The present invention relates to sign structure, and particularly to wind actuated rotatable sign structure that is designed to be (i) efficient and cost effective to produce, (ii) easy to assemble and disassemble, in order to change the message conveyed by the sign structure, and (iii) effectively rotated by air movement in the vicinity of the sign structure, to attract the attention of those in viewing range of the sign structure. The present invention also relates to tool structure and methods for use in forming the sign structure.
In the applicants' experience, rotating sign structures have often signs formed of aluminum, with fins at the ends of the signs, and special bearing/connecting structure that enables the signs to be connected with support frames in a manner that allows the signs to be wind actuated and effectively rotated.
Also in the applicants' experience, there are areas in which such sign structures can be further improved. For example, applicants believe such sign structures can be designed in a manner that reduces the weight of the sign structure, and can be designed to be (i) efficient and cost effective to produce, (ii) easily and efficiently assembled, in order to change the message conveyed by the sign structure, and (iii) effectively rotated by air movement in the vicinity of the sign structure, to attract the attention of those in viewing range of the sign structure.
The present invention relates to new and useful sign structure designed to be (i) efficient and cost effective to produce, (ii) easily and efficiently assembled, in order to change the message conveyed by the sign structure, and (iii) effectively rotated by air movement in the vicinity of the sign structure, to attract the attention of those in viewing range of the sign structure.
Sign structure according to the present invention comprises a support rod, and a sign comprising a specially formed panel that is rotatable on the support rod. A bearing surface is integrally connected with the panel (is preferably formed in one piece with the panel) and extends along a predetermined portion of the panel. The bearing surface is configured to slide over the support rod and to rotate on the support rod, so that the panel is rotatable about the support rod. In a preferred form, the panel comprises a synthetic material having a corrugated configuration with at least one corrugation forming the bearing surface for the panel. Additionally, in a preferred form, a pair of fins are formed in one piece with the corrugated panel, and are bent at an angle relative to the plane of the panel.
Additionally, a preferred sign structure according to the present invention is designed in a manner that enables a planar piece of corrugated synthetic material to be efficiently formed into the sign. Specifically, a planar piece of corrugated synthetic material is formed in a way that allows the fins to be efficiently bent out of the plane of the panel, and maintained in the bent configuration, to form the sign.
Still further, the present invention provides a new and useful tool that can be used in forming the sign structure, and to a method that uses the tool in forming the sign structure.
Further features of the present invention will become apparent from the following detailed description and the accompanying drawings and Exhibits.
a is an enlarged, fragmentary view of the center of the sign of
a is a schematic top view, and
a and 4b are additional schematic partial top views of the sign of
a is a schematic three dimensional view of another embodiment of a sign structure according to the principles of the present invention;
b,
5
c and 5d schematically illustrate the manner in which the sign structure of
a,
6
b and 6c are schematic illustrations of another sign structure, according to the principles of the present invention;
d and 6e schematically illustrate the manner in which the sign structure of
f schematically illustrates another way of supporting the sign structure of
a-7e schematically illustrate components for supporting a rotatable sign structure, according to the principles of the present invention;
a-8e show a tool that can be used to cut the panel of the sign structure, to form the slits shown in
Exhibits A1-A4 further show features of the tool and the method that uses the tool in forming the sign structure.
As described above, the present invention relates to new and useful sign structure, and particularly to rotatable sign structure. The principles of the invention are described below in connection with several versions of a sign structure. From that description, the manner in which various types of sign structures can be constructed, according to the principles of the present invention.
One embodiment of a sign structure, according to the principles of the present invention, is shown in
A bearing surface is integrally connected with the panel, so that the panel and bearing surface move together as a unit. According to a preferred version of the invention, at least one corrugation forms a bearing surface that extends through the center panel (from the top 110 of the center panel to the bottom 112 of the center panel). Preferably, the bearing surface comprises the inner surface 113 of a central corrugation 114 of the center panel 106 (see
The sign 104 has display material that is displayed to those in viewing range of the sign 104, as the sign rotates on the support rod 102. The material may be applied to the center panel 106 and/or to the fins 108, either in a permanent form or in a removable form. If the display material is in a permanent form, changing the sign on the support rod can change the display. If the material is in a removable form, the material can be selectively removed and new material applied to the sign. In addition, the sign can also be changed, e.g. if it is desired to change the display content of the sign, if the original sign becomes worn or damaged, etc.
As can be seen from
According to one preferred version of the invention, the fins 108 are bent relative to the planar center panel 106. Specifically, each fin is bent at one or more slits 116 cut at predetermined locations in an exterior wall of the corrugated material (see e.g.
A tool 200 (also referred to as a Slicer) for use in slicing a corrugated panel is illustrated in
The tool 200 comprises a support 210, a handle 212, a guide rod 216, and a slicing blade 218 connected with the support. In addition, a surface roller 214 is connected with the handle 212. The guide rod 216 is configured and oriented to be inserted into a corrugation in a panel. The surface roller 214 is configured and oriented to roll along the surface 205 of one of the walls 204 of a panel 202 when the guide rod 216 is in a corrugation in the panel. The slicing blade 218 is configured and oriented to slice through the wall 204 of the panel on which the surface roller 214 rolls, at a predetermined angle to the surface 205 of the panel wall 204. The handle 212 is configured and oriented to enable a user to hold the tool, insert the guide rod 216 into a corrugation in the panel with the surface roller 214 disposed on the surface 205 of the panel, and push the tool 200 along the surface 205 of the panel, so as to slice the surface of the panel at the predetermined angle with the blade. Once the guide rod 216 of the Slicer has gone into a corrugation, it brings the edge of the blade of the Slicer in contact with the outer edge of the wall 204 of the panel. The blade is at an angle of from 10 to 80 degrees (relative to surface 205) and will then make a slice cut in the wall 204 at that angle. The surface roller 214 is configured to roll on surface 205 of the corrugated panel wall 204 to insure a smooth cut of the panel wall.
