The subject matter herein generally relates to sifting devices, and particularly relates to a sifting device for workpieces.
In assembly of electronic devices, such as mobile phones, multiple workpieces such as nuts usually need to be fixed to components of the electronic devices. The multiple workpieces are sifted according to directions of the workpieces or other criteria by manual operation, thus causing inefficiency.
Implementations of the present technology will now be described, by way of example only, with reference to the attached figures.
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures, and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts may be exaggerated to better illustrate details and features of the present disclosure.
The term “comprising,” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series and the like.
The present disclosure is described in relation to a sifting device.
The box 30 includes a top plate 31, two side plates 32, and a bottom plate 33. The two side plates 32 are connected to two opposite sides of the top plate 31. The bottom plate 33 connects to the two side plates 32 and is aligned with the top plate 31. Also referring to
Referring to
The guiding board 42 includes a vertical plane 421, a first inclined plane 423, and a second inclined plane 424. The first inclined plane 423, the baffle 41, and the top plate 31 cooperatively define an accommodation space 425 for receiving the workpieces 200 through the opening 311. The vertical plane 421, the second inclined plane 423, and the baffle 41 cooperatively define a slit 427 (
The air blower 50 is connected to a pump accommodated in the electric cabinet 10 for adjusting a direction of the workpieces 200. The air blower 50 includes two first nozzles 51 and two second nozzles 52. Each side plate 32 has a first nozzle 51 and a second nozzle 51 installed thereon. The two first nozzles 51 communicate with two opposite end of the pipe in the baffle 41 to blow the workpieces 200 misaligned in the gap 4214. The two second nozzles 52 are oppositely positioned a junction of the accommodation space 425 and the slit 427 to blow the workpieces 200 to a middle portion of the accommodation space 425.
The collector 60 is configured to output the workpieces 200 sifted by the sifting assembly 40, and includes a baseplate 61 and a protective plate 63. The baseplate 61 has a guiding plane 612 defining a guiding groove 614. In at least one embodiment, the guiding groove 614 has an inverted triangle shape and communicates with the slit 427 for receiving the workpieces 200. An extending portion 616 horizontally extending from an end of the baseplate 61 defines a receiving groove 6161 communicating with the guiding groove 614. The protective plate 63 resists the guiding plane 612 to prevent the workpieces 200 from reversing during a period of sliding in the guiding groove 614.
In use, also referring to
In another aspect, the workpieces 200 with other directions are misaligned in the gap 4214. Then, the pump accommodated in the electric cabinet 10 is actuated, the air is injected into the baffle 41 via the two first nozzles 51, and is ejected from the holes 412 to blow the workpieces 200 misaligned in the gap 4214. Additionally, the air is injected into the accommodation space 425 and the slit 427 via the two second nozzles 52 to blow the workpieces 200 located at the accommodation space 425. Thus, the direction of a part of the workpieces 200 may be changed to pass through the gap 4214 and the slit 427, and the other workpieces 200 may be misaligned in the gap 4214 again. And that cycle repeats, all of the workpieces 200 can be passed through the gap 4214 and the slit 427, and then entered into the receiving groove 6161.
In summary, the baffle 41 and the guiding board 42 jointly define the slit 427, and the guiding board 42 further defines the gaps 4214. Thus, the workpieces 200 with the specific direction can pass through the gap 4214, and cannot be stuck in the slit 427. Since the air blower 50 can blow the workpieces 200 to adjust the direction of the workpieces 200, thus, the workpieces 200 can be sifted by the sifting device 100, thereby saving human cost and improving work efficiency.
The embodiments shown and described above are only examples. Many details are often found in the art such as the other features of the sifting device. Therefore, many such details are neither shown nor described. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the details, especially in matters of shape, size and arrangement of the parts within the principles of the present disclosure up to, and including, the full extent established by the broad general meaning of the terms used in the claims. It will therefore be appreciated that the embodiments described above may be modified within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
201310706387.8 | Dec 2013 | CN | national |