This invention relates generally to sighting devices for cross bows, archery bows, firearms, or other projectile launching devices, and more particularly to a sighting device having trajectory compensating sight marks for superimposing on a target during aiming.
Reflex sights typically include a partially reflective lens and a battery-powered light source that projects light onto the reflective lens to define a reflex dot which is superimposed on a target as viewed through the lens. However, since such sights typically have a single reticle that must be adjusted on the fly for different target distances, the user's ability to quickly superimpose the reflex dot on a target at varying distances is limited.
In an effort to overcome these problems, several improvements have been proposed. By way of example, U.S. Pat. No. 5,924,234, and U.S. Pat. No. 5,653,034 disclose reflex sights with either a fluorescent-doped fiber optic or light pipe that receives ambient light along its length and transmits that light to its ends. Light projecting from one of the ends is incident on a lens as a reflex dot or reticule that can be superimposed on a target. With this arrangement, the light intensity of the reflex dot is directly dependent on the ambient light level. However, due to their complicated shape, the fiber optics can be difficult to manipulate, shape and position on the sight housing, leading to increased manufacturing time and expense. Again, such sights only provide a single reflex dot and therefore limit the user's ability to quickly position the dot on a target at varying distances. Although reflex sights with multiple reticles are known, these reticles are only adjustable to select between different reticle images such as an illuminated dot, cross hair, circle, or combinations thereof.
Other non-reflex sights have been proposed with multiple vertically stacked sight points to compensate for varying target distances. However, many of these sights unduly obscure a user's view of the target and/or may not be separately adjustable to accommodate a user's particular firearm, bow, arrow type and shooting style for varying target distances or heights. Some of these vertically stacked sights are not illuminated and therefore may be difficult to use in low light conditions. In addition, such sights only compensate varying target distances for a particular projectile and firearm. It would therefore be desirable to provide an illuminated reflective sighting device that overcomes at least some of the disadvantages of the prior art.
According to one aspect of the invention, an illuminated sighting device includes a reflective sight component having a reflective surface for facing a user; an adjustable imaging component having a plurality of reticles, each reticle having a plurality of reticle marks denoting trajectory compensation for a plurality of distances; and a light source arranged for projecting light through one of the reticles and onto the reflective sight component. The adjustable imaging component is movable to position one of the plurality of reticles in alignment with the light source so that reflective sight marks are incident on the reflective sight component in proportion to the reticle marks of the one reticle for view by a user during aiming.
According to a further aspect of the invention, a method of aiming a projectile launching device toward a distant target includes providing a reflective sight component having a reflective surface for facing a user and a plurality of reticles. Each reticle has a unique trajectory pattern for a particular projectile launching device and/or projectile. A particular reticle is selected based on the particular projectile launching device and/or projectile and light is projected through the selected reticle and toward the reflective sight component to create the unique trajectory pattern on the reflective sight component. At least a portion of the unique trajectory pattern is superimposed over the target in accordance with a distance from the projectile launching device and the target.
According to yet a further aspect of the invention, a sighting device includes an adjustable imaging component having a plurality of reticles. Each reticle has a plurality of reticle marks denoting trajectory compensation for a plurality of distances. The adjustable imaging component is movable to select one of the plurality of reticles to thereby compensate for a particular projectile launching device and/or projectile. The sighting device may be embodied as an illuminated sight, a telescopic sight, an open sight, a reflex sight, and so on.
The foregoing summary as well as the following detailed description of the preferred embodiments of the present invention will be best understood when considered in conjunction with the accompanying drawings, wherein like designations denote like elements throughout the drawings, and wherein:
It is noted that the drawings are intended to depict exemplary embodiments of the invention and therefore should not be considered as limiting the scope thereof. It is further noted that the drawings are not necessarily to scale. The invention will now be described in greater detail with reference to the accompanying drawings.
Referring to the drawings, and to
The bracket assembly 14 is preferably of conventional construction and includes opposing mounting bars 15 (only one shown) that extend longitudinally and together form a dovetail-shaped groove 18 for receiving a similarly shaped mounting projection (not shown) associated with a projectile launching device or the like. Bolts 20 extend though one of the bars 15 and thread into the other of the bars for adjusting the lateral width of the groove 18 so that the bracket assembly may be tightened or loosened, as required, with respect to the mounting projection (not shown). A height adjustment mechanism 22 and a windage adjustment mechanism 24 may be provided in conventional fashion for adjusting both the lateral and vertical positions of the sight assembly 16. By way of example, it may be necessary to adjust the lateral position of the sight assembly 16 when used during windy conditions and/or when calibrating the sight device 10. Likewise, vertical adjustment of the entire sight assembly 16 may be needed when initially calibrating the sighting device 10 with a particular crossbow (or other device) and arrow (or other projectile), when shooting from different distances and/or heights, such as from the ground or a tree stand, and so on.