As the slicing tool is moved along the surface 205 of the corrugated panel in a direction parallel to the connecting webs, the wall 204 of the panel is sliced at a predetermined angle. This forms the slits 116 in the panel. Cutting the slits at an angle of from 10 to 80 degrees allows the edge portion of the corrugated panel to be bent in the direction of the slits (
When it is desired to provide two fins in the panel, that are bent out of the plane of the panel, each fin is produced by moving the slicing tool along the surface 205 of the wall 204 of the panel, at least once and preferable twice, along adjacent corrugations of the panel, to form a pair of slices in the wall 204 of the panel, along adjacent corrugations of the panel. If only one slice is used the angle at which the panel can be bent is limited. Then the panel is bent at those slices, in a direction such that that the slices in the one surface can slide under each other, thereby to facilitate bending the panel in the one direction, to form the fin (
It is preferred that one or more structural supports extend at least partially in the planar center panel 106 and at least partially into a fin 108 to maintain the fin bent relative to the center panel 106. Referring to
In the embodiment of
a-7d schematically illustrate examples of bearing and support structure 700 for the sign. The bearing a support structure comprises a pair of larger washers 702, smaller washers with a thrust bearing 706 between those smaller washers, a spacer 708 (e.g. a nylon sleeve) and a lock nut 710. Those components enable the sign to rest on one of the large washers 702, and to rotate easily on that large washer. The lock nut 710 enables the position of the bearing and support structure to be adjusted (to some extent) along the support rod 102, to allow a degree of vertical adjustment of the position of the sign. In addition, a lock nut and washer assembly 712 can be provided at the bottom of the support rod, so that rather than screwing the lower end of support rod into an opening in cross piece 122b, the threaded lower end of the support rod can extend through a hole in the cross piece 122b, and the lower lock nut and washer assembly 712 can be tightened to couple the lower end of the support rod to the cross piece 122b.
a shows another embodiment of a sign structure, according to the present invention, and
a,
6
b and 6c schematically illustrate some other sign structures according to the present invention. In
The sign structure of
A sign 104 (504, 604) can be easily changed, by uncoupling the acorn nut, lock nut and washer assembly (
As should be clear to those in the art, the sign structure described above enables the sign structure to be easily and efficiently assembled, and easily and efficiently disassembled and then reassembled, to enable the particular sign panel to be changed. In assembling the sign structure, a corrugated sign is selected, the support rod is inserted into the central corrugation, the desired bearing structure inserted onto the support rod, and the support rod coupled with a base, or pressed into the ground, in the manner described above. In order to disassemble the sign structure, any coupling structure associated with the support rod is uncoupled, the sign panel (and any bearing structure necessary) is slid off the support rod. Then, if a new sign panel is selected, that new sign panel is slid onto the support rod, the bearing structure slid back onto the support rod (if the bearing structure had been removed), and the support rod either pressed into the ground, or coupled with the base, to reassemble the sign structure with the new selected sign.
In all of the foregoing embodiments, the sign is preferably formed of extruded plastic, e.g. of a material known as Coroplast (Coroplast Inc, Quebec, Canada; Dallas, Tex.) As explained in the manufacturer's literature, the material is preferably extruded corrugated plastic, produced from a high impact polypropylene copolymer, which is chemically inert and has a NIL pH factor. Moreover, as further explained by the manufacturer's literature, the material can optionally have features like ultra violet protection, flame retardant, custom colors, corrosion inhibitors, static-dissipation, etc, that are melt blended into the plastic material. The support rod 102 is preferably formed of metal. The bearing and support structure 128 at the lower end of the sign can be selectively located in a predetermined position along the support rod.
Thus, the present invention provides a sign structure that is conveniently formed and assembled. While the sign is preferably formed of corrugated material, it will be appreciated that the sign structure may also comprise a panel formed in one piece with the bearing surface, where the panel extends laterally from the bearing surface, and the lateral ends of the panel include fins formed in one piece with the panel, the fins configured to allow air movement in the vicinity of the panel to rotate the panel about the central axis.
Accordingly, the foregoing disclosure provides sign structure that is (i) efficient and cost effective to produce, (ii) easily and efficiently assembled, in order to change the message conveyed by the sign structure, and (iii) effectively rotated by the air in the vicinity of the sign structure, to attract the attention of those in viewing range of the sign structure. Specifically, as seen from the foregoing description, a sign can be easily and efficiently produced, with a center panel and a pair of fins, from the corrugated synthetic material. The preferred embodiment describes a way of configuring the corrugated material so that the fins can be easily bent from the corrugated material and maintained in a bent state. The synthetic corrugated material is relatively lightweight (in comparison to an aluminum sign), and is relatively inexpensive relative to produce and efficient to assemble, primarily because the bearing and support structure is simpler and easier to produce and assemble than the special types of bearing structures that have been used in the past.
In addition, the foregoing disclosure provides a tool for use in forming the sign structure, and to a method that uses the tool in forming the sign structure.
With the foregoing disclosure in mind, it is believed that various ways of constructing sign structures, in accordance with the principles of the present invention, will become apparent to those skilled in the art.
This Application is related to and claims priority from Provisional Application Ser. No. 60/582,589, filed Jun. 24, 2004, entitled Sign Structure, which provisional application is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60582589 | Jun 2004 | US |