fit into relatively small spaces (e.g., purses, handbags, pockets, briefcases, etc.). For example, container 100 (when closed) may have a width between approximately 1 inch and approximately 6 inches, a length between approximately 1 inch and approximately 6 inches, and a height or thickness between approximately 0.25 inches and approximately 2 inches. According to various alternative embodiments, container 100 may be sized larger or smaller then the dimensions provided above depending on the particular application, and may be provided in any of a variety of shapes (e.g., circular, triangular, etc.).
Container 100 is configured to be selectively moved by a user between an open position (shown in
Referring to
According to an exemplary embodiment, rear wall 208 includes a cutout portion 214 that provides clearance so that sifter mechanism 400 can be engaged by another portion of container 100 when container 100 is moved towards the closed position. According to the embodiment illustrated, cutout portion 214 is centrally located along an upper portion of rear wall 208. Cutout portion 214 is defined within rear wall 208 and is shown as being substantially continuous between a pair of side edges 216 and a bottom edge 220. Configuring cutout portion 214 in such a manner allows a portion of cover portion 300 to engage sifter mechanism 400 when cover portion 300 is coupled to base portion 200 and moved towards the closed position, while still allowing container 100 to have a substantially continuous and uniform outer appearance when in the closed position.
According to an exemplary embodiment, end wall 202 and peripheral side wall 204 are integrally formed as a single unitary body in a single mold by an injection molding operation to form base portion 200. According to various alternative embodiments, the end wall section may be coupled to the side wall section in any suitable manner (e.g., snap-fit, welding, etc.). Depending on various design criteria, the profile of end wall 202 may vary. According to the embodiment illustrated, end wall 202 is a substantially planar or flat surface. According to various alternative embodiments, end wall 202 may include portions that are convex, concave, stepped, angled, sloped, etc.
According to an exemplary embodiment, base portion 200 is configured to receive and support sifter mechanism 400. Base portion 200 supports sifter mechanism 400 at an orientation spaced apart from end wall 202 a distance sufficient to provide a chamber (e.g., opening, etc.), shown as a cavity 222, for storing the cosmetic material. The size and shape of cavity 222 may vary depending on a number of design criteria. According to an exemplary embodiment, cavity 222 has a volume between approximately 1.0 cubic inch and approximately 8 cubic inches. According to various alternative embodiments, cavity 222 may have a volume greater than or less than the range provided. Limiting the volume of cavity 222 allows the overall size of container 100 to be minimized, thereby allowing container 100 to be conveniently carried or stowed in relatively size restricted areas (e.g., pockets, purses, backpacks, etc.) by the user. According various alternative embodiments, cavity 222 may be divided into two or more compartments (e.g., storage wells, etc.) for separating multiple cosmetic materials.
To support sifter mechanism 400 in an orientation offset from end wall 202, base portion 200 includes a support member (e.g., ledge, projection, etc.), shown as a plurality of posts 224, provided along the interior of peripheral side wall 204. According to an exemplary embodiment, an upper surface of each post 224 is the surface that supports sifter mechanism 400. According to the embodiment illustrated, posts 224 are provided at a height that allows a bottom portion of sifter mechanism 400 (e.g., a first sifter plate 402, etc.) to be substantially flush with or above bottom edge 220 of cutout portion 214. Such a configuration provides an upper portion of sifter mechanism (e.g., a second sifter plate 404, etc.) with sufficient clearance to pass over bottom edge 220 as sifter mechanism moves between the first and second positions.
Still referring to
According to an exemplary embodiment, end wall 302 is orientated generally perpendicular to a central axis of peripheral side wall 304. According to an exemplary embodiment, end wall 302 and peripheral side wall 304 are integrally formed as a single unitary body in a single mold by an injection molding operation to form cover portion 300. According to various alternative embodiments, the end wall section may be coupled to the side wall section in any suitable manner (e.g., snap-fit, welding, etc.). Depending on various design criteria, the profile of end wall 302 may vary. According to the embodiment illustrated, end wall 302 is a substantially planar or flat surface. According to various alternative embodiments, end wall 302 may include portions that are convex, concave, stepped, angled, sloped, etc.
Cover portion 300 defines a cavity 314 with end wall 302 and peripheral side wall 304. According to an exemplary embodiment, cavity 314 is sized to receive an accessory, such a mirror, coupled to the underside or inner surface of end wall 302. The mirror may be coupled to the underside of end wall 302 using any of variety of suitable techniques (e.g., mechanical fasteners, adhesives, welding, etc.). According to another exemplary embodiment, cavity 314 may also be sized to at least partially receive an applicator when cover portion 300 is in the closed position that may be useful in applying a cosmetic substance stored within base portion 200. For example, cavity 314 may be sized to at least partially receive a cloth, sponge, pad, puff pad or the like that is stored within container 100 when container 100 is in the closed position.
