This invention relates to the field of signal processing, and in particular to an acquisition circuit for detecting a wanted signal in the presence of an unwanted signal, for example, in a pulse oximetry sensor.
Pulse oximetry is a non-invasive method allowing the monitoring of the oxygenation of a patient's hemoglobin. A sensor is placed on a thin part of the patient's body, usually a fingertip or earlobe. Light of different wavelengths (red and infrared) is sequentially passed from one side to a photodiode on the other side. Changing absorbance of each of the two wavelengths is measured, allowing determination of the absorbances due to the pulsing arterial blood alone.
Traditionally, in a pulse-oximetry sensor, LED's are flashed at the same rate as the photodiode sampling rate. For a pulse-oximetry system to be able to remove indoor light artifacts, this rate needs to be at least 100/120 Hz, i.e. above the Nyquist frequency of the fundamental of indoor light (50/60 Hz), and more likely above 200/240 Hz given the first harmonic is often the dominant component. See, for example, “Artificial Lighting Interference on Free Space Photoelectric Systems”, Maximilian Hauske et al, EMO '09/Kyoto, 2009, paper 21 P3-1.
The acquired signal fully describes both wanted and unwanted indoor light information and allows for the separation of the two using digital filtering. At that flashing rate the LED's account for most of the power consumption of the pulse-oximetry sensor, which is in the order of 10 mW. If harmonics of the indoor light need to be removed as well (e.g. in case of fluorescent light, second and third harmonics can be significant), the sampling rate needs to be increased, with an equivalent effect on the power consumption.
As long as the power consumption of the sensor is not a critical parameter, the above-mentioned implementation is the simplest. An example of such an implementation is given in
The signal is picked up by the photodetector, and passed through an amplifier to an analog-to-digital converter (ADC) driven by the clock signal through a delay line. The output of the ADC goes to a demultiplexer, which separates the red and IR components. The output of the demultiplexer is passed through a filter to remove the background illumination IL.
A timing chart for the system is shown in
For a body worn wireless sensor or simple SpO2 monitor the power consumption of the LEDs in such a scheme is too large to be powered by a small battery such as a coin cell and still maintain an acceptable life-time.
According to the present invention there is provided a signal acquisition circuit for detecting a wanted signal in a composite signal containing the wanted signal and an unwanted signal, where the highest frequency in the unwanted signal is higher than the highest frequency in the wanted signal, comprising a sensor for detecting the composite signal; an analog-to-digital converter for sampling the composite signal at a high rate that is at least equal to the Nyquist rate for the highest frequency in the unwanted signal; a filter for subtracting the unwanted signal from the composite signal; and which is configured such that the analog-to-digital converter outputs a first component containing the sum of the wanted signal and the unwanted signal sampled at a low rate at least equal to the Nyquist rate for the wanted signal but less than the high rate and a second component containing the unwanted signal sampled at the high rate.
The invention is particularly useful in the field of pulse oximetry, although it will be appreciated that it has more general application as discussed below. For convenience, the invention will be exemplified in the field of pulse oximetry.
It will be understood that the term “circuit” is used in the most general sense, and includes a software implementation, for example, using a signal processor.
The invention is based in part on the realization that in a pulse oximetry sensor the photoplethysmograph signal, from which blood oximetry is derived, is contained within a 5 Hz bandwidth, i.e. an order of magnitude below the fundamental of indoor light and from the fact that the LEDs are not needed to capture the ambient light information. The LED flashing rate therefore does not need to be the same as the sampling rate. A flashing rate of 10 Hz, i.e. the Nyquist rate of the photoplethysmograph signal, is sufficient. Typically, the flashing rate would be less than 20 Hz.
The sampling must be such that enough information about the unwanted light signal is acquired during the time the LED's are not on. By decorrelating LED flashing (the dominant component in power consumption) and photodiode sampling, a power saving factor in the order of 10 can be achieved. It will be appreciated that this principle can be applied more generally to any situation where a wanted signal has a lower bandwidth than an unwanted signal.
The invention also provides a pulse oximetry sensor comprising at least two light sources; a pulse generator arrangement for sequentially pulsing said light sources at a low rate that is at least equal to the Nyquist rate of a photoplethysmograph signal but less than a high rate at least equal to the Nyquist rate for the highest frequency of the ambient light to be removed; a photodetector for detecting light pulses from said light sources in the presence of artificial ambient light; an analog-to-digital converter (ADC) triggered at the high rate for converting an output of the photodetector to digital format, wherein the analog-to-digital converter outputs a composite output signal having a first component containing the signals from the light pulses in the presence of ambient light sampled at the low rate and a second component containing an ambient light signal sampled at the high rate; a demultiplexer for separating said signals; and a filter downstream of the demultiplexer for subtracting the ambient light signal from each of the signals from the light pulses in the presence of ambient light.
