The present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:
To compensate analog I/Q signal imbalance, several calibration techniques have been proposed. One of the examples will be described hereinafter with reference to the circuit diagram of
Assuming I/Q has a gain mismatch of α (<<1) and phase mismatch of θ (<<1), the I/Q signals can be represented by
I=(1+α)cos(ωt+θ)
Q=sin(ωt)
Examine the product of I and Q:
It is seen that the I/Q product consists of a DC term and two oscillation terms, where the DC term is proportional to I/Q phase mismatch θ. Therefore, the I/Q phase mismatch θ can be calibrated by referencing to the polarity of the I/Q product.
Similarly, by examining the term of (I2−Q2), i.e.,
It is seen that the (I2−Q2) term consists of a DC term and one oscillation term, where the DC term is proportional to I/Q amplitude mismatch. Therefore, the I/Q gain mismatch α can be calibrated by referencing to the polarity of the I/Q squared difference.
The essence of sign detection for I/Q imbalance calibration lies in that by detecting the polarity of mismatch, the imbalance can be trimmed down successively through a feedback DAC (digital-to-analog converter). Please refer to
In view of the above equations, it can be noted that one sample of sign detection is insufficient to determine the polarity of mismatch due to the interference of oscillation terms. To precisely determine the polarity of mismatch, it is required to accumulate a sizable number of sign detection samples. The required amount of samples depends on the calibration resolution. While the impact of oscillation terms in sign detection can be alleviated by accumulating more samples, the effect of analog comparator offset remains as a problem which could cause errors in sign detection. Simulations show that for 100 mVrms I/Q signals with 1% amplitude mismatch, even with only 0.3 mV comparator offset, the polarity of amplitude mismatch could not be correctly determined. Moreover, for a typical analog comparator without applying any offset compensation technique, the offset level is on the order of 10 mV, which could significantly affect the I/Q imbalance calibration accuracy and limit the calibration resolution.
A comparator offset cancellation technique for I/Q imbalance calibration with analog sign detection is proposed to solve the above problems. Please refer to
The first comparing device 5 includes an analog comparator 41 and the second comparing device 6 includes an analog comparator 42. The comparators 41 and 42 are triggered by the rising edges of a sampling clock signal CLK to compare voltages of two input signals with respective threshold signals. According to the comparing results, two voltage differences are obtained as output signals. In an example, an in-phase signal I and a first threshold signal T1 are received from a first input terminal 111 and a second input terminal 112 to be inputted into the comparator 41 from input ends 411 and 412, respectively, to be compared. The first threshold signal T1 is preferably the differential inverted in-phase signal I− of the in-phase signal I in spite a ground signal is also an option to serve as the first threshold signal T1. Accordingly, the signals inputted into the comparator 41 from input ends 411 and 412 are a differential signal pair I and I−. A first output signal S1 representing the polarity of the in-phase signal I can be generated and outputted from an output end 413. Likewise, a second output signal S2 representing the polarity of the quadrature-phase signal can be generated and outputted from an output end 423 by comparing another differential input signal pair Q and Q−, which respectively serve as the quadrature-phase signal Q and second threshold signal T2 inputted into the comparator 42 from input ends 421 and 422.
However, analog comparators have inherent offsets, so the circuitry would be affected by an offset voltage a of the comparator 41 and an offset voltage b of the comparator 42, where a and b are mutually independent and can be of either polarity. With A and B as differential signal pair inputs to the two comparators, the equivalent inputs are (A−a) and (B−b), respectively. Therefore, actually, the polarities of (A−a) and (B−b) are detected. Then, through the operation of the exclusive NOR gate 440 of the operator device 44, an output signal representing the polarity of (A−a)·(B−b) can be generated. In other words, when an in-phase signal I and a quadrature-phase signal Q are inputted into the comparators 41 and 42, respectively, the output signal represents the polarity of (I−a)·(Q−b).
In view of the following equation, all the terms except the item A·B will affect the detection accuracy:
(A−a)·(B·b)=A·B−a·B−b·A+a·b
In this embodiment, as shown in
In response to the signals φ1 and φ2, the controlled switches 401 and 402 are switched ON while controlled switches 403 and 404 are switched OFF in the first period t1. The input ends 411 and 412 of the comparator 41 receive a differential signal pair of a signal A, e.g. a differential in-phase signal pair I and I−. The input of the first comparator 41 in the first period t1 is equivalent to a signal (I−a), and the output signal S1 represents the polarity of the signal (I−a). On the other hand, the controlled switches 403 and 404 are switched ON while the controlled switches 401 and 402 are switched OFF in the second period t2. In this case, the input into the first comparator 41 in the second period t2 is equivalent to a signal (−I−a), and the output signal S1 represents the polarity of the signal (−I−a).
In the sign detection device 40 of
Afterwards, after an exclusive NOR operation, an output signal S4, which represents the polarity of the signal (A−a)·(B−b) in the first period t1 while represents the polarity of the signal (−A−a)·(−(B−b)) in the second period t2, is outputted from the output end 443 of the exclusive NOR gate 440. The output signal S4 is then accumulated by an accumulator 441.
In this embodiment, with A and B as generic inputs to the two comparators, at φ1 phase, the sign detection is applied to the following equation,
(A−a)·(B−b)=A·B−a·B−b·A+a·b
While at φ2 phase, the sign detection is applied to the following equation,
(−A−a)·(−(B−b))=A·B+a·B−b·A−a·b
It is seen that at regularly alternating clock phase φ1 and φ2, the main signal term A·B for sign detection remains unaffected, while the DC term a·b resulting from comparator offset flips its polarity in each every CLK cycle. Through long-term accumulation, the DC term a·b is averaged out. As a result, comparator offset cancellation is achieved. Notice that both a·B and b·A are oscillation terms. Therefore, their influence in sign detection would be insignificant after long-term accumulation.
An exclusive OR gate may also be used in lieu of the exclusive NOR gate 440 to achieve the similar purpose with proper digital processing. Furthermore, the accumulator 441 can be substituted by an integrator to operate the output signal S4.
Since the polarity of the I/Q product can be detected independently from the a·b variation according to the present invention, similar principle can be applied to the sign detection of the product of (I+Q) and (I−Q). The sign detection according to the present invention is thus well applicable to I/Q imbalance calibration.
A sign detection method according to one embodiment of the present invention is disclosed in the flowchart of
Simulations have shown that, according to the present invention for I/Q imbalance calibration, the polarity of 0.1 degree phase mismatch and 0.2% amplitude mismatch can still be correctly detected with 5 mV comparator offset. Thus, the image rejection ratio can be enhanced.
While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not to be limited to the above embodiments. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.
This application is entitled to the benefit of Provisional Patent Application Ser. No. 60/820,608 filed Jul. 28, 2006.
| Number | Date | Country | |
|---|---|---|---|
| 60820608 | Jul 2006 | US |