The present invention relates to light fixtures, and particularly to light fixtures used in signs and displays. More particularly the present invention relates to illuminated signs that use radiation-emitting diodes as the light source.
It is well known that illuminated signs attract more attention than unlit signs. As such, businesses prefer illuminated signs for the purpose of attracting consumers or for advertising. One common illuminated sign is a box sign. A typical box sign includes a housing that supports a plurality of light sources. The housing is covered by a panel or sign facia that conveys the desired image to the consumer. Commonly, these light fixtures include conventional light sources such as incandescent, fluorescent, or neon lights that provide the desired illumination. However, these light sources can have several drawbacks. Some of these light sources consume large amounts of electricity making them expensive to operate; particularly for outdoor signs that are illuminated for long periods of time. Conventional light sources can generate a significant amount of heat that is not easily dissipated. In addition, conventional incandescent light sources have a short life and/or are susceptible to damage when compared to some less conventional light sources, and as such must be inspected and replaced periodically. Neon or fluorescent lights require expensive power supplies, and typically operate at a high voltage.
The present invention provides a radiation-emitting device comprising a side-emitting optoelectronic device having an upper surface, and a heat sink in thermal conductivity with the side-emitting optoelectronic device. The optoelectronic device may be a light-emitting diode, laser diode, or comparable low power point source of light. A reflector at least partially surrounds the side-emitting optoelectronic device. The reflector is positioned and shaped to reflect the emitted light substantially in an output direction. A non-transparent layer is disposed adjacent the upper surface of the side-emitting optoelectronic device.
In another construction, the invention provides a light fixture comprising a housing and a translucent output panel connected to the housing. A light-emitter is supported by the housing. The light-emitter includes a side-emitting optoelectronic device having an upper surface. A non-transparent layer is positioned between the translucent panel and the upper surface of the side-emitting optoelectronic device.
The detailed description particularly refers to the accompanying figures in which:
Before describing the invention in detail, it should be noted that unless otherwise specified, the term “light-emitting diode” (LED) as used herein includes a light-emitting diode and a corresponding refractor or optic, including diodes that emit infrared and ultraviolet radiation. The light-emitting diode itself is an electrical device that produces light in response to an applied current and voltage. For purposes of this application, another term for “light-emitting device” such as an LED is “radiation-emitting device”. The optic receives the light generated by the diode portion of the LED and refracts, reflects, or otherwise directs the light such that it is emitted from the optic in the desired pattern.
Furthermore, while the preferred constructions employ a LED as the light source, other optoelectronic light sources (electronic devices that emit light when powered) may be used and will function with the present invention. For example, radiation-emitting devices such as polymer or organic radiation-emitting devices or electroluminescent devices could be used with the present invention.
It should also be noted that the term “intensity” as used herein is meant to describe the luminous flux (lumens) produced by the light as measured across the area through which the light is emitted.
With reference to
The circuit board 20 (shown in
The LED 30 attaches to the circuit board 20 in any suitable manner. For example, the LED 30 could be soldered to the circuit board 20. Alternatively, thermally conductive epoxy may be used to attach the LED 30 to the circuit board 20.
The LED 30 resides within the reflector 15 as shown in
The LED 30 of
The frustoconical portion 60 includes a concave top surface 70 that internally reflects light traveling within the LED 30 so that the light is output through the radiation-emitting surfaces 45. A truncated substantially spherical portion defines the lower domed portion 65. The upper frustoconical portion 60 and the lower domed portion 65 are substantially transparent such that light can travel within them without significant losses in intensity. The shape of the upper frustoconical portion 60 and the lower domed portion 65, in combination with the material used, cause the light produced by the semiconductor junction to be redirected out the radiation-emitting surfaces 45 of the LED 30. LEDs 30 of this type are commercially available from manufacturers such as Lumileds Lighting, LLC of San Jose, Calif. and marketed under the trade name LUXEON (side emitting). To further enhance the side-emitting qualities of the LED 30 a non-transparent (preferably reflective) layer 72 is positioned on or above the top surface 70. This layer 72 is discussed in greater detail below with regard to
While the LED 30 described is a particular shape, other shapes employing other materials will also produce the desired pattern of light. In addition, other side-emitting optoelectronic devices will also function with the present invention. For example, a standard LED could be constructed with a reflecting or refracting device that directs the light in the desired directions.
For use as a light source in signage and displays, a 1-watt LED 30 is generally adequate. However, some applications may require higher wattage LEDs 30. For example, large signs or signs positioned high off the ground may require 5-watt or larger LEDs 30 to be adequately illuminated.
When used in sign applications, an LED 30 that emits substantially white light is preferred. When other colors are desired, color filters, signs, or lenses may be employed. Alternatively, monochromatic LEDs 30 that emit light of the wavelength corresponding to the desired color can be used.
Two or more LEDs 30 may also be used in combination to produce light of the desired color. For example, a red LED in combination with a blue LED will produce magenta light through a diffusive reflector or lens. In fact, a red LED, a blue LED, and a green LED, can be used in combination to produce almost any desired color by varying the intensity of the individual LEDs.