In one embodiment, a pair of light sources is provided, but there could be more. Typically, the first component will contain the signal Red+IL, and IR+IL, where Red+IL is the wanted signal from a red light source plus the ambient light and which are independent of each other, and IR+IL, where IR is the signal from the an infrared light source. These signals are of course independent of each other.
The invention will now be described in more detail, by way of example only, with reference to the accompanying drawings, in which:—
The pulse oximetry sensor in
The clock signals 1 are also passed through a divide-by-N counter 22, where N is an integer, for example 10. The output of the divide-by-N counter 22 is passed directly to the pulse generator 13 for the IR LED and through n*Ts delay line 21, where Ts is the base clock period and 1≦n≦N−1.
The output of the ADC is passed to demultiplexor 18, which produces three signals, RED+IL, IR+IL, and IL, where IL is the background illumination. The filter 19 then removes the background illumination by subtracting the signal IL from the other two.
As in the case for
In the sampling scheme shown in
In
While the invention has been described in connection with pulse-oximetry, it is applicable to any acquisition system where the sampling rate is dictated by unwanted signal, where the highest frequency of the unwanted signal is higher than the highest frequency of the signal of interest and where energy must be expended to make the wanted signal observable by the system, typically in a sensor or part of a sensor. Other examples include pressure or temperature sensors using a Wheatstone bridge circuit. In this example, the signal obtained from such a circuit would be the combination of a pressure or temperature resistor, three independent resistors, and power applied to the circuit. In this case the wanted signal, the pressure, might be contaminated by an unwanted signal injected in the analog gain stage. By using the pulse generator to power the Wheatstone bridge, sampling of the pressure signals (contaminated by the unwanted signal) can be carried out at a lower rate than the sampling of the unwanted signal in the same manner as the pulse oximetry sensor. Another type of sensor that could be used would be a powered microphone. The microphone can be powered at intervals to allow the principles of the invention to be applied to remove an unwanted interfering signal.
The sampled signal has now two components: 1) the sum of the wanted and the unwanted signals at a sampling rate FSW and 2) the unwanted signal at a sampling rate FSU. The sampling rate of the unwanted signal does not need to be regular; it only needs to fulfil the requirements of signal theory to gain sufficient information about the original unwanted signal for the purpose of recovering the wanted signal and whatever further requirements, if any, imposed by the filter implementation. This statement is also true of the wanted signal. The sampling rate of the wanted signal need not be regular so long as it fulfils the requirement of signal theory to provide a full representation of the original signal and meet any requirements imposed by the filter implementation.
The sensing of the ambient signal could be performed independently with a different sensor and added to the composite signal in an adder as illustrated, or as was the case in the
In the first component the wanted signal is fully represented but the unwanted signal is aliased. The second component adds the missing information about the unwanted signal, allowing the filter to remove it from the first component and extract the wanted signal only.
It should be appreciated by those skilled in the art that any block diagrams herein represent conceptual views of illustrative circuitry embodying the principles of the invention. The invention may be implemented on a processor, which may be provided through the use of dedicated hardware as well as hardware capable of executing software in association with appropriate software. When provided by a processor, the functions may be provided by a single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which may be shared. Moreover, explicit use of the term “processor” should not be construed to refer exclusively to hardware capable of executing software, and may implicitly include, without limitation, digital signal processor (DSP) hardware, network processor, application specific integrated circuit (ASIC), field programmable gate array (FPGA), read only memory (ROM) for storing software, random access memory (RAM), and non volatile storage. Other hardware, conventional and/or custom, may also be included. The term circuit is used herein to encompass functional blocks that may in practice be implemented in software. The invention could also be implemented in analog hardware.
Number | Name | Date | Kind |
---|---|---|---|
5676141 | Hollub | Oct 1997 | A |
20030036689 | Diab et al. | Feb 2003 | A1 |
20040138572 | Thiagarajan | Jul 2004 | A1 |
20090154573 | Petersen | Jun 2009 | A1 |
20100087718 | Gonopolskiy et al. | Apr 2010 | A1 |
20110001963 | Durack | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
200537884 | Jun 2003 | TW |
201105950 | Feb 2011 | TW |
03003914 | Jan 2003 | WO |
Entry |
---|
Sankman, Joseph, Transitioning from Analog to Digital in Medical Designs, RTC Magazine, Sep. 2010, pp. 42-45. |
Hauske, Maximilian et al, “Artificial Lighting Interference on Free Space Photoelectric Systems,” EMC'09/Kyoto, pp. 125-128, IEICE. Date:2009. |
Number | Date | Country | |
---|---|---|---|
20120296185 A1 | Nov 2012 | US |