According to an exemplary embodiment, cover portion 300 is configured to remain coupled to base portion 200 when container 100 is moved between the open and closed positions. According to the embodiment illustrated, cover portion 300 is coupled to the base portion 300 about a hinge 360. Hinge 360 functions to allow cover portion 300 to be pivoted or rotated relative to base portion 200 between the open position and the closed position. According to an exemplary embodiment, hinge 360 generally comprises a first hinge portion 362 (e.g., projection, sleeve, knuckle, loop, joint, node, curl, etc.) provided at cover portion 300 and a second hinge portion 364 provided at base portion 300. First hinge portion 362 and second hinge portion 364 cooperate to define one or more bores configured to receive pivot rods or pins 366 that are inserted within the bores to support cover portion 300 relative to base portion 200 and to define a rotational axis about which cover portion 300 rotates relative to base portion 200. Any of a variety of known or otherwise suitable hinges may be used to pivotally couple cover portion 300 to base portion 200.
According to an exemplary embodiment, base portion 200 and cover portion 300 are formed of resins (plastic or otherwise), including, but not limited to, injection moldeable thermoplastic resin, such as acrylonitrile butadiene styrene (ABS), styrene-acrylonitrile copolymer (SAN), polypropylene (PP), polyethylene (PE), polyvinylchloride (PVC), or thermo-plastic elastomers (TPE). According to various alternative embodiments, other suitable materials (e.g., metals, bimetals, composites, wood, etc.) or combinations materials may be used to form base portion 200 and cover portion 300.
Container 100 may also include a latch mechanism to assist in retaining container 100 in the closed position. According to an exemplary embodiment, the latch mechanism may include a user interface, shown as a tab 250 in
Referring to
According to an exemplary embodiment, sifter mechanism 400 generally includes a first member, shown as a first sifter plate 402, and a second member, shown as a second sifter plate 404. Sifter mechanism 400 is configured to move between a first position and a second position by having second sifter plate 404 move relative to first sifter plate 402. According to the embodiment illustrated, sifter mechanism 400 is configured to substantially seal cavity 222 when in the first position such that the likelihood of leakage or spillage of particulate matter stored within base portion 200 from container 100 and/or into other portions within container 100 can be reduced. When in the second position, particulate matter stored within base portion 200 becomes accessible to a user.
According to an exemplary embodiment, first sifter plate 402 is a substantially planar (e.g., flat, etc.) member including one or more sifter openings 406 (shown as forty-two relatively small circular openings arranged in a rectangular pattern). Each of sifter openings 406 extend through first sifter plate 402 for providing a conduit through which particulate matter stored within cavity 222 can be dispensed. According to the various alternative embodiments, sifter openings 406 may have any suitable shape, size, number and pattern. For example, first sifter plate 402 may include one sifter opening or it may include two or more sifter openings, and each sifter opening may have a shape and size that is suitable to the application in which the container will be used. For example, one or more of the sifter openings may be circular, rectangular, tear-drop shaped, crescent-shaped, or one of a variety of other suitable shapes.
According to the embodiment illustrated, first sifter plate 402 is a bottom sifter plate configured to be received within base portion 200 and supported on posts 224. According to an exemplary embodiment, first sifter plate 402 is configured to be coupled to base portion 200 in a relatively fixed manner. For example, while first sifter plate 402 may be removable from base portion 200, first sifter plate 402 is generally restricted from moving (e.g., sliding, etc.) when coupled to base portion 200. While such coupling may be achieved using a snap-fit or a press-fit arrangement, other arrangements may be used including, but not limited to, an adhesive, a welding operation, a fastener, etc. According to the various alternative embodiments, first sifter plate 402 may be configured to coupled to base portion 200 in a releasable manner. Releasably coupling first sifter plate 402 to base portion 200 may allow a user to replenish (e.g., refill, etc.) cavity 222 with particulate matter.