In still other construction, two differently colored LEDs are disposed within a single sign. The two LEDs are sequenced on and off to produce alternating colored lights.
The reflector 15 can be formed into any polygonal shape (e.g., four-sided, five-sided, six-sided and the like) or can be round, oval, elliptical, or irregular in shape. In fact, reflectors 15 can be formed to any desired shape, depending on the particular application. In addition, while
The reflector 15 includes an inner surface 75 that reflects a large percentage of the incident light in an output direction. The output direction is generally away from the radiation-emitting device 10 substantially along axis A—A. In one construction, the reflector 15 is formed from a stamped metal plate. The inner surface of the metal plate is painted white to better reflect the light emitted by the LED 30. The painted surface has the advantage of being a diffuse reflector. As such, the reflector provides more even light distribution on the sign by diffusing the reflected light. In other constructions, other materials are used to make the reflector or to improve the reflectivity of the inner surface 75. For example, a plastic reflector with a reflective metallic inner surface is well suited to reflecting the light emitted by the side-emitting LED 30.
With continued reference to
As can be seen, there are many ways to reflect the light along the desired path and only a few examples have been illustrated. Other shaped reflectors 15 are known and could be used with the present invention to achieve the desired results. Therefore, the reflector 15 should not be limited to the examples illustrated herein.
Turning now to
As shown in
Returning to
To further optimize the performance of the radiation-emitting devices 10, the controller 25 maintains the current and/or the voltage supplied to the LED 30 within a particular range. For white LEDs 30, the controller 25 maintains a voltage at each LED 30 at approximately 3.4 Volts. The controller 25 also maintains the current through each LED 30 between about 400 mA and 600 mA.
In operation, the DC power supply 37 provides the necessary power to operate the LED 30 through the controller 25. The DC power supply 37 can be used to convert standard AC power into DC power suitable for use with the radiation-emitting devices 10 and their controller 25 described herein. Although the DC voltage can vary, the controller 25 will maintain the specified current to the LEDs 30. Multiple LEDs 30 can be connected in series to controller 25 as long as efficient voltage sufficient voltage is provided by DC power supply 37.
Once power is applied to the LED 30, light is emitted as shown in
While the invention has been described as including an LED 30 that emits light of a certain wavelength, a person having ordinary skill in the art will realize that LEDs 30 emit a narrow distribution of light, typically in the visible portion of the spectrum. However, LEDs that emit significant light centered outside of the visible spectrum could also be used with the present invention, such as infrared or ultraviolet light. For example, so called “black light” signs could be powered by LEDs of the type described herein. “Black lights” emit light centered in the ultraviolet portion of the spectrum. Furthermore, LEDs that emit infrared light could be used in a device similar to the light fixture just described to produce a light fixture that is suited to applying heat or for night vision illumination. Therefore, the radiation-emitting device 10 described herein should not be limited to signs alone.
Although the invention has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the scope and spirit of the invention as described and defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1374654 | Harrison | Apr 1921 | A |
2205830 | Flannery | Jun 1940 | A |
2205860 | Olds | Jun 1940 | A |
4811179 | Komatsu et al. | Mar 1989 | A |
4920404 | Shrimali et al. | Apr 1990 | A |
5365411 | Rycroft et al. | Nov 1994 | A |
5428912 | Grondal et al. | Jul 1995 | A |
5467544 | Treuberg | Nov 1995 | A |
5539623 | Gurz et al. | Jul 1996 | A |
5697175 | Schwartz | Dec 1997 | A |
5703719 | Chen | Dec 1997 | A |
5711588 | Rudisill | Jan 1998 | A |
5857767 | Hochstein | Jan 1999 | A |
5967648 | Barnes, II et al. | Oct 1999 | A |
6095666 | Salam | Aug 2000 | A |
6139166 | Marshall et al. | Oct 2000 | A |
6287947 | Ludowise et al. | Sep 2001 | B1 |
6351069 | Lowery et al. | Feb 2002 | B1 |
6361190 | McDermott | Mar 2002 | B1 |
6367950 | Yamada et al. | Apr 2002 | B1 |
6394626 | McColloch | May 2002 | B1 |
6443593 | Lauschner | Sep 2002 | B1 |
6489636 | Goetz et al. | Dec 2002 | B1 |
6583521 | Lagod et al. | Jun 2003 | B1 |
6598998 | West et al. | Jul 2003 | B2 |
6607286 | West et al. | Aug 2003 | B2 |
6623150 | Roller et al. | Sep 2003 | B2 |
20020070449 | Yagi et al. | Jun 2002 | A1 |
20020125485 | Steigerwald et al. | Sep 2002 | A1 |
20020135997 | Lammers | Sep 2002 | A1 |
20020163808 | West et al. | Nov 2002 | A1 |
20020163810 | West et al. | Nov 2002 | A1 |
20020171087 | Krames et al. | Nov 2002 | A1 |
20030063476 | English et al. | Apr 2003 | A1 |
20030137838 | Rizkin et al. | Jul 2003 | A1 |
20030189832 | Rizkin et al. | Oct 2003 | A1 |
20040114358 | Storey et al. | Jun 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20040212998 A1 | Oct 2004 | US |