The sight assembly 16 preferably includes an image generating portion 26 connected to a rearward end 28 of the base member 12, a reflective sight component 30 mounted within an open sight frame 32 that extends generally upwardly and rearwardly from a forward end 34 of the base member, and an adjustment knob 36 connected to the base member between the rearward and forward ends. The adjustment knob 36 is arranged to rotate clockwise or counterclockwise to adjust the luminous intensity of an image incident on the reflective sight component to accommodate a user during both bright daylight and low light level conditions. The knob 36 is preferably arranged to have detent positions so that discrete levels of luminous intensity can be selected. The knob can also be provided with an “off” position when the sighting device 10 is not in use. To that end, an alignment mark 38 may be provided on the frame 12 and suitable marks (not shown) may be provided on the knob 36 to indicate the different intensity levels as well as the “off” position. In accordance with a further embodiment, the knob 36 may be replaced with an ambient light sensor so that the luminous intensity can be automatically adjusted. With this arrangement, a separate on/off switch may be provided either as a user manipulated device or as a tilt sensor or the like with an electronic timer for automatically turning on/off the sighting device.
With additional reference to
As shown, the adjustable imaging component 40 is preferably in the form of a circular disk 60 with circumferentially spaced apertures 58 that receive the reticles 42-48. The disk 60 is connected to a reticle selection knob 62 (
Each reticle 42-48 preferably includes a lens onto which is etched or otherwise formed a predetermined pattern of marks 66, 68, 70 and 72 that relate to a particular set of shooting distances for different projectile launching devices and/or different projectiles. Each lens is preferably formed so that light is transmitted only through the sight marks 66-72 and blocked or filtered outside of the sight marks. A cover 74 (
The reflective sight component 30 preferably includes a lens 78 mounted in the sight frame 32 through well-known attachment means. The lens 78 is preferably constructed of a transparent material, such as glass, plastic or the like and includes a well-known reflective coating so that the user can see both the reflected image from the light source 50 at one or more predetermined wavelengths and the distant scene or target through the lens 78. It will be understood that although the lens 78 is shown as a generally curved disk, it may be flat and/or used in conjunction with other coatings, lenses, and/or lens configurations to produce a particular visual effect or to reduce or prevent unwanted visual effects as is well known.
The light source 50 is preferably in the form of a light emitting diode (LED) that emits radiant energy in the visible light region of the electromagnetic spectrum so that the resultant reflected image is visible to the naked eye. However, it will be understood that near infrared or other wavelengths may be used when accompanied by other viewing equipment, such as night vision devices. It will be further understood that other light sources can be used, such as dual-color or tri-color LED's to give the user a selectable color choice for the reflected image, incandescent bulbs, laser diodes, fluorescent-doped fiber optics, tritium lights, combinations thereof, and so on.
As shown in
As shown in
Likewise, as shown in
Finally, as shown in
In use, and by way of example only, the sighting device 10 of the present invention can be mounted on a crossbow with a particular pull strength or draw weight for compensating bolt drop at different yardages. The same sighting device 10 can be used on the same crossbow with a heavier or lighter bolt and/or can be mounted on another crossbow with greater or lesser draw weight and adjusted by rotating the adjustable imaging component 40 until the appropriate reticle is exposed to the light source. When the reticle has been selected, and prior to first use, the sighting device 10 may be calibrated in a conventional manner so that the bolt hits the target at a predetermined distance when one of the reflective sight marks, such as mark 82, is centered over the target. This can be done by turning the height adjustment mechanism 22 (
Although the sighting device 10 has been discussed for use with crossbows in the above example, it will be understood that the sighting device 10 can be adapted for use with any projectile launching device including, but not limited to, bows, pellet guns, BB guns, rifles, pistols, paint markers, and so on. The sighting device 10 can also or alternatively be used to compensate for the trajectory of a wide variety of projectiles including, but not limited to, arrows, bolts, bullets, balls, and so on, including their attendant properties such as weight, velocity, air resistance, and so on.
Moreover, although the reflective sight marks 82-88 are shown as dots, it will be understood that the reticle patterns may also or alternatively include lines, cross hairs, circles, combinations thereof and/or any shape or combination of shapes to denote a target at predetermined distances for trajectory compensation. In addition, it will be understood that the present invention is not limited to a circular disk 60 for the adjustable imaging component 40 nor to rotational movement for selecting a desired reticle, but may be shaped as a wedge (
With reference now to
Referring now to
Turning now to
Referring now to
It will be understood that the reflective sight component 30 in each of the above embodiments is not limited to a transparent lens or disk, but may alternatively be formed as a solid blade member with a reflective surface and/or an opaque or translucent surface as disclosed in copending U.S. application Ser. No. 11/458,333 filed on Jul. 18, 2006 and entitled “Illuminated Reflective Sighting Device,” the disclosure of which is hereby incorporated by reference in its entirety.
It will be further understood that the adjustable imaging component may be adapted for use with any type of sight such as telescopic sights, open sights, reflex sights, and so on. By way of example, the reticles may be of sufficient size to be directly viewed by a user with or without magnification and can be located in the direct line of sight of the user to be directly superimposed on a target with or without further illumination.
It will be understood that the term “preferably” as used throughout the specification refers to one or more exemplary embodiments of the invention and therefore is not to be interpreted in any limiting sense. In addition, terms of orientation and/or position as may be used throughout the specification denote relative, rather than absolute orientations and/or positions.
It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It will be understood, therefore, that this invention is not limited to the particular embodiments disclosed, but also covers modifications within the spirit and scope of the present invention as defined by the appended claims.