According to an exemplary embodiment, first sifter plate 402 includes a retaining structure for securing second sifter plate 404 within container 100. According to the embodiment illustrated, the retaining structure includes one or more projections 408 provided along the lateral sides of first sifter plate 402. Projections 408 are shown as substantially L-shaped members having a first portion extending upward from first sifter plate 402 in a substantially vertical direction and second portion extending inward from a distal end of the first portion in a substantially horizontal direction. A channel defined by projections 408 in combination with a top surface of first sifter plate 402 is configured to receive and trap a portion of second sifter plate 404 (e.g., the lateral edges of second sifter plate 404) when second sifter plate 404 is assembled with first sifter plate 404. Projections 408 restrict the movement of second sifter plate 404 in a first direction (e.g., an upward vertical direction, etc.) while permitting movement of second sifter plate 404 in a second direction (e.g., front to back horizontal movement, etc.). As such, projections 408 not only provide a retaining function, but may also provide a guide function for second sifter plate 404 as it slides relative to first sifter plate 402 to move sifter mechanism 400 between the first position and the second position.
To further restrict the movement of second sifter plate 404 relative to first sifter plate 402, first sifter plate 402 is also shown as including a stop member 410. Stop member 410 is configured to limit how far second sifter plate 404 can move forward in a horizontal direction relative to first sifter plate 402. According to the embodiment illustrated, stop member 410 is an upwardly extending projection provided at a front end of first sifter plate 402.
Still referring to
According to embodiment illustrated, second sifter plate 404 is an upper sifter plate configured to be supported on first sifter plate 402. Second sifter plate 404 includes an attachment structure, shown as cut-outs or notches 414, configured to receive projections 408 provided on first sifter plate 402, at least during an initial assembly of sifter mechanism 400. According to an exemplary embodiment, second sifter plate 404 includes four notches 414 that are generally rectangular in shape and configured to receive projections 208 of first sifter plate 402.
Referring to
To assist in moving second sifter plate 404 relative to first sifter plate 402 when container 100 is moved to the closed position, second sifter plate 404 includes a rear wall 416 that is shown as extending in a substantially upright direction relative to the rest of second sifter plate 404. According to the embodiment illustrated, rear wall 416 is shown as being substantially perpendicular to the rest of second sifter plate 404. Rear wall 416 is configured to be engaged by a portion of cover portion 300 as container 100 is moved to the closed position. According to the embodiment illustrated, rear wall 416 is configured to be engaged by first hinge portion 362. The engagement between first hinge portion 362 and rear wall 416 causes second sifter plate 404 to slide forward relative to first sifter plate 402. According to the various alternative embodiments, rear wall 416 may be eliminated and first hinge portion 362, or another portion of cover portion 300, may be configured to engage a rear edge of second sifter plate 404.
Referring back to
According to an exemplary embodiment, spring 420 includes a first spring arm 422 and a second spring arm 424. First spring arm 422 and second spring arm 424 are both shown as including a first end that is coupled to second sifter plate 404 and a second end that is substantially free or unsupported. The first ends of first spring arm 422 and second spring arm 424 are shown as being coupled to a central portion of second sifter plate 404. The space separating first spring arm 422 and second spring arm 424 is the portion of second sifter plate 404 that is configured to engage stop member 410. According to the embodiment illustrated, first spring arm 422 and second spring arm 424 extend outward in opposite directions from their respective first ends and do not extend past the lateral side edges of second sifter plate 404.
Referring to
According to an exemplary embodiment, first spring arm 422 and second spring arm 424 extend outward from their respective first ends in a curved manner. For example, first spring arm 422 and second spring arm 424 are shown as being somewhat arcuate (e.g., bow-shaped, etc.) in shape. In such an embodiment, the inner portion of the curve faces the remainder of second sifter plate 404. According to the various alternative embodiments, first spring arm 422 and second spring arm 424 may be provided in any of a variety of shapes (e.g., S-shaped, V-shaped, straight arms, etc.).
First spring arm 422 and second spring arm 424 are configured to engage an inner surface of front wall 206 of base portion 200. When container 100 is moved to the closed position, second sifter plate 404 is pushed (e.g., slid, etc.) forward relative to first sifter plate 402 to move sifter openings 412 of second sifter plate 404 out of alignment with sifter openings 406 of first sifter plate 402. As second sifter plate 404 is moved forward, first spring arm 422 and second spring arm 424 are loaded (e.g., compressed, etc.) against the inner surface of front wall 206. A space or gap behind first spring arm 422 and second spring arm 424 allows the spring arms to flex inward as they are being loaded.
First spring arm 422 and second spring arm 424 are at least partially released when the force applied to second sifter plate 404 by cover portion 300 is removed. As such, when container 100 is moved to an open position, first spring arm 422 and second spring arm 424 are at least partially unloaded or released thereby causing first spring arm 422 and second spring arm 424 to push off of the inner surface of front side wall 206. Such a reaction causes second sifter plate 404 to slide relative to first sifter plate 402 in a rearward direction so that sifter openings 412 in second sifter plate 404 are in at least partial engagement with sifter openings 406 in first sifter plate 402 and particulate matter can be removed from cavity 222. According to an exemplary embodiment, the range of movement of first spring arm 422 and second spring arm 424 is approximately 0.100 inches between the loaded and unloaded states. According to the various alternative embodiments, this range of movement can be adjusted to accommodate different applications.
With reference to
Once in the open position, sifter openings 412 of second sifter plate 404 are at least partially aligned with sifter openings 406 of first sifter plate 402 so that particulate matter can be dispensed from cavity 222. Particulate matter can be dispensed from cavity 222 by using an applicator, such as a puff pad or cloth, that may be stored on top of second sifter plate 404. If an applicator is not provided, the user may tilt container 100 to dispense such particulate matter through one or more of the sifter openings.
Referring to
To return container 100 to the closed position, the user rotates cover portion 300 downward until latch mechanism 250 is engaged. Referring to
In the closed position, particulate matter stored within in cavity 222 is substantially sealed off from by sifter mechanism 400. To seal off cavity, second sifter plate 404 is orientated relative to first sifter plate 402 such that sifter openings 412 in second sifter plate 404 are at least partially out of alignment with sifter openings 406 in first plate 402.
Referring to
Container 1100 differs from container 100 described above in that spring 1420 provided on second sifter plate 1404 has been modified. As shown in
Container 1100 also differs from container 100 described above in that container 1100 includes a trim piece (e.g., frame, etc.), shown as a bezel 1500. Bezel 1500 is configured to be coupled to base portion 1200 over sifter mechanism 1400 to trap sifter mechanism 1400. Bezel 1500 is a frame that surrounds the dispensing apertures of sifter mechanism 1400. According to an exemplary embodiment, bezel 1500 is coupled to base portion 1200 via a snap-fit by engaging projections 1502 provided on base portion 1200. According to the various alternative embodiments, bezel 1500 may be coupled to base portion 1200 using any of a variety of suitable techniques (e.g., press-fit, adhesives, welding, fasteners, etc.). Bezel 1500 includes an outer perimeter that is configured to conceal spring 1420 when installed onto base portion 1200. Such a configuration may prevent spring 1420 from becoming contaminated or unintentionally interfered with by a user. At a front portion of the outer perimeter, bezel 1500 includes an aperture or cutout 1504 that provides clearance for latch mechanism 1250.
Container 1100 further differs from container 100 described above in that container 1100 includes a projection, shown as a tab 1368, provided on first hinge portion 1362 for engaging second sifter plate 1404. Tab 1368 includes a camming surface configured to engage second sifter plate 1404 for pushing second sifter plate 1404 in a forward direction when cover portion 1300 pivoted downward relative to base portion 1200. The camming surface is shaped to engage second sifter plate 1404 without engaging first sifter plate 1402. The engagement of tab 1368 with second sifter plate 1404 is shown in
As one of skill in the art will appreciate from the foregoing disclosure, the present disclosure relates to a number of containers wherein the movement of a cover portion is used to control the movement of a sifter mechanism. It is important to note that the construction and arrangement of the elements of the container as shown in the exemplary embodiment are illustrative only. Although only a few embodiments of the present inventions have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited in the claims. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. Further, the container may be configured in a wide variety of shapes to accommodate varying design criteria. According to various alternative embodiments, the container may be configured into other sizes, as well as other well-known or otherwise suitable shapes having linear and/or nonlinear edges and surfaces. For example, the container may be a generally rectangular or octagonal container. Further, for purposes of this disclosure the term particulate matter is used broadly to refer to any particulate substance (e.g., powder-like substances, granular substances, or the like, etc.) including cosmetic substances, food substances, cleaning soaps, medical substances, etc. According to various other exemplary embodiments, the container may be configured to support a fluid.
Accordingly, all such modifications are intended to be included within the scope of the appended claims. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1642780 | Kole et al. | Sep 1927 | A |
1759616 | Heitel et al. | May 1930 | A |
1794344 | Soyez | Feb 1931 | A |
1847949 | Kasdan et al. | Mar 1932 | A |
1895061 | Worssam | Jan 1933 | A |
7467727 | Yuhara | Dec 2008 | B2 |
7494030 | Bennett | Feb 2009 | B2 |
20060219256 | Byun | Oct 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20100307530 A1 | Dec 2010 